Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse"

Transkript

1 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte und längste Seite nennt mn die Hypotenuse ( c ). SATZ DES PYTHAGORAS: In jedem rectwinkeligen Dreieck gilt: + b = c Die Summe der Fläcen der Qudrte über den Kteten ist gleic der Fläce des Qudrtes über der Hypotenuse. (Vergleice dzu Zeicnung in REI- CHEL ; Seite 156; gnz unten). Beispiel: Von einem rectwinkeligen Dreieck kennt mn die Seiten =0 mm und b=8 mm. Berecne die Seite c, den Umfng und den Fläceninlt des Dreiecks. c = + b c = c = 70 c = 70 c = 5mm U = + b + c U = U = 10mm b 0 8 A = A = A = 80mm Beispiel: Von einem rectwinkeligen Dreieck kennt mn die Seiten = mm und c=51 mm. Berecne die Seite b, den Umfng und den Fläceninlt des Dreiecks. c = + b b = c b = 51 b = 05 b = 5mm 1

2 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester U = + b + c U = 10mm A = b A= 50 mm Übungen: Übungsbltt 10; Aufgbe 19 Stz: Für ein rectwinkeliges Dreieck gilt: c Umkreisrdius r = b Inkreisrdius ρ = U Übungen: Übungsbltt 10; Aufgben Beispiel: In einem rectwinkeligen Dreieck verlten sic die Kteten wie 1:5. Der Umfng des Dreiecks beträgt 180 mm. Berecne die drei Seitenlängen. Wir wissen : b = 1 : 5. Dies bedeutet, dss 1 Teile lng ist, b 5 Teile. Wir müssen uns lso die Länge eines Teiles errecnen. Für 1 Teil screiben wir t. Forml gilt lso: = 1t b = 5t D es sic um ein rectwinkeliges Dreieck ndelt, gilt der pytroräisce Lerstz: c = + b Wir setzen für und b ein: c = 1t + 5 t ( ) ( ) c = 1t + 5t c = 169t c = 1t Nun können wir den beknnten Umfng usnützen: U = + b + c Wir setzen die beknnten Werte ein: 180 = 1t + 5t + 1t 180 = 0t t = 6 Wir wissen nun, dß 1 Teil 6 mm lng ist. Nun setzen wir wieder in unsere Terme für,b,c ein: = 1t = 7mm b = 5t = 0mm c = 1t = 78mm

3 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester Übungen: Übungsbltt 10; Aufgben 1-1 Anwendungen des pytgoräiscen Lerstzes: Übungen: Übungsbltt 10; Aufgben 1-15 Anwendung im Recteck und Qudrt Angenommen, wir kennen in einem Recteck die Seitenlängen und b. Wie lng ist dnn die Digonle d? D C d b A B D wir mit den Eckpunkten A,B,C ein rectwinkeliges Dreieck erlten, muss ier der pytgoräisce Lerstz gelten: d = + b Um d zu erlten zieen wir uf beiden Seiten die Wurzel: d = + b Stz: Für die Digonle d eines Rectecks (,b) gilt: d = + b Beispiel: Ein Recteck t die Seitenlängen = cm und b = cm. Wie lng ist die Digonle d? d = + b d = + d = 5 d = 5cm Übungen: Übungsbltt 10; Aufgben Ds Qudrt ist nun j lediglic ein besonderes Recteck. Es gilt: = b. Wir screiben nun in der Formel für die Berecnung der Digonle eines Rectecks sttt b : d = + d = d =

4 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester d = Stz: für die Digonle d eines Qudrtes mit der Seitenlänge gilt: d = Übungen: Übungsbltt 10; Aufgben 10-1 Anwendung m gleicscenkeligen Dreieck Beispiel: Von einem gleicscenkeligen Dreieck ABC kennt mn die Seiten =96 mm und c=18 mm. Berecne die Höe c, den Fläceninlt und die Höe des Dreiecks. Wir mcen uns zunäcst eine Skizze: Wir seen, dß sic ein rectwinkeliges Dreieck ergibt (scrffiert eingezeicnet). Von diesem kennen wir zwei Seiten (, ). Folglic können c wir uns die dritte Seite usrecnen: = c = 96 7 = 70 = 61, 16mm Nun können wir die Fläce ermitteln: c A = , A = = 55, 8mm Dmit wir noc berecnen, nützen wir die Fläce us. Für diese muss j ußerdem gelten: A = , = / = 96 /: 96,

5 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester = 9, 9mm Übungen: Übungsbltt 10; Aufgben 1 15 Anwendung m gleicseitigen Dreieck Für ds gleicseitige Dreieck können wir uns mittels des pytgoräiscen Lerstzes spezielle Formeln für die Höe und den Fläceninlt erleiten. Zunäcst mcen wir uns eine Skizze: C A B Wir erlten offensictlic ein rectwinkeliges Dreieck (scrffiert eingezeicnet). In diesem gilt lso der Stz des Pytgors. = = = = = = Für die Fläce setzen wir nun in die uns beknnte Fläcenformel für beliebige Dreiecke ein: A = 1 A = A = 5

6 Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester Stz: Im gleicseitigen Dreieck gelten folgende Formeln: Dreiecksöe = Fläceninlt A = Beispiel: Von einem gleicseitigem Dreieck ABC kennt mn die Höe =6 mm. Berecne die Länge der Seite und den Fläceninlt. Aus der beknnten Höe können wir uns zunäcst die Dreiecksseite ermitteln. Wir setzen in die Formel für die Höe ein: = 6 = / 18 = /: = 7, 9mm Nun lässt sic die Fläce leict ermitteln: 7, 9 A = = = 6, 77mm Übungen: Übungsbltt 10; Aufgben

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen Aufgben zum Pytgors, Ktetenstz, Höenstz Hinweise: Die Zeicnungen sind teilweise verkleinert drgestellt. Alle Mße sind in mm, flls nict nders ngegeben.. Der Abstnd zweier Punkte im Koordintensystem errecnet

Mehr

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware!

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware! M Übung für die 5. Sculrbeit 01 Nme: 1)Eine Recnung für ds Verlegen eines Teppicbodens lutet uf 51. Bei Brzlung innerlb von Tgen werden % Skonto gewärt. Berecne die Ersprnis und den ermäßigten Preis! )Felerfte

Mehr

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Eigenschaften von Prismen

Eigenschaften von Prismen gnz klr: Mtemtik - Ds Ferieneft mit Erfolgsnzeiger Eigenscften von Ein gerdes Prism t immer eine rund- und eine Deckfläce, die deckungsgleic (kongruent) und prllel zueinnder sind. Den Astnd zwiscen rund-

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird.

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird. Differentilrecnung Extremwertufgben Arbeitsbltt Aufgben, in denen die Nebenbedingung mitilfe des Strlenstzes ermittelt wird. Vorwissen 1 Werden zwei Strlen und b mit dem gemeinsmen Anfngspunkt S von zwei

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Satz des Pythagoras. c 2. a 2. b 2

Satz des Pythagoras. c 2. a 2. b 2 Stz des Pythgors 01 c b Hypotenusenqudrt = Summe der beiden Kthetenqudrte ² = c² b² = c² b² ² + b² = c² b² = c² ² b= c² ² c² = ² + b² c= ² + b² 0 Der Stz des Pythgors und seine rechnerische Anwendung Beispiel:

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik

Klasse 9 a/b/c 4. Schulaufgabe aus der Mathematik Klasse 9 a/b/c 4. Sculaufgabe aus der Matematik 14. 06. 00 (WWG) Gruppe A 1. Von einem Würfel der Kantenlänge a wird wie unten eingezeicnet eine Pyramide abgescnitten. Berecne das Volumen der Pyramide.

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt:

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt: gnz klr: Mtemtik - D Ferieneft mit Erfolgnzeiger Rettungring Volumen von Primen Um d Volumen (V) eine Prim zu erlten, multipliziert mn den Inlt der Grundfläce (G) mit der öe (). Für lle Primen gilt: V

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

M3/I Übung für die 6. Schularbeit Name:

M3/I Übung für die 6. Schularbeit Name: M/I Übung für ie 6. Scularbeit Name: 1)Berecne ie Oberfläce eines Prismas mit recteckiger Grunfläce un er Körperöe! a = 8 cm b = 5, cm = 7,6 cm )Berecne ie Oberfläce eines Prismas mit einem rectwinkeligen

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden?

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden? Relscule Scüttorf Mtemtik Klsse 10d Dezemer 006 1) Ein Deic t folgende Mße: c = 9 m = 0 m = 18 β = 8 ) Wie reit ist die Deicsole? ) Wie groß ist der trpezförmige Querscnitt des Deices? Runde uf zwei Stellen

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

Zusammenfassung: Vektoren

Zusammenfassung: Vektoren LGÖ Ks M Sculjr 06/07 Zusmmenfssung: Vektoren Inltsverzeicnis Punkte im Koordintensystem Vektoren Linere ängigkeit von Vektoren 4 etrg eines Vektors 5 Sklrprodukt und ortogonle Vektoren 6 Vektorprodukt

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger 8 Rettungsring Berechnungen m Dreieck & Viereck Begriffe: Umfng und Flächeninhlt 1 Muss der Umfng (u) oder der Flächeninhlt (A) erechnet werden? Kreuze

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Von Winkelfunktionen zur Dreiecksgeometrie

Von Winkelfunktionen zur Dreiecksgeometrie Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg wirth@mth.tu-freiberg.de 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)).

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen 2.6. Anwendung- und eweiufgben zu Kongruenzätzen Aufgbe ) Ermittle zeicneric die Längen der drei Fläcendigonlen d b, d c und d bc und der Rumdigonlen d de bgebildeten Quder mit den Abmeungen = 4 cm, b

Mehr

Körper I. 1 Berechne das Volumen eines Prismas. Multipliziere die Grundfläche (G) mit der Körperhöhe (h) V = G h Prisma mit quadratischer Grundfläche

Körper I. 1 Berechne das Volumen eines Prismas. Multipliziere die Grundfläche (G) mit der Körperhöhe (h) V = G h Prisma mit quadratischer Grundfläche G Körper I 26. Oerfläce und Volumen gerder Prismen 1 Berecne ds Volumen eines Prisms. Multipliziere die Grundfläce (G) mit der Körperöe () V = G Prism mit qudrtiscer Grundfläce Prism mit rectwinkligen

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Teil 1. Prisma - Zylinder Pyramide - Kegel Pyramidenstumpf - Kegelstumpf Kugel - Kugelteile. Datei Nr Friedrich Buckel. Stand: 30.

Teil 1. Prisma - Zylinder Pyramide - Kegel Pyramidenstumpf - Kegelstumpf Kugel - Kugelteile. Datei Nr Friedrich Buckel. Stand: 30. Teil 1 Prism - Zylinder Pyrmide - Kegel Pyrmidenstumpf - Kegelstumpf Kugel - Kugelteile Dtei Nr. 11610 Stnd: 0. April 016 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Geometrie Körperberenungen Demo-Text für

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Kreis und Kreisteile. - Aufgaben Teil 2 -

Kreis und Kreisteile. - Aufgaben Teil 2 - - Aufgben Teil - Am Ende der Aufgbensmmlung finden Sie eine Formelübersicht 61. Bestimme den Inhlt 6. Bestimme den Inhlt Abhängigkeit von r. Abhängigkeit von. 63. Berechne r in Abhängigkeit von 64. Berechne

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

2.10. Prüfungsaufgaben zu Pyramiden

2.10. Prüfungsaufgaben zu Pyramiden .0. Prüfungufgben zu Pyrmiden Aufgbe : Pyrmiden Berecne die Fläceninlte und Volumin der unten bgebildeten Däcer, wobei ll Mße in m ngegeben ind: Zeltdc Wlmdc Krüppelwlmdc Gekreuzte Giebeldc en Zeltdc:

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen

Lösung Arbeitsblatt Potenzen / Wurzeln / Logarithmen Fchhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Nturwissenschft Lösung Arbeitsbltt Potenzen / Wurzeln / Logrithmen Dozent: - Klsse: Brückenkurs 0 Büro: - Semester:

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

9 Satzgruppe des Pythagoras und Kongruenzabbildungen

9 Satzgruppe des Pythagoras und Kongruenzabbildungen Stzgruppe des Pythgors Mthemtik. Klsse 9 Stzgruppe des Pythgors und Kongruenzbbildungen Stz 4 Stz von Pythgors In einem rechtwinkligen Dreieck mit Ktheten und b und Hypotenuse c gilt: + b c Aufgbe 59 Beweisen

Mehr

( ) = ( ) y Kosten in 800

( ) = ( ) y Kosten in 800 R. Brinkmnn tt://brinkmnn-du.de Seite 09.0.008 Lge zweier Gerden zueinnder Ein Gleicungssstem us zwei lineren Gleicungen t beknntlic entweder eine, keine oder unendlic viele Lösungen. Ws ber t ds mit der

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Pythagoras & Co Einleitung

Pythagoras & Co Einleitung mth_gew_techn_pythgors.nb 1 Pythgors & Co 5.1. Einleitung Pythgors von Smos wurde um 570 v. Chr. geboren. Der nch ihm bennnte Stz wr bereits früher beknnt. Pythgors zeigte, dss es unendlich viele rechtwinklige

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 er Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 er Ktetenstz 6 er Höenstz 7 Exkurs: Konstruktion retwinkliger reieke 8 ekliste 9 Hinweise

Mehr

DOWNLOAD. Flächeninhalt und Umfang: Parallelogramm. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen.

DOWNLOAD. Flächeninhalt und Umfang: Parallelogramm. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen. DOWNLOAD Andres Mrscll Lur Petry Fläceninlt und Umfn: Prllelormm Areitslätter und Test zur sonderpädoiscen Förderun Andres Mrscll, Lur Petry Beredorfer Unterrictsideen Downloduszu us dem Oriinltitel: 7.

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

1.1. Vorspiel bei den alten Griechen

1.1. Vorspiel bei den alten Griechen 1.1. Vorspiel bei den lten Griechen Die Mthemtiker der griechischen Antike wren ihrer Zeit und uch ihren Epigonen im "finsteren Mittellter" um Etliches vorus. Einige ihrer Entdeckungen werden wir im Lufe

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius

Mehr

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich.

Aufgabenblatt 1 6 Prüfungsaufgaben Klassenstufe 10. Alle Lösungen auf CD. Datei Nr Ausdruck nur von der CD aus möglich. Püfungsufgben Köpebeecnungen Aufgbenbltt 6 Püfungsufgben Klssenstufe 0 Alle Lösungen uf CD Dtei N. 6 Ausduck nu von de CD us möglic Fiedic Buckel Juni 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Köpebeecnungen

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Ebenflächig begrenzte Körper

Ebenflächig begrenzte Körper I Eenfläcig egrenzte Körper 38. erde Prismen Bstle Kntenmodelle versciedener Prismen. (Mteril: Trinklme, Znstocer, Scere, Knetmsse) Würfel Quder Verinde rictig. Kreise lle Prismen ein. A B E C D F ) Quder

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Heuristische Strategien

Heuristische Strategien Heuristisce Strtegien Jürgen Zumdick I. Entwicklung euristiscer Strtegien durc Reflexion über Problemlösungsscritte Problem: Gegeben ist ein Qudrt der Seitenlänge. Vom Mittelpunkt jeder Seite wird eine

Mehr

6 Numerische Integration (Quadratur)

6 Numerische Integration (Quadratur) 6 Numerisce Integrtion (Qudrtur) In diesem Kpitel get es um die pproximtive Berecnung des Wertes eines bestimmten Integrls Anwendungen sind zb die Berecnung von Oberfläcen, Volumin, Wrsceinlickeiten, ber

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr