Kapitel III. Aufbau des Zahlensystems

Größe: px
Ab Seite anzeigen:

Download "Kapitel III. Aufbau des Zahlensystems"

Transkript

1 Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden. Heuristische Überlegung. Die natürlichen Zahlen entstehen durch fortschreitendes Zählen. Man kann diesen Vorgang beispielsweise anhand einer Strichliste dokumentieren: leer,,,,..., n, n, (n ),... Anstelle von Strichfolgen kann man die Zahlen etwa durch arabische oder römische Zifferen ausdrücken: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, I, II, III, IV, V, V I, V II, V III, IX, X, XI,... Beim Zählen folgt auf eine Zahl genau eine nächste. Nenne diese den Nachfolger; schreibe n für den Nachfolger von n. Es gilt: (α) Verschiedene natürliche Zahlen haben auch verschiedene Nachfolger. (β) 0 ist kein Nachfolger einer natürlichen Zahl. (γ) Jede natürliche Zahl wird erreicht, wenn man lange genug zählt. In der Sprache der Mengenlehre bedeutet dies: Definition. Die natürlichen Zahlen bilden eine Menge N, zusammen mit (1) einem ausgezeichneten Element 0, und (2) einer Abbildung S : N N n S(n) =: n Es soll gelten (Axiome der natürlichen Zahlen.) (A) S ist injektiv, d.h.: Aus n m folgt n m. 1

2 (B) 0 S(N), d.h.: Für alle n N ist n 0. (C) (Induktionsaxiom.) Sei M N eine Menge mit den Eigenschaften (i) 0 M; (ii) Aus x M folgt x M Dann ist M = N. n wird als Nachfolger von n bezeichnet. Alle weiteren Aussagen über natürliche Zahlen und deren Beweise lassen sich einzig und allein auf diese drei Axiome gründen. Wir werden diese Rückführung auf die Axiome an Beispielen demonstrieren. 1.1 Satz. Jede von 0 verschiedene Zahl ist Nachfolger einer natürlichen Zahl. Beweis. Sei M = {0} S(N). Zeige, daß M = N ist. Es gilt (i) 0 M (ii) Sei x M; dann ist x = S(x) S(N) M, also x M. Nach Axiom (C) ist M = N. I. Addition natürlicher Zahlen. 1.2 Satz. Zu jedem x N existiert genau eine Funktion a x : N N mit folgenden Eigenschaften: (1) a x (0) = x (2) a x (y ) = a x (y) für alle y N. Schreibe x + y := a x (y) für alle x N. Wegen (1) und (2) gilt: x + 0 = x und x + y = (x + y) für alle x, y N. Definition. Die gemäß 1.2 eindeutig existierende Verknüpfung + : N N N, (x, y) x + y mit den Eigenschaften x + 0 = x und x + y = (x + y) heißt Addition natürlicher Zahlen. Beweis von 1.2. Halte x fest. Seien a x, b x : N N Funktionen mit den Eigenschaften (1) und (2), d.h. (1) a x (0) = b x (0) = x, 2

3 (2) a x (y ) = a x (y) und b x (y ) = b x (y) für alle y, x N. Sei M = {y N a x (y) = b x (y)}. Zu zeigen: M = N. (i) a x (0) = x = b x (0), also 0 M (wegen (1)). (ii) Sei y M, d.h. a x (y) = b x (y). Es folgt mit (2): Nach (C) ist M = N. a x (y ) = (a x (y)) = (b x (y)) = b x (y ) also y M Existenz. Sei M = {x N Es existiert eine Funktion a x : N N mit den Eigenschaften (1) und (2) }. Zu zeigen: M = N. (i) Setze a 0 (y) := y. Dann gilt (1) a 0 (0) = 0 (2) a 0 (y ) = y = (a 0 (y)) } Also ist 0 M. (ii) Sei x M und a x : N N die wegen x M in der (bereits bewiesenen) Eindeutigkeitsaussage eindeutig bestimmte Abbildung mit (1), (2). Dann ist a x (0) = x und a x (y ) = (a x (y)) für alle y N. Setze a x (y) := (a x (y)) für alle y N. Da a x die Bedingungen (1) und (2) erfüllt, folgt a x (0) = (a x (0)) = x und a x (y ) = (a x (y )) = (a x (y) ) = (a x (y)) Also erfüllt auch a x (1) und (2), d.h. x M. Nach (C) ist (wegen (i) und (ii)) M = N. 1.3 Satz. Für alle x, y, z N gilt (x + y) + z = x + (y + z) (Assoziativgesetz) x + y = y + x (Kommutativgesetz) Beweise nur das Assoziativgesetz. Halte x, y fest. Sei M = {z (x+y)+z = x + (y + z)}. Zu zeigen: N = M. (i) (x + y) + 0 (1) = x + y (1) = x + (y + 0), also 0 M. 3

4 (ii) Sei z M, d.h. (x + y) + z = x + (y + z). Dann ist (x + y) + z (2) = ((x + y) + z) = (x + (y + z)) (2) = x + (y + z) (2) = x + (y + z ), also z M. Nach (C) folgt M = N. Schreibe 1 für 0. Dann gilt: x + 1 = x + 0 (2) = (x + 0) (1) = x. II. Multiplikation natürlicher Zahlen. 1.4 Satz. Zu jedem x N gibt es genau eine Funktion m x : N N mit den Eigenschaften (3) m x (0) = 0 (4) m x (y ) = m x (y) + x für alle y N. Der Beweis verläuft analog zum Beweis von 1.2 und wird daher weggelassen. Setze x y := m x (y) für alle x, y N. (3) und (4) bedeuten somit x 0 = 0 und x (y + 1) = (x y) + x für alle x, y N. Ferner ist x 1 = x (0 ) = x 0 + x = 0 + x = x + 0 = x. Definition. Die Verknüpfung : N N N, (x, y) x y heißt Multiplikation natürlicher Zahlen. 1.5 Satz Für alle natürlichen Zahlen x, y, z gilt x y = y x (Kommutativgesetz) x (y + z) = (x y) + (x z) (Distributivgesetz) x (y z) = (x y) z (Assoziativgesetz) Beweise nur das Distributivgesetz. Halte x, y fest und setze M := {z x (y + z) = (x y) + (x z)}. Zu zeigen: M = N (i) x (y + 0) = x y = (x y) + 0 = (x y) + (x 0), also 0 M. (ii) Sei z M, d.h. x (y + z) = (x y) + (x z). Es folgt x (y + z ) = x ((y + z) ) = (x (y + z)) + x = ((x y) + (x z)) + x = (x y) + ((x z) + x) = (x y) + (x z ), also z M. 4

5 Nach (C) gilt daher M = N. Konvention. Wir lassen künftig den Malpunkt weg und schreiben kurz x + y + z für x + (y + z) = (x + y) + z, xyz für x(yz) = (xy)z; xy + z für (xy) + z z + xy für z + (xy) (Punktrechnung vor Strichrechnung). III. Der Rekursionssatz. Bei der Definition von Addition und Multiplikation sind wir nach dem folgenden Schema vorgegangen: (i) Man definiert a x (0) bzw. m x (0). (ii) Man gibt an, wie a x (y ) bzw. m x (y ) aus a x (y) bzw. m x (y) zu berechnen ist. Diese Vorgehen nennt man rekursive (induktive) Definition. Sie funktioniert ganz allgemein: 1.6 Rekursionssatz. (ohne Beweis.) Sei A eine Menge, g : A A eine Abbildung und α A ein Element. Dann gilt es genau eine Funktion f : N A mit folgenden Eigenschaften: (i) f(0) = α; (ii) f(n ) = g(f(n)) für alle n N. (f(0) = α, f(1) = g(f(0)) = g(α), f(2) = g(f(1)) = g(g(α), f(3) = g(g(g(α))),...). Beispiele. a) A = N, g(a) = a, α N : f(n) = a α (n) = α + n b) A = N, g = a x, α = 0 : f(n) = m x (n) = x n Rekursive Folgen. Man nennt eine Abbildung f : N A auch eine Folge von Elementen aus A und schreibt auch f n für f(n), (f n ) n N oder f 0, f 1, f 2,... für f. Beispiele. f = c : N N n c ist die konstante Folge c, c, c,.... f : N N, n 2 n ist die Folge 1, 2, 4, 8, 16, 32,... Eine Folge f, die wie in 1.6 definiert ist, nennt man eine rekursive Folge. 5

6 Es wird in diesem Fall eine Abbildung g : A A und ein α A vorgegeben und erklärt (i) f 0 = α ; f n+1 = g(f n ) Man nennt α das Anfangsglied und g eine Rekursionsgleichung für die Folge f. Beispiel. Sei g : R R, g(x) = 1 ; α = 1. Dann ist f 1+x 0 = 1, f n+1 = 1 Die Folgenglieder berechnen sich nacheinander als f 0 = 1, f 1 = = 1 2, f 2 = = 2 3, f 3 = = 3 5,... 1+f n. Allgemeiner kann man rekursive Folgen definieren, indem man angibt, wie ein Folgenglied aus den k vorangegangenen berechnet werden soll (k fache Rekursion): (1.6) Satz. Sei g : R k R eine Funktion in k Variablen. Dann wird durch Vorgabe von f 0,..., f k 1 und die Rekursionsvorschrift f n+k = g(f n,..., f n+k 1 ) für n = 0, 1, 2,... eine eindeutig bestimmte Folge definiert. Beispiel. k = 2, g(x, y) = x + y; f 0 = 0, f 1 = 1 : f n+2 = g(f n, f n+1 ) = f n + f n+1 = Summe der beiden vorangegangenen Folgenglieder. Die Folge beginnt mit 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... Es handelt sich um die berühmte Fibonacci Folge. Das Induktionsaxiom (C) läßt sich auch etwas anders formulieren: (V) Beweisprinzip der vollständigen Induktion. Sei A = A(n) eine Aussage über natürliche Zahlen. Es sei bekannt: (a) (Induktionsbeginn) A(0) ist richtig. (b) (Induktionsschluß) Aus der Gültigkeit von A(x) (Induktionsannahme) folgt stets die Gültigkeit von A(x + 1). Dann ist A allgemein (d.h. für alle n N) richtig. Beweis. Sei M := {x x N und A(x) gilt}. Zu zeigen: M = N. 6

7 (i) 0 M, da A(0) gilt. (ii) Sei x M, dann gilt A(x). Nach Voraussetzung gilt dann auch A(x+1). Also ist x + 1 M. Nach (C) ist daher M = N. IV. Die Anordnung der natürlichen Zahlen. 1.7 Satz. Für alle x, y, z N gilt: a) Aus x + y = x + z folgt y = z ( Kürzungsregel ). b) Aus x + y = 0 folgt: x = 0 und y = 0. Beweis. a) Zu zeigen: Aus y z folgt x + y x + z. Halte y, z mit y z fest; setze M = {x x + y x + z} Zeige mit Hilfe von (C), daß M = N. (i) 0 + y = y z = 0 + z, also 0 M. (ii) Sei x M, d.h. x + y x + z = (x + y) (x + z) nach (A). Aber (x + y) = (y + x) = y + x und (x + z) = (z + x) = z + x ; also ist y + x z + x und somit x M. Nach (C) folgt M = N. b) Aus y 0 folgt y = w mit w N nach 1.1, und x + y = x + w = (x + w) 0 nach (B). Analog schließt man, wenn x 0 ist. 1.8 Korollar. Für x, y N tritt genau einer der folgenden Fälle ein: (1) x = y (2) Es gibt ein u 0 in N mit x = y + u (3) Es gibt ein v 0 in N mit y = x + v Beweis. Unvereinbarkeit: Wegen 1.7a) ist y + u y für u 0. Also sind (1) und (2) unvereinbar. Entsprechend zeigt man dies für (1) und (3). Aus (2) und (3) folgt x = y + u = (x + v) + u = x + (v + u), also v = u = 0 nach 1.7a) und b); Widerspruch. 7

8 Eintreffen eines der drei Fälle: Halte x fest, zeige induktiv die Aussage A(y) : Für x, y gilt (1), (2) oder (3). Induktionsbeginn: y = 0 : x = y + x = (1) oder (2) gilt für x, y Induktionsannahme: Für x, y gilt (1), (2) oder (3). Schluß von y auf y + 1: Wir unterscheiden zwei Fälle: a) (1) oder (3) gilt für x, y = y = x+v, v N = y+1 = x+(v+1) = v nach 1.7b) und (3) gilt für x, y + 1. b) (2) gilt für x, y = x = y + u, u = u = w = w + 1, w N = x = (y + 1) + w, w N = (1) oder (2) gilt für x, y + 1. Definition. x < y := y = x + v mit v 0 (Fall (3)) Im Fall (2) ist daher y < x. Aus 1.8 ergibt sich 1.9 Korollar. Für x, y tritt genau einer der Fälle x = y, x < y oder y < x ein. Im Fall x < y (sprich x kleiner als y ) schreibt man auch y > x (sprich y größer als x ). Definition. x y := x > y oder x = y x y := x < y oder x = y 1.10 Korollar. Die Relation ist eine lineare Ordnung (oder Totalordnung) auf N, d.h.: (1) x x (Reflexivität) (2) Aus x y und y x folgt x = y (Antisymmetrie) (3) Aus x y und y z folgt x z (Transitivität) Ist dabei x y oder y z, so ist auch x z. (4) Es gilt x y oder y x. Beweis. (1), (2) und (4) sind klar nach 1.9. Zu (3): y = x + v, z = y + w = z = x + (v + w) = x z. Dabei: v 0 oder w 0 = 1.7b) v + w 0 = x < z Korollar. (Monotonie) Für alle x, y, z N gilt 8

9 a) Aus x y folgt x + z y + z b) Aus x y folgt x z y z Beweis. a) y = x + u = y + z = x + u + z = (x + z) + u b) y = x + n = yz = (x + u)z = xz + uz Definition. Sei A N nicht leer. Ein Element a 0 A heißt Minimum von A (oder kleinstes Element von A) wenn a 0 a für alle a A (Schreibe dann a 0 = MinA) Prinzip vom kleinsten Element. Jede nicht leere Menge natürlicher Zahlen besitzt ein Minimum. Dieses ist eindeutig bestimmt. Die Eindeutigkeit folgt aus 1.10 (2). Beweis. 0 A = 0 = Min A, denn 0 n für alle n N (wg. n = 0 + n). Sei nun 0 A. Angenommen A besitze kein Minimum. Setze B := {n n N und n < x für alle x A}. Es folgt B A =. Wegen A folgt B N. Zeige, daß auch B = N, Widerspruch. (i) Wegen 0 A ist 0 < x für alle x A, also 0 B. (ii) Sei n B. Dann ist n < x für alle x A. Es folgt n + 1 x für alle x A. Da A kein Minimum besitzt ist n + 1 A. Also gilt n + 1 < x für alle x A, d.h. n + 1 B. Nach (C) gilt daher B = N Satz. N ist nullteilerfrei, d.h. Aus x 0 und y 0 folgt: x y 0 Beweis. y = z, z N (nach 1.1). Also gilt wegen x 0 xy = xz = xz + x 0 nach 1.7b). 9

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 13 Erststufige Peano-Arithmetik - Folgerungen und Ableitungen Die in der zweiten Stufe formulierten Dedekind-Peano-Axiome

Mehr

2 Die naturlichen Zahlen

2 Die naturlichen Zahlen 2 Die naturlichen Zahlen 2.1 Historisches Schon fruh in der Kulturgeschichte stellte man die Frage nach dem Wesen der Zahlen. Wahrend sich jedoch die Agypter und Babylonier mit einer hoch entwickelten

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur Axiomensysteme in Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D.

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D. Kapitel 2 Die natürlichen Zahlen 2.1 Peano-Systeme Definition 2.1. Ein Tripel (D, S, d) mit den Eigenschaften (P1) d D, (P2) S : D D, (P3) S(n) d für alle n D, (P4) S ist injektiv, (P5) Ist M D mit d M

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

4 Die natürlichen Zahlen

4 Die natürlichen Zahlen 4 Die natürlichen Zahlen Die natürlichen Zahlen hat der liebe Gott geschaffen, alles andere ist Menschenwerk Leopold Kronecker 13 (1823 1891) Die natürlichen Zahlen sind freie Schöpfungen des menschlichen

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 3 Hinweise 1. Verwenden Sie in a) für die ersten beiden Gleichungen die Eindeutigkeit des additiven Inversen (Folgerung (b)) und

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten:

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten: FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 3 Voraussetzungen Körperaxiome Sei K eine Menge, und seien +, zwei Verknüpfungen + :K K K, : K K K (a, b) a + b (a, b) a b (das heißt, dass

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

5. Ordinalzahlen (Vorlesung 11)

5. Ordinalzahlen (Vorlesung 11) EINFÜHRUNG IN DIE LOGIK UND MENGENLEHRE 29 5.. Grundlegende Eigenschaften. 5. Ordinalzahlen (Vorlesung ) Definition 5. (Wohlordnung). Eine lineare Ordnung < auf einer Menge a heißt Wohlordnung, wenn jede

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1

3 Primzahlen. j,... stets Primzahlen. 3.1 Satz. Jedes a > 1 ist als Produkt von Primzahlen darstellbar (Primfaktorzerlegung. n=1 3 Primzahlen Die Zahl 1 hat nur einen positiven Teiler, nämlich 1. Jede Zahl a > 1 hat mindestens zwei positive Teiler: 1 und a. Definition. Eine Primzahl ist eine Zahl a > 1, welche nur die Teiler 1 und

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel I. Natürliche Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel I. Natürliche Zahlen Version 12.12. Oktober 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel I. Natürliche Zahlen 1 Vollständige Induktion (1.1) Beweisprinzip der vollständigen

Mehr

8 Gruppen und Körper

8 Gruppen und Körper 8 Gruppen und Körper (8.) Definition: Eine Gruppe G ist eine Menge zusammen mit einer Verknüpfung, die jedem Paar (a,b) von Elementen aus G ein weiteres Element a?b aus G zuordnet, so dass die folgenden

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen 6. Zahlen Vom lieben Gott gemacht Menschenwerk: operativ oder Klassen äquivalenter Mengen oder axiomatisch (Peano 1889) 6. Zahlen GM 6-1 GM 6- Peano sche Axiome der natürlichen Zahlen Definition 6.1.1:

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

1.9 Beweis durch Kontraposition

1.9 Beweis durch Kontraposition 1.9 Beweis durch Kontraposition 1.9 Beweis durch Kontraposition Ein Beweis durch Kontraposition ist ein Spezialfall des indirekten Beweises. Wir betrachten zwei Aussagen A und B und wollen A B zeigen,

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Kapitel 1. Körper und Zahlen. 1.1 Mengen

Kapitel 1. Körper und Zahlen. 1.1 Mengen Kapitel 1 Körper und Zahlen 11 Mengen 12 Das Prinzip der vollständigen Induktion 13 Körper 14 Geordneter Körper 15 Reelle Zahlen 16 Komplexe Zahlen 11 Mengen Dieser Abschnitt gibt eine kurze Einführung

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Von den rationalen zu den reellen Zahlen

Von den rationalen zu den reellen Zahlen Skript zur Schülerwoche 016, zweiter Tag: Von den rationalen zu den reellen Zahlen Dr. Mira Schedensack 1. September 016 1 Einführung Dieser Vorlesung geht von der Menge der rationalen Zahlen aus und definiert

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge

Mehr

Seite 1. Folgen. Folgen. Klaus Messner,

Seite 1. Folgen. Folgen. Klaus Messner, Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Begriffe Die Schreibweise stellt eine Folge dar. Die a i nennt man glieder und i ist der Index bzw. die Nummer eines speziellen glieds. In den Lehrbüchern

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Analysis I. 3. Beispielklausur mit Lösungen

Analysis I. 3. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 2. Natürliche Zahlen und vollständige Induktion Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 Natürliche Zahlen Definition Mit N bezeichnen wir die Menge der natürlichen

Mehr

Ergänzung zum Skript Analysis I: Konstruktion der reellen Zahlen aus den rationalen Zahlen

Ergänzung zum Skript Analysis I: Konstruktion der reellen Zahlen aus den rationalen Zahlen Ergänzung zum Skript Analysis I: Konstruktion der reellen Zahlen aus den rationalen Zahlen Helge Glöckner, 6.2.2014 Auf den folgenden Seiten finden Sie die Details der in Bemerkung III.2.34 des Skripts

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

42.3 Der Fundamentalsatz der Algebra

42.3 Der Fundamentalsatz der Algebra 42 Der Fundamentalsatz der Algebra 42.2 Die Argandsche Ungleichung 42.3 Der Fundamentalsatz der Algebra 42.4 Faktorisierung komplexer olynome 42.5 Faktorisierung reeller olynome 42.6 artialbruchzerlegung

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018

HM I Tutorium 2. Lucas Kunz. 31. Oktober 2018 HM I Tutorium 2 Lucas Kunz 31. Oktober 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper und Gruppen.............................. 2 1.2 Konstruktion der reellen Zahlen........................ 3 1.3 Natürliche

Mehr