Physik für Mediziner und Zahmediziner

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik für Mediziner und Zahmediziner"

Transkript

1 Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1

2 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf einen Körper längs des Weges s eine Kraft F ausgeübt, so wird die Arbeit W=F s verrichtet. Ihre Einheit ist: J=Nm J: Joule Nm: Newtonmeter Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner

3 Hubarbeit und potentielle Energie Hubarbeit W H =mgh h F=mg h Fähigkeit des Körpers, Arbeit zu verrichten, hat um W H =mgh zugenommen; er besitzt die potentielle Energie E pot = mgh Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 3

4 Flaschenzug Experiment Beobachtung Deutung Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 4

5 Flaschenzug: Gesetzmäßigkeit Gesamter Zugweg (Seilweg) Zugkraft F z verteilt sich auf n Verbindungen zwischen unteren und oberen Rollen! Die Arbeit (potentielle Energie) verändert sich jedoch nicht (sie wird nur besser verteilt), denn: Römischer Baukran Rekonstruktion Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 5

6 ...physikalische Arbeit I Definition der Arbeit (vorläufig): Wird auf einen Körper längs des Weges s eine Kraft F ausgeübt, so wird die Arbeit W=F s verrichtet. Ihre Einheit ist: J=Nm Ziel der weiteren Überlegungen: eine sinnvolle und endgültige Definition der Arbeit Winkel zwischen Weg und Kraft wegabhängige Kraft Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 6

7 Hubarbeit...potentielle Energie Experiment Beobachtung Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 7

8 ...physikalische Arbeit II: Winkel zwischen Kraft und Weg m s W R = F R s Arbeit gegen Reibungskraft F G = mg reibungsfreie Bewegung: keine Arbeit aufzuwenden für horizontale Bewegung: W=0 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 8

9 ...physikalische Arbeit III: Winkel zwischen Kraft und Weg s mgh F G = mg Kraftkomponente F p der Gewichtskraft parallel zum Weg verrichtet Arbeit Z.B. Haltekraft: Kompensiert Schwerkraft (aber kein Weg, damit Arbeit W noch = 0) Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 9

10 ...physikalische Arbeit IV: Winkel zwischen Kraft und Weg Definition der Arbeit (vorläufig): Wird auf einen Körper längs des Weges s eine Kraft F mit dem Winkel α zum Weg ausgeübt, so wird die Arbeit W=F s cosα verrichtet. Im vorigen Bild: mgh = F. s. cos(α) F Gesamtarbeit bleibt gleich α m F p F s s Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 10

11 ...Exkurs: Skalarprodukt zweier Vektoren α F F p F s s F s = F s cos α = F P s Definition der Arbeit (vorläufig): Wird auf einen Körper längs des Weges s eine Kraft F ausgeübt, so wird die Arbeit W=F s verrichtet. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 11

12 ...physikalische Arbeit V: wegabhängige Kraft F p schiefe Ebene W = F p s Arbeit = Fläche unter der Kurve s Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1

13 Federkraft Experiment Beobachtung Deutung F D F D = Dx x x Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 13

14 ...physikalische Arbeit V: wegabhängige Kraft F p schiefe Ebene F D Feder W = F p s s x Annäherung durch Flächenstücke Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 14

15 ...physikalische Arbeit V: wegabhängige Kraft F p schiefe Ebene F D Feder W = F p s W = 1 D x s Arbeit = Fläche unter der Kurve Merkhilfe = Dreiecksfläche = halbe Rechtecksfläche x Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 15

16 physikalische Arbeit: Definition Definition der Arbeit: Wird auf einen Körper längs des Weges s eine Kraft F ausgeübt, so wird die Arbeit s W = F ds s1 verrichtet. Geometrische Interpretation: die Arbeit ist die Fläche unter der Kurve, die den Verlauf der parallel zum Weg verlaufenden Komponente der Kraft beschreibt Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 16

17 ...was Sie können müssen Berechnung der Arbeit (Energie) für einfache Zusammenhänge zwischen Kraft und Weg, etwa: konstante Kraft mit festem Winkel zum Weg (Bsp.: schiefe Ebene) wegabhängige Kraft mit fester Richtung zum Weg (Bsp.: Feder) qualitativer Umgang mit Kraft-Weg-Verläufen Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 17

18 physiologische Arbeit physikalische Arbeit Muskeln, die Gegenstände halten, verrichten keine physikalische Arbeit, da der Weg Null ist! Sie verrichten jedoch Arbeit im physiologischen Sinn. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 18

19 Vorgriff: Muskelkontraktion aus: Deetjen/Speckmann: Physiologie Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 19

20 Vorgriff: Muskelkontraktion Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 0

21 Aktin-Myosin Komplexbildung Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1

22 Molekulare Mechanik der Kontraktion Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner

23 Größenordnung Grundumsatz eines Erwachsenen: ca. 000kcal/Tag 8380kJ/Tag (1kcal=4.19 kj) Frage: wie hoch kann der Berg sein, auf den ein 70kg schwerer Mensch mit dieser Energie steigen kann? Antwort: dieser Energiebetrag ist gleich der Arbeit, die der Mensch gegen die Schwerkraft verrichten muss, also: W W = mgh = 8380kJ h = mg 8380kJ 8380kNm = m m 70kg kg 10 s s = 11971m Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 3

24 Autobahn Experiment Beobachtung Deutung Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 4

25 beteiligte Energieformen h potentielle Energie E pot = mgh (potentielle) Energie der gespannten Feder E = D 1 Dx Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 5

26 beteiligte Energieformen kinetische Energie E = kin 1 mv Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 6

27 beteiligte Energieformen E = D 1 Dx E pot = mgh E = kin 1 mv ohne Reibung bleibt die Summe dieser Energien konstant: Epot + ED + Ekin = const. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 7

28 E = D 1 beteiligte Energieformen Dx E pot = mgh E = kin 1 mv Aufgabe: skizzieren Sie qualitativ den Verlauf der einzelnen Energien in Abhängigkeit der Position des Wagens. Energie Position Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 8

29 ...wrap up Definition der Arbeit: Wird auf einen Körper längs des Weges s eine Kraft F ausgeübt, so wird die Arbeit s verrichtet. W = F ds s 1 Geometrische Interpretation: die Arbeit ist die Fläche unter der Kurve, die den Verlauf der parallel zum Weg verlaufenden Komponente der Kraft beschreibt F D E pot = mgh E = kin 1 mv E = D 1 Dx W x Vorgriff: in einem abgeschlossenen System bleibt die Summe der kinetischen und potentiellen Energie konstant Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 9

30 Kontrollfragen Wie lautet das Laplace-Gesetz für den Druck in kugelförmigen Hohlräumen? Welche Kraftkomponente ist für die verrichtete Arbeit wichtig? Wie lauten die Formeln für die kinetische Energie, die Energie der gespannten Feder der Energie im Schwerefeld der Erde (nahe der Erdoberfläche)? Was ist die geometrische Interpretation für die Arbeit? Skizzieren Sie den Verlauf der beteiligten Energieformen für das Auto auf der Fahrbahn. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 30

31 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 31

32 ...und noch einmal Gleichgewichte F G = mg m α Eine zum Hebelaufbau am analoge Anordnung ist links skizziert. Die potentielle Energie der Masse m kann geschrieben werden als: W pot = mgr sinα r 1.) Skizzieren Sie den Verlauf der potentiellen Energie in Abhängigkeit vom Drehwinkel α (für 0<α<360 )..) Markieren Sie die Stellungen für labiles und stabiles Gleichgewicht. 3.) Welche Gemeinsamkeit haben die Stellungen? Worin unterscheiden sie sich? Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 3

33 Klassifizierung von Gleichgewichten Gleichgewicht (bzgl. Rotation) ist erreicht, wenn das Gesamtdrehmoment verschwindet. Gleichgewichte können stabil labil indifferent sein. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 33

34 Energieerhaltungssatz (der Mechanik) In einem System, das keinen äußeren Kräften unterworfen ist, ist die Gesamtenergie, d.h. die Summe der potentiellen und kinetischen Energie, konstant. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 34

35 Energieerhaltung Zwei Kugeln mit den Massen m 1 und m starten (nacheinander) an gegenüberliegenden Seiten einer Bahn, auf der sie sich reibungsfrei bewegen können. Welche der Kugeln erreicht die gegenüberliegende Seite? a. Kugel 1 m 1 =1kg b. Kugel c. beide Kugeln d. keine der Kugeln m =0.1kg Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 35

36 ...Kategorien Grundlagen: notwendige Kenntnisse und Fähigkeiten Wissenswertes: Informationen jenseits des Notwendigen Für Experten: Medzinische Physik... Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 36

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

4.5 Wegunabhängige Arbeit, konservative Kräfte

4.5 Wegunabhängige Arbeit, konservative Kräfte 4 Arbeit, Energie, Leistung 4.0 Exkurs: Skalarprodukt 4. Arbeit 4. Energie 4.3 Energieformen 4.4 Leistung 4.5 Wegunabhängige Arbeit, konservative Kräfte 4.7 Einfache Maschinen R. Girwidz 4 Arbeit, Energie,

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Arbeit, kinetische und potentielle Energie

Arbeit, kinetische und potentielle Energie 1 von 7 11.12.2008 09:08 Arbeit, kinetische und potentielle Energie Aus SystemPhysik Arbeit, kinetische und potentielle Energie sind ziemlich populär. Entsprechend verschieden werden diese Begriffe verwendet.

Mehr

Kapitel III Arbeit, Leistung und Energie

Kapitel III Arbeit, Leistung und Energie Kapitel III Arbeit, Leistung und Energie 3.1 Arbeit Betrachtet man die Momentaufnahme eines Gewichtsstück, welches an einem Kran hängt, so kann man an den Kräften zunächst nicht unterscheiden, ob die Last

Mehr

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Dieser Vortrag, von kleinen Änderungen abgesehen, wurde im SS 05 von Jessica Rinninger zusammengestellt. Inhalt: Arbeit: Was ist Arbeit? Wozu

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

5) Impuls und Energie

5) Impuls und Energie 5) Impuls und Energie 5.) Arbeit und Energie 5.) Energieerhaltung 5.3) Impuls und Impulserhaltung 5.4) Stöße 5.) Arbeit und Energie 5..) Arbeit 5..) Arbeit bei konseratien Kräften 5..3) Zusammenhang Potential

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Die Leistung und ihre Messung

Die Leistung und ihre Messung Die Leistung und ihre Messung Bei der Definition der Arbeit spielt die Zeit, in der die Arbeit verrichtet wird, keine Rolle. In vielen Fällen ist es aber wichtig, anzugeben, in welcher Zeit eine bestimmte

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV

ERGEBNISSE TECHNISCHE MECHANIK III-IV ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern SS 213, 23.7.213 1. Aufgabe: (TMIII) y C z x A ω B D b r a Im skizzierten System dreht sich die KurbelAB (Länger)

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG I. Zielsetzung Einführung der Definition für die mechanische Kraft, die mechanische Arbeit und die mechanische Leistung. Klärung des Zusammenhanges zwischen

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

2. Das traditionelle Kraft-Arbeit-Energie-Konzept (KAE-Konzept) (= alter Gymnasiallehrplan in Bayern bis 2004)

2. Das traditionelle Kraft-Arbeit-Energie-Konzept (KAE-Konzept) (= alter Gymnasiallehrplan in Bayern bis 2004) 9. Die Energie Gliederung: 1. Der Begriff Energie 2. Das traditionelle Kraft-Arbeit-Energie-Konzept (KAE-Konzept) (= alter Gymnasiallehrplan in Bayern bis 2004) 3. Das Münchner Unterrichtskonzept Energie

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons

Aufnahme und Abgabe von Energie Kernumwandlungen (grundlegende Betrachtungen zur Energiebilanz) Ph 10.2 Die Mechanik Newtons Staatsinstitut für Schulqualität und Bildungsforschung Referat Naturwissenschaften / Physik Die Energie als Erhaltungsgröße ein Unterrichtskonzept Ausgangspunkt für die nachfolgend beschriebene Vorgehensweise

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl Zu beginn dieses Kapitels möchte ich ihnen einiges über Chips erzählen. Meine Erfahrung zeigt mir das dies ein wesendlich beliebteres Themen ist als Physikalische Grundlagen. Ich gehe nun davon aus, dass

Mehr

c) In Wirklichkeit hat der Wagen in C wieder die Geschwindigkeit Null. Berechne die mittlere Reibungskraft, die auf den Wagen wirkt.

c) In Wirklichkeit hat der Wagen in C wieder die Geschwindigkeit Null. Berechne die mittlere Reibungskraft, die auf den Wagen wirkt. Aufgaben Physik 8. Jahrgangsstufe Gymnasium Eckental I. Mechanik 1. Mechanische Energieformen : - Welche Arten mechanischer Energie gibt es und wie lauten die entsprechenden Formeln? - Wie lautet der Energieerhaltungssatz?

Mehr

Arbeit und ihre Messung

Arbeit und ihre Messung Arbeit und ihre Messung Die Arbeit stellt eine abgeleitete physikalische Größe dar. Der Begriff Arbeit ist uns zwar aus dem Alltag bekannt, er muß aber in der Physik exakt definiert und enger abgegrenzt

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

5. Lernzielkontrolle / Stegreifaufgabe

5. Lernzielkontrolle / Stegreifaufgabe Reibung 1. Ein Schlittschuhläufer der Gewichtskraft 0,80 kn muss mit einer Kraft von 12 N gezogen werden damit er seine Geschwindigkeit unverändert beibehält. a) Wie groß ist in diesem Fall die Reibungszahl

Mehr

Arbeit, Energie und Impuls I (Energieumwandlungen)

Arbeit, Energie und Impuls I (Energieumwandlungen) Übungsaufgaben Mechanik Kursstufe Arbeit, Energie und Impuls I (Energieumwandlungen) 36 Aufgaben mit ausführlichen Lösungen (35 Seiten Datei: Arbeit-Energei-Impuls Lsg) Eckhard Gaede Arbeit-Energie-Impuls_.doc

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Energie und Implus(energía, la; impulso (el)

Energie und Implus(energía, la; impulso (el) 4 4.1 Energie und Implus(energía, la; impulso (el) 1 o ímpetu, el ) Arbeit (trabajo, el ) Abb.1: Eine Zugmaschine übt auf den Anhänger eine Kraft F längs eines Weges s aus. Dabei wird Arbeit verrichtet.

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Die zum Heben aufzubringende Kraft kann noch weiter verringert werden, indem der Körper von noch mehr Seilstücken getragen wird.

Die zum Heben aufzubringende Kraft kann noch weiter verringert werden, indem der Körper von noch mehr Seilstücken getragen wird. Seite 1 Sachinformation ROLLEN UND LASCHENZÜGE Ein laschenzug ist eine einfache Maschine, die den Betrag der aufzubringenden Kraft zum Bewegen oder Heben von Lasten verringert. Der laschenzug besteht aus

Mehr

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung 1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung Findet in den ausliegenden Schulbüchern und physikalischen Fachbüchern verschiedene Definitionen der Begriffe Arbeit, Energie und Leistung.

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion

DOWNLOAD VORSCHAU. Physik kompetenzorientiert: Mechanik 7. 7. / 8. Klasse. zur Vollversion DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Mechanik 7 7. / 8. Klasse Bergedorfer Unterrichtsideen Anke Ganzer Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben Optik,

Mehr

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4 Impulserhaltung beim zentralen DAP Einleitung Als Kraftstoß auf einen Körper wird die durch eine Kraft F in einer kurzen Zeit t bewirkte Impulsänderung bezeichnet. Der Impuls p ist dabei als das Produkt

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/ 1. Energie im Alltag Unser Alltag ist ohne Energieeinsatz nicht zu bewältigen. Viele Prozesse laufen nur dank Energieeinsatz. Ein Blick auf die Energiebilanz der Schweiz zeigt das folgende Bild: Endverbrauch

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

A. ENERGIE = GESPEICHERTE ARBEIT

A. ENERGIE = GESPEICHERTE ARBEIT 1. Steine, die arbeiten! Die Frage, ob Steine Arbeit verrichten können, ist wohl merkwürdig. Betrachten wir aber das untenstehende Bild, bekommt diese Frage doch einen Sinn. Steine können - wenn auch unerwünschte

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

W11. Energieumwandlung ( )

W11. Energieumwandlung ( ) W11 Energieumandlung Ziel dieses Versuches ist der experimentelle Nacheis der Äquivalenz von mechanischer und elektrischer Energie. Dazu erden beide Energieformen in die gleiche Wärmeenergie umgeandelt.

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Mechanik und ihre mathematischen Methoden Frank Stallmach Institut für Experimentelle Physik I Vortrag während des LiT.Shortcuts Aktivierung

Mehr

Physik Formelsammlung

Physik Formelsammlung Physik Formelsammlung Allgemeine Berechnung: v = delta s/delta t a = delta v/delta t -> Durchschnittsgeschwindigkeit / für delta t -> 0: Momentanbeschl. -> Durchschnittsbeschleunigung / für delta t ->

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber: r 1 größer als r genauer:

Mehr

Unterrichtsmaterialien:

Unterrichtsmaterialien: Unterrichtsmaterialien: Energieumwandlungen in der Halfpipe Fach: Physik Jahrgangstufe: 5./6. Inhaltsverzeichnis 2 Inhalt Seite 1. Lernziele und curriculare Bezüge 3 2. Die Lernsituation 4 3. Der Unterrichtsverlauf

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007

1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 1. Klausur zu Grundlagen der Physik I WS 07/08, 30.11.2007 Bsp. Name:... 1 2 Matr. Nr.... SKZ:... 3 4 Bitte verwenden Sie nur ausgeteilte Blätter! Σ Maximal : 20 Punkte (5 Punkte/Aufgabe) Punkte Kinematik

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Physik für Mediziner

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Physik für Mediziner Liebe Studierende der Human- und Zahnmedizin, mithilfe dieses Tests können Sie selbst einschätzen, ob Sie den Vorkurs besuchen sollten. Die kleine Auswahl an Aufgaben spiegelt in etwa das Niveau des Vorkurses

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Lehrprobe im Fach Physik

Lehrprobe im Fach Physik Lehrprobe im Fach Physik Thema der Unterrichtseinheit: Mechanik II Thema der Unterrichtsstunde: Mechanische Arbeit und mechanische Leistung Name: Jens Bernheiden Schule: Schulleiter: Seminarleiterin: Studienleiter:

Mehr

Grundlagen der Biomechanik. Ewa Haldemann

Grundlagen der Biomechanik. Ewa Haldemann Grundlagen der Biomechanik Ewa Haldemann Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 2 Was ist Biomechanik 2 Bewegungen entstehen durch

Mehr

Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl)

Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl) Prüfungsfragenkatalog für Physik für Pharmazeuten (Prof. A. Kungl) Stand: Dezember 2015 Termin: 09.12.2015 bei allen Formeln müssen die Parameter erklärt werden, sonst kann die Antwort nicht beurteilt

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

ARMMODELL. Dieser Versuch ist physikalisch auch noch sehr einfach; er wendet das Hebelgesetz auf ein Modell des menschlichen Armes an.

ARMMODELL. Dieser Versuch ist physikalisch auch noch sehr einfach; er wendet das Hebelgesetz auf ein Modell des menschlichen Armes an. MODELL 55 MODELL Dieser Versuch ist physikalisch auch noch sehr einfach; er wendet das Hebelgesetz auf ein Modell des menschlichen Armes an. Ziel des Versuches ist es, die Vorgehensweise beim Durchführen

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Arbeit und Energie. W= F s Ds

Arbeit und Energie. W= F s Ds Arbeit und Energie Experiment 18 Arbeit ist ein Mass für den Energie-transfer. Wenn keine Reibung vorhanden ist und wenn positive Arbeit an einem Objekt geleistet wird, dann führt dies zu einer Zunahme

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Erläuterungen) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Fachlehrer: Schmidt Folgende Themen sind vorgesehen: Mechanik - Geradlinig gleichförmige Bewegung, Geschwindigkeit - Masse, Volumen, Dichte

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr