Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene"

Transkript

1 Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander senkrechte Achsen und darauf je einen Einheitsvektor. 3) Freie im Koordinatensystem Der Anfangspunkt eines freien Vektors ist beliebig. a 1 a = bedeutet... a 2 a 1 heisst..., a 2 heisst.... Die Darstellung heisst... 4) einzeichnen Zeichne in der Figur oben die folgenden ein: a 3 =, b 3 =, c = ) Komponenten ablesen Bestimme die Komponentendarstellung der eingezeichneten Hinweis: Alle Komponenten sind ganzzahlig. 1

2 6) addieren Gegeben sind a 3 = und b =. Berechne den Vektor a + b = ) Satz werden addiert, indem man... werden subtrahiert, indem man... 8) Illustration Gegeben sind die a 3 =, b 3 = und c = Bestimme (konstruktiv) die a + b, a + b + c und a b. a + b konstruieren bedeutet... a b konstruieren bedeutet ) mit einer reellen Zahl multiplizieren Gegeben ist der Vektor a =. Berechne 2a = und 2 a = ) Satz Einen Vektor multipliziert man mit einer reellen Zahl t, indem man... Wenn t < 0 ist, dann... Wenn t = 1 ist, dann... 11) Grundaufgaben Gegeben sind die a 2 =, b 3 = und c = a) Zeichne und berechne 3 a 2 b b) Zeichne und berechne a + 2 b c 12) Definition Der Vektor... heisst.... 2

3 13) Einen Vektor zerlegen 7 Zerlege den Vektor a 2 = nach den b 3 = und c = Zerlegen heisst:... 14) Definition Es sei der Vektor a a = a 1 2 gegeben. Die Länge oder Norm dieses Vektors bezeichnet man mit... Ein Vektor mit Länge 1 heisst... 15) Grundaufgaben 7 a) Berechne die Länge des Vektors v = 8 b) Berechne die Längen der in der nebenstehenden Figur. 16) Grundaufgabe 7 Berechne die fehlende Komponente y des Vektors a = so, dass a = 10 wird. y 17) Einen Vektor auf vorgegebene Länge strecken 7 Berechne die Komponenten der mit Länge 8, die zu a = parallel sind ) Einen Vektor auf Länge 1 bringen 3 Gesucht sind die Einheitsvektoren parallel zu c =. Bestimme beide Lösungen. 5 3

4 1.2. Freie im Raum 1) Definition Das räumliche Koordinatensystem wird festgelegt durch: Die drei Achsen bilden... a1 Die Komponentendarstellung eines räumlichen Vektors lautet a = a 2. a 3 Dabei nennt man a 1 die x-komponente, a 2 die y-komponente und a 3 die z-komponente des Vektors a. 2) Ablesen von Lies die Komponenten der dargestellten aus der Figur ab. Hinweis: Alle Anfangs- und Endpunkte haben ganzzahlige Koordinaten. 3) addieren, mit reellen Zahlen multiplizieren Die Sätze aus der zweidimensionalen Betrachtung gelten auch in 3 Dimensionen. 3 Gegeben sind die a 4 = 1, b 2 = 0 und c = 3. Berechne a + 2 b c ) Zerlegen eines Vektors Im Raum müssen drei vorgegeben sein. 10 Zerlege den Vektor d 3 = 7 nach den a 4 = 1, b 2 = 0 und c = ) Die Norm eines Vektors Die Länge von im Raum berechnet man mit der Formel: Begründung:... 4

5 6) Grundaufgaben Gegeben sind die a) Berechne a. 1 a = 4 und 8 7 b = 1+ t. 6 b) Berechne die Komponenten der zu a parallelen mit Länge 5. c) Berechne die fehlende Zahl t so, dass b = 10 wird. 7) Kollineare und komplanare Zwei heissen kollinear, wenn... d.h. wenn... Drei im Raum heissen komplanar, wenn... Technische Formulierung:... 8) Lineare Abhängigkeit Zwei (oder mehr) heissen linear abhängig, wenn... Drei im Raum sind linear abhängig, wenn sie... Vier im Raum sind... 5

6 1.3. Freie ohne Koordinatensystem 1) Basisvektoren Wenn wir zwei nicht kollineare vorgeben, dann können wir jeden anderen Vektor der Ebene als Linearkombination dieser beiden Basisvektoren ausdrücken. Im dreidimensionalen Raum benötigt man drei linear unabhängige dazu. 2) addieren, subtrahieren Zeichne zwei a und b. Konstruiere die c = a + 2 b und d = 3 a 1 2 b 3) zerlegen Zeichne drei a, b und c. Zerlege konstruktiv c nach a und b. 4) Dreieck Zeichne ein Dreieck ABC und darin die a = BC sowie b = CA M bezeichnet den Mittelpunkt der Strecke AB. P ist der Punkt, der entsteht, wenn man M an C spiegelt. Drücke die CM und PB durch a und b aus. H 5) Quader E Im skizzierten Quader kennt man die AB = a, AE = b und AH = c G. M ist Mittelpunkt der Strecke CD. A D F M C Drücke den Vektor FM durch a, b und c aus. B 6) Beweis mit Hilfe von Wir weisen nach, dass in jedem Dreieck der Schwerpunkt die Schwerelinie im Verhältnis 2:1 teilt. 7) Anwendung Im Parallelogramm ABCD verbindet man A mit den Mittelpunkten der beiden nicht anliegenden Seiten. Die Diagonale BD wird dadurch in drei Teilstrecken unterteilt. Weise nach, dass diese drei Teilstrecken alle gleich lang sind. 6

7 1.4. Ortsvektoren 1) Punkte im Koordinatensystem Einen Punkt in der Ebene oder im Raum beschreibt man durch seine zwei resp. drei Koordinaten. Beispiele: A(4 3), B( 2 3), C(1 5), D( 4 4) Bezeichnung der Quadranten im R 2 : I. Quadrant:... II. Quadrant:... III. Quadrant:... IV. Quadrant:... 2) Definition Der Ortsvektor zum Punkt P... 3) Differenzvektor zwischen zwei Punkten a) Gegeben sind die Punkte A(4 3) und B( 2 3). Berechne den Vektor AB Regel: b) Dasselbe im Raum: Berechne den Vektor vom Punkt P(3 2 7) zum Punkt Q( ). 4) Einen freien Vektor in einem Punkt anhängen Gegeben ist der Punkt P(3 1 5) und der Vektor 4 PQ = 5. Wo liegt Q? 1 5) Anwendung Gegeben sind drei Ecken A(5 3 1), B(2 0 1), C(8 6 3) eines Parallelogramms ABCD. Bestimme die vierte Ecke D dieses Parallelogramms. 6) Mittelpunkt einer Strecke Bestimme den Mittelpunkt der Strecke P(2 1 7) Q(8 5 9). 1. Lösungsvariante: Lösungsvariante:... 7) Anwendung Eine Strecke dritteln: Welche Punkte teilen die Strecke ( 4 7) (5 4) in drei gleiche Teile? Bestimme die Koordinaten der Teilungspunkte A und B. 7

8 8) Schwerpunkt Berechne den Schwerpunkt des Dreiecks A( 4 7) B(5 4) C(2 1). 9) Umfang Berechne den Umfang des Dreiecks A( 4 7 2) B(4 3 1) C(2 1 2). 10) Rhombus Zeige, dass die 4 Punkte (2 1 1), (5 7 5), ( 6 0 3) und ( 3 6 9) Ecken eines Rhombus sind. (Achtung: Die Ecken sind nicht mit A, B, C, D angeschrieben.) 11) Trapez Zeige, dass 4 Punkte A( 4 4), B(5 1), C(0 4) und D( 3 3) Eckpunkte eines gleichschenkligen Trapezes sind. 12) Anwendung Die Punkte A(4 1 0) B(9 y 2) sollen Abstand 10 haben. Wie gross ist y? 13) Anwendung Bestimme y so, dass A(2 7), B(4 6) und C(11 y) auf einer Geraden liegen. 14) Anwendung Welche Punkte der x-achse liegen vom Punkt P(4 4 2) doppelt so weit entfernt wie vom Punkt Q(5 2 1)? 8

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Definition, Grundbegriffe, Grundoperationen

Definition, Grundbegriffe, Grundoperationen Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Rechnen mit Vektoren

Rechnen mit Vektoren () Der Ortsvektor Definition: Der Ortsvektor beginnt im Koordinatenursprung und endet in einem beliebigen Punkt P. Die Koordinaten des Punktes stimmen mit den Koordinaten des Ortsvektors überein. Schreibweise:

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung Vektorrechnung als Teil der Linearen Algebra - Einleitung www.mathebaustelle.de. Einführungsbeispiel Archäologen untersuchen eine neu entdeckte Grabanlage aus der ägyptischen Frühgeschichte. Damit jeder

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

(0, 3, 4) (3, 3, 4) (3, 3, 0)

(0, 3, 4) (3, 3, 4) (3, 3, 0) Übungsmaterial 1 2 Vektoren im Raum 2.1 Das räumliche Koordinatensystem Abbildung 1 zeigt das Koordinatensystem im R 3, dem dreidimensionalen Raum, mit eingefügtem Quader. Die Koordinaten einiger Eckpunkte

Mehr

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel

BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Prof. Dr. K. Melzer IWB 1 Blatt 1 Vektorrechnung Aufgaben

Prof. Dr. K. Melzer IWB 1 Blatt 1 Vektorrechnung Aufgaben Prof. Dr. K. Melzer IWB Blatt Vektorrechnung Aufgaben Aufgabe : Ermitteln Sie die Koordinatendarstellung der skizzierten Vektoren a und b. Aufgabe 2: Ein Vektor r mit r = 7 und dem Anfangspunkt (2 ) hat

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D)

VEKTOREN. Allgemeines. Vektoren in der Ebene (2D) VEKTOREN Allgemeines Man unterscheidet im Schulgebrauch zwischen zweidimensionalen und dreidimensionalen Vektoren (es kann aber auch Vektoren geben, die mehr als 3 Komponenten haben). Während zweidimensionale

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

3 Vektoren im Koordinatensystem

3 Vektoren im Koordinatensystem Stiftsschule Engelberg PAM Schuljahr 7/8 Vektoren im Koordinatensystem. Vektoren in Dimensionen Wir verwenden ein orthonormiertes System: Ursprung (Nullpunkt O x- und y-achse stehen senkrecht (orthogonal

Mehr

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel)

Vektorrechnung. Beispiele: (4 8) 2-Tupel (Zahlenpaar) (4 8 9) 3-Tupel (Zahlentrippel) Vektorrechnung Oftmals möchte man in der Mathematik mit mehreren Zahlen auf einmal rechnen. Dafür werde geordnete Listen verwendet. Eine Liste besteht aus n reellen Zahlen und wird n-tupel genannt. Beispiele:

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Lektionen zur Vektorrechnung

Lektionen zur Vektorrechnung Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der

Mehr

Teil 1 Grundlagen. Für moderne Geometrie-Kurse am Gymnasium. und für Realschulen in Bayern! (Prüfungsstoff!)

Teil 1 Grundlagen. Für moderne Geometrie-Kurse am Gymnasium. und für Realschulen in Bayern! (Prüfungsstoff!) Vektor-Geometrie für die Mittelstufe (Sekundarstufe 1) Teil 1 Grundlagen Für moderne Geometrie-Kurse am Gymnasium und für Realschulen in Bayern! (Prüfungsstoff!) Auch in der Oberstufe zur Ergänzung einzusetzen,

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx

Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 12. nx ln(x)dx Aufgaben / Lösungen der Klausur Nr. 4 vom Juni 2002 im LK 2 Aufgabe ) a) Berechne für alle natürlichen Zahlen n N das Integral e nx ln(x)dx. Mit Hilfe der partiellen Integration für f (x) = nx, somit f(x)

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

2 Vektoren als Pfeile

2 Vektoren als Pfeile 2 Vektoren als Pfeile 2.1 Verschiebungen und Pfeile Bei einer Verschiebung werden alle Punkte der Ebene um eine gewisse Länge in eine gewisse Richtung verschoben. Punkt und Bildpunkt lassen sich mit einem

Mehr

Begriffe Mathematik 4. Klasse

Begriffe Mathematik 4. Klasse Begriffe Mathematik 4. Klasse Die mit einem gekennzeichneten Fragen sind für die 5 Kurzfragen relevant. Vektoren Kurzfrage 1 Was ist ein Vektor? Vektoren Kurzfrage 2 Was ist ein Repräsentant eines Vektors?

Mehr

Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren?

Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren? Reihe 7 S 1 Verlauf Material Die vektorielle Geometrie ein Spiel zur Vertiefung Walter Czech, Krumbach Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren? Wo denken Sie hin! Die

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

Strahlensätze: Aufgaben

Strahlensätze: Aufgaben Strahlensätze: Aufgaben 1. Zwei parallele Geraden schneiden zwei Strahlen mit gemeinsamen Anfangspunkt S. Berechne die in der Tabelle fehlenden Streckenlängen. a b c d (a) 5 cm 4cm 6cm (b) 3.6cm 9.2cm

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Wahlteil: Analytische Geometrie II 1

Wahlteil: Analytische Geometrie II 1 Abitur Mathematik: Wahlteil: Analytische Geometrie II Baden-Württemberg 202 Aufgabe II a). SCHRITT: AUFSTELLEN DER KOORDINATENGLEICHUNG FÜR E Die Verbindungsvektoren AB und AP von je zwei der drei vorgegebenen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.

5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge. 1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

Vierte Schularbeit Mathematik Klasse 3E am

Vierte Schularbeit Mathematik Klasse 3E am Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

3e 1. Schularbeit/ A

3e 1. Schularbeit/ A 3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Erfolg im Mathe-Abi 2010

Erfolg im Mathe-Abi 2010 Gruber I Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Das vorliegende Übungsbuch ist speziell auf die grundlegenden

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1

Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1 Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

1 Einige Aufgaben zum Rechnen mit Mengen:

1 Einige Aufgaben zum Rechnen mit Mengen: Einige Aufgaben zum Rechnen mit Mengen: A.. Gib die folgenden Mengen im aufzählenden Verfahren an: a A { N 8} b B {y Z < y } c C {z N z ist Teiler von } d D { P 0} e E {y N y ist Vielfaches von 5} f F

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

Demo für

Demo für Aufgabensammlung Mit ausführlichen Lösungen Geradengleichungen und lineare Funktionen Zeichnen von Geraden in vorgefertigte Koordinatensysteme Aufstellen von Geradengleichungen Schnitt von Geraden Die

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

Klasse Dozent. Musteraufgaben. Gegeben sind die folgenden Graphen. Gib jeweils die zugehörige Funktionsgleichung an! f(x) = g(x) = h(x) = k(x) =

Klasse Dozent. Musteraufgaben. Gegeben sind die folgenden Graphen. Gib jeweils die zugehörige Funktionsgleichung an! f(x) = g(x) = h(x) = k(x) = Musteraufgaben Fach: Mathematik - Lineare Funktionen Anzahl Aufgaben: 50 Diese Aufgabensammlung wurde mit KlasseDozent erstellt. Sie haben diese Aufgaben zusätzlich als KlasseDozent-Importdatei (.xml)

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr