TECHNISCHE UNIVERSITÄT MÜNCHEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember 2003 Präsezaufgabe Aufgabe 45 Der biomische Lehrsatz Für zwei atürliche Zahle, N ist der Biomialoeffiziet wie folgt defiiert: 0 1, Aus der Defiitio folgt umittelbar i 0 für >, ii 1 Zeige Sie : Für 1 gilt Verwede Sie dazu die Formel i ud ii 1 1!!! 1 für 0 2 Zeige Sie mithilfe vo vollstädiger Idutio: Die Azahl der elemetige Teilmege eier elemetige Mege M {m 1,, m } ist gleich Hiweis: Beim Idutiosschritt vo ach 1 ist für jedes N mit 0 1 die Gültigeit der Behauptug achzuweise Betrachte Sie dazu Teilmege A vo M 1, die das Elemet m 1 M 1 ethalte, ud Teilmege B vo M 1, die das Elemet m 1 M 1 icht ethalte 3 Zeige Sie mithilfe vo vollstädiger Idutio: Für a, b R ud N gilt der biomische Lehrsatz ab 0 a b : a 0 0 b a 1 1 b 1 a 2 2 b 2 a 1 b 1 a 1 b 0 1 : i ii 1! 1!0! 1 0 < : ii 1! 1!! 1!! 1! 1! 1!!!!!! Die Falluterscheidug für ud 1 < ist otwedig, da die Formel ii ur für Biomialeoffiziete mit 0 defiiert ist Im zweite Summade der Formel für ist aber > 1 2 Sei Z die Azahl der elemetige Teilmege vo M {m 1,, m } INDUKTIONSANFANG FÜR 1 0, 1 : Da eie eielemetige Mege M 1 {m 1 } ur die beide Teilmege {} ud {m 1 } besitzt, gilt offesichtlich Z ud Z INDUKTIONSSCHRITT : INDUKTIONSVORAUSSETZUNG: Z für N, 0

2 Fälle 0 ud 1 : Da eie 1 elemetige Mege M 1 {m 1,, m, m 1 } geau eie ull elemetige ud eie 1 elemetige Teilmege besitzt, gilt offesichtlich Z ud Z Fälle 0 < < 1 : Die elemetige Teilmege vo M 1 {m 1,, m 1 } zerfalle i zwei Klasse : i elemetige Teilmege A vo M 1, die das Elemet m 1 M 1 ethalte, ud i elemetige Teilmege B vo M 1, die das Elemet m 1 M 1 icht ethalte Die Azahl der elemetige Teilmege vom Typ A ist ach Idutiosvoraussetzug gerade gleich Z 1 1 Die Azahl der elemetige Teilmege vom Typ B ist ach Idutiosvoraussetzug gerade gleich Z Da eie elemetige Teilmege vo M 1 etweder vom Typ A oder vom Typ B ist, gilt Z 1 Z 1 Z 1 Mit Aufgabeteil a folgt da sofort 3 INDUKTIONSANFANG 0 : a b a 0 b 0 Z 1 1 INDUKTIONSSCHRITT 1 : INDUKTIONSVORAUSSETZUNG : a b a b 1 a b a b IdVor a 0 0 a b a b a b b a 1 b a b a b 1 a 1 b a 1 b a b für N a b 1 1 a b 1 a 1 b 1 a b b 1 1 a b 1 a 1 1 a b b a b 1 a a b 1 a b a 1

3 Aufgabe 46 Der Satz vo Vieta Der Satz vo VIETA lautet: Sei p R[X] ei Polyom vo der Form px X a 1 X 1 a 2 X 2 a 2 X 2 a 1 X a 0 Seie omplexe Nullstelle ξ i C, i 1,,, erfülle die beide Gleichuge i a 0 1 ξ 1 ξ 2 ξ ii a 1 ξ i i1 Beweise Sie de Satz vo VIETA Es gilt X a 1 X 1 a 1 X 1 a 0 X ξ 1 X ξ 2 X ξ 3 x ξ 4 X ξ 5 X ξ X 2 ξ 1 ξ 2 X ξ 1 ξ 2 X ξ 3 X ξ 4 X ξ 5 X ξ X 3 ξ 1 ξ 2 ξ 3 X 2 ξ 1 ξ 2 ξ 1 ξ 3 ξ 2 ξ 3 X ξ 1 ξ 2 ξ 3 X ξ 4 X ξ 5 X ξ X 4 ξ 1 ξ 2 ξ 3 ξ 4 X 3 ξ 1 ξ 2 ξ 1 ξ 3 ξ 1 ξ 4 ξ 2 ξ 3 ξ 2 ξ 4 ξ 3 ξ 4 X 2 ξ 1 ξ 2 ξ 3 ξ 1 ξ 2 ξ 4 ξ 1 ξ 3 ξ 4 ξ 2 ξ 3 ξ 4 X ξ 1 ξ 2 ξ 3 ξ 4 X ξ 5 X ξ X 1 1 {i 1} {1,,} 1 2 {i 1,i 2 } {1,,} mit i 1 <i {i 1,i 2,i 3 } {1,,} mit i 1 <i 2 <i ξ i1 X 1 ξ i1 ξ i2 {i 1,,i 1 } {1,,} mit i 1 <i 2 < <i 1 ξ 1 ξ 2 ξ X 2 ξ i1 ξ i2 ξ i3 X 3 ξ i1 ξ i2 ξ i 1 X 0 1 {i 1,,i } {1,,} mit i 1 <i 2 < <i ξ i1 ξ i X Durch Koeffizietevergleich erhalte wir jetzt de Satz vo VIETA

4 Aufgabe 47 Ist Gleiches immer gleich? Gegebe seie die beide reelle Polyome p, q R[X] durch Für alle α R gelte pα qα px a X a 1 X 1 a 1 X a 0 qx b X b 1 X 1 b 1 X b 0 1 Zeige Sie, dass die Polyome übereistimme, dh, dass für alle Koeffiziete a i b i, i {0, 1,, }, gilt Hiweis: Betrachte Sie p q 2 Stimmt dies auch für Polyome p, q aus dem Polyomrig Z 2 [X]? 1 Beweis durch Widerspruch: Ageomme, es gilt pα qα für alle α R ud die Polyome p ud q sid icht idetisch Wir defiiere das Polyom rx px qx c X c 1 X 1 c 1 X c 0 mit c i a i b i, i {0, 1,, } Da ach Aahme p ud q icht idetisch sid, ist r icht das Nullpolyom, dh es gibt eie maximale Zahl m {0, 1,, }, so dass c m 0 ist Der Grad vo r ist also gleich m Aus der Vorlesug ist beat, dass da das Polyom r höchstes m verschiedee Nullstelle besitzt, was ei Widerspruch zu rα 0 für alle α R ist 2 Nei, zb gilt für px X 2 X Z 2 [X] ud q[x] 0 Z 2 [X]: p1 q1 0 ud p0 q0 0 Hausaufgabe Aufgabe 48 Der fache Cosius ud Sius Gegebe sei zu festem Wiel ϕ R die omplexe Zahl z cos ϕ i si ϕ Bereche Sie zu festem N die te Potez z auf zwei Weise: Verwede Sie 1 de biomische Lehrsatz siehe Aufgabe 45, 2 die EULERSCHE Idetität cos ϕ i si ϕ e iϕ Brige Sie die Ergebisse aus de Aufgabeteile 1 ud 2 jeweils auf die Gestalt z a bi, a, b R Köe Sie durch Vergleich der beide Ergebisse Formel für cosϕ ud siϕ herleite? Wir begie mit dem Beispiel 2, bereche also ach der biomische Formel die 2 Potez der omplexe Zahl cos ϕ i si ϕ ud orde ach Real- ud Imagiärteil: cos ϕ i si ϕ 2 cos 2 ϕ 2i si ϕ cos ϕ i 2 si ϕ cos 2 ϕ si 2 ϕ i 2 si ϕ cos ϕ Adererseits ist ach der EULERsche Idetität cos ϕ i si ϕ 2 e iϕ 2 e iϕ 2 e i2ϕ cos2ϕ i si2ϕ Vergleicht ma jeweils Real- ud Imagiärteil dieser beide Gleichuge, so erhält ma cos2ϕ cos 2 ϕ si 2 ϕ ud si2ϕ 2 si ϕ cos ϕ 1 Mit der allgemeie biomische Formel aus Aufgabe 45 erhält ma Falluterscheidug: z cos ϕ i si ϕ i si ϕ cos ϕ Ist N gerade, da läßt sich darstelle als 2p p 2, p N Somit gilt i i 2p i 2 p 1 p 1 2 für gerade 0 i si ϕ cos ϕ 1

5 Ist N ugerade, da läßt sich darstelle als 2p 1 p 1 2, p N Somit gilt i i 2p1 i 2 p i 1 p i i für ugerade Damit läßt sich die Summedarstellug vo z i 1 i Real ud Imagiärteil aufspalte: i si ϕ cos ϕ i 0, gerade 0, ugerade si ϕ cos ϕ si ϕ cos ϕ ; 2 Adererseits geht s auch ürzer über die EULER-Idetität cos ϕ i si ϕ e iϕ : Es ist z e iϕ e iϕ e iϕ cosϕ i siϕ Der Vergleich der Lösuge vo a ud b liefert sogeate Etwiclugsformel für cosϕ ud siϕ i Poteze vo cos ϕ ud si ϕ: cosϕ 0, gerade 1 2 si ϕ cos ϕ, ud siϕ 0, ugerade si ϕ cos ϕ Aufgabe 49 Radiale Gegebe sei das Polyom p C[X] mit px X 6 8i Bestimme Sie sämtliche Nullstelle vo p Um die Nullstelle des Polyoms p C[X] mit px X 6 8i zu bestimme, müsse wir die Gleichug X 6 8i 0 löse Allgemei gilt: Für ei Polyom X 6 a 6 C[X] mit a C ist dieses a C atürlich immer eie Nullstelle Da ist aber auch das Produt vo a mit jeder der sechs mögliche sechste Eiheitswurzel eie Nullstelle, d h e i 3 π a ist für 0, 1, 5 eie Nullstelle Da ei Polyom sechste Grades geau sechs Nullstelle über C hat, sid dies auch alle Nullstelle des Polyoms I userem Fall ist a 6 8i Um eies der sechs mögliche a s herauszufide, stelle wir a 6 8i i der Form re iϕ dar Es ist r Somit ist a 6 8 i 8e i 3 2 π Nu müsse wir och die sechste Wurzel ziehe: Es ist ud e 1 6 i 3 2 π e i 1 4 π Somit gilt ud die sechs gesuchte Nullstelle sid a 2 e i 1 4 π 1 i, i 3 12 π, i 7 12 π, i π, i π, i π, i π

6 Aufgabe 50 Teiler gege Lageweile Soopy hat da doch och eimal darüber achgedacht, was ihm der Vogel da gezwitschert hat: 1 Eie atürliche Zahl ist durch 3 teilbar, geau da we ihre Quersumme durch 3 teilbar ist 2 Eie atürliche Zahl ist durch 9 teilbar, geau da we ihre Quersumme durch 9 teilbar ist 3 Ud wa ist eie atürliche Zahl durch 11 teilbar? Soopy eriert sich dara, wie die alterierede Quersumme eier atürliche Zahl defiiert ist: Eie atürliche Zahl hat i Dezimaldarstellug die Form a m 10 m a m 1 10 m 1 a a a , a i {0,, 9} Die Quersumme vo ist a 0 a 1 a m 1 a m ud die alterierede Quersumme vo ist a 0 a 1 a 2 a 3 1 m 1 a m 1 1 m a m Soopy grübelt jetzt: Warum gilt eigetlich 1 ud 2, ud wie soll 3 futioiere? Helfe Sie ihm, de Soopy hat gaz im Gegesatz zu Ihe sicher och ie etwas vo Modulo-Rechug gehört Immerhi et er alterierede Quersumme Wir reche vo u ab im Rig Z/pZ,,, wobei p 3, 9, 11 ist I Z/pZ gilt [a] pz [b] pz geau da, we a b pz Außerdem ist [a] pz [b] pz [a b] pz ud [a] pz [b] pz [a b] pz Wir werde ab jetzt immer [a] astatt [a] pz schreibe, da eie Verwechsluge zu befürchte sid Teilbareitsregel für p 3: Die Zahl ist geau da durch 3 teilbar, we [] [0] Weiter gilt [] [a m 10 m a m 1 10 m 1 a a 0 ] [a m 10 m ] [a m 1 10 m 1 ] [a ] [a 0 ] [a m ][10 m ] [a m 1 ][10 m 1 ] [a 1 ][10 1 ] [a 0 ] [a m ][10] m [a m 1 ][10] m 1 [a 1 ][10] 1 [a 0 ] [a m ][1] m [a m 1 ][1] m 1 [a 1 ][1] 1 [a 0 ] [a m ] [a m 1 ] [a 1 ] [a 0 ] [a m a m 1 a 0 ], dh ist geau da durch 3 teilbar, we [a m a m 1 a 0 ] [0], bzw die Quersumme a m a m 1 a 0 durch 3 teilbar ist Teilbareitsregel für p 9: Geht geauso, wie der Fall p 3, da auch [10] [1]

7 Teilbareitsregel für p 11: Hier ist [10] [ 1] Damit ist geau da durch 11 teilbar, we [ 1 m a m 1 m 1 a m 1 a 2 a 1 a 0 ] [0], bzw die alterierede Quersumme vo durch 11 teilbar ist

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker I (Witersemester 00/004) Aufgabeblatt 7 (5. Dezember

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2015/16 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Lösungen der Übungsaufgaben II

Lösungen der Übungsaufgaben II Mathemati für die erste Semester (. Auflage): Lösuge der Übugsaufgabe II C. Zerbe, E. Osser, W. Müceheim 7 0 49 4. Ma bereche die Biomialoeffiziete,,,. 8 7 7! 74 7!(7 )! 4 0 49 ; 4; 98 8 8 4. Ma beweise

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Über die Verteilung der Primzahlen

Über die Verteilung der Primzahlen Über die Verteilug der Primzahle Scho dem juge Carl Friedrich Gauss drägte sich die Vermutug auf, dass die Azahl π( aller Primzahle p uterhalb der positive Schrae dem Gesetz π( log lim = 1 gehorcht. (Mit

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlebereiche 2.1. Natürliche Zahle Die Mege N {1, 2, 3,... } der atürliche Zahle wird formal durch die Peao Axiome defiiert: (A1) 1 N (A2) N ( + 1) N (A3) m ( + 1) (m + 1) (A4) N ( + 1) 1 (A5)

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Vorlesung 3. Tilman Bauer. 11. September 2007

Vorlesung 3. Tilman Bauer. 11. September 2007 Vorurs Mathemati 2007 Tilma Bauer Vorurs Mathemati 2007 Vorlesug 3 Tilma Bauer Mege ud Abbilduge Wiederholug ud Vollstädige Idutio Das Prizip Idex-Schreibweise! ud Aufgabe Uiversität Müster 11. September

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Ü b u n g s b l a t t 1

Ü b u n g s b l a t t 1 Mathe für Physier I Witersemester 03/04 Walter Oevel 16 10 003 Ü b u g s b l a t t 1 Abgabe vo Aufgabe am 310003 i der Übug Aufgabe 1*: (Aussagelogi 5 Bouspute) Vo de folgede drei Aussage ist geau eie

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion -

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion - Th. Kuschel Prosemiar SS 06 Elemetare Beweismethode Seite vo 7 7.04.06 Elemetare Beweismethode - Direter Beweis, Widerspruchsbeweis, Vollstädige Idutio - 0. Vorbemerug zum Begriff des (allgemeie) Beweises

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen

Kombinatorik. Alexander (Axel) Straschil. 8. Dezember Begrie. 2 Permutationen, Kombinationen und Variationen Kombiatori Alexader (Axel Straschil 8. Dezember 2006 Diese urze Zusammefassug über Permutatioe, Variatioe, Kombiatioe ud de Biomische Lehrsatz etstad im laufe meies Iformatistudiums a der Techische Uiversität

Mehr

18 2 Zeichen, Zahlen & Induktion *

18 2 Zeichen, Zahlen & Induktion * 18 2 Zeiche, Zahle & Idutio * Ma macht sich z.b. sofort lar, dass das abgeschlossee Itervall [ 3, 4] die Eigeschafte if[ 3, 4] 3 mi[ 3, 4] ud sup[ 3, 4]4max[ 3, 4] besitzt, währed das offee Itervall 3,

Mehr

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)!

(gesprochen n über k ) sind für n k, n, k N0 wie folgt definiert: n n. (k + 1)!(n k 1)! (n + 1)! Aufgabe.4 Die Verallgemeierug der biomische Formel für (x y ist der Biomische Lehrsatz: (x y x y, x, y R, N. (a Zeige Sie die Beziehug ( ( ( zwische de Biomialoeffiziete. (b Beweise Sie de Biomische Lehrsatz.

Mehr

Mathematische Randbemerkungen 1. Binomialkoeffizienten

Mathematische Randbemerkungen 1. Binomialkoeffizienten Mathematische Radbemeruge Biomialoeffiiete Der biomische Lehrsat ist eies der etrale Resultate der Aalysis I meier Vorlesug über Differetial- ud Itegralrechug habe ich ih daher gleich u Begi ausführlich

Mehr

10. Übungsblatt zur Vorlesung Mathematik I für Informatik

10. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathemati Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 0. Übugsblatt zur Vorlesug Mathemati I für Iformati Witersemester 2009/200 5./6. Dezember 2009 Wir wüsche Ihe schöe

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Irrationalität und Transzendenz. 1 Algebraische Zahlen

Irrationalität und Transzendenz. 1 Algebraische Zahlen Vortrag im Rahme des Prosemiars zur Aalysis, 12.6.26 Marti Woitalla Der Vortrag beschäftigt sich mit dem Thema, welche Zahle als Lösug eies Polyoms i Q[X] auftrete öe. Außer de ratioale Zahle x a =, a

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt 6 5. Dezember 2007

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt 6 5. Dezember 2007 Techische Uiversität Müche Faultät für Iformati Lehrstuhl für Iformati 5 Computergraphi & Visualisierug Prof. Dr. Rüdiger Westerma Dr. Werer Meixer Witersemester 2007/08 Lösugsblatt 6 5. Dezember 2007

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Güter Lettl WS 2017/2018 1. Grudbegriffe der Megelehre ud der Logik 1.1 Naive Megelehre [Sch-St 4.1] Defiitio eier Mege ach Georg Cator (1845 1918):,,Eie Mege M ist eie Zusammefassug

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgabe zu Kapitel 9 Aufgabe zu Kapitel 9 Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt?

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

AUFGABEN. Verständnisfragen

AUFGABEN. Verständnisfragen AUFGABEN Gelegetlich ethalte die Aufgabe mehr Agabe, als für die Lösug erforderlich sid. Bei eiige adere dagege werde Date aus dem Allgemeiwisse, aus adere Quelle oder sivolle Schätzuge beötigt. eifache

Mehr

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11

Aufgabensammlung aus Mathematik 1 UMIT, WS 2010/11 Aufgabesammlug aus Mathemati UMIT, WS 200/ I Aufgabe I detailliert gerechet Aalysis / K Zeige Sie, dass für N ud N, gilt: ( ) + = ( ) ( ) + Zusatzfrage: Uter welche Bediguge a ma zwei Biomialoeffiziete

Mehr

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet.

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet. Fachbereich Mathemati Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 14. Otober 2008 Algebra 1. Übug mit Lösugshiweise Aufgabe 1 Es seie R,S Rige ud ϕ : R S ei Righomomorphismus.

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 1, 3.Aufl. (Version 2010), Kapitel 1

Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 1, 3.Aufl. (Version 2010), Kapitel 1 Lösugsvorschläge zu ausgewählte Übugsaufgabe aus Storch/Wiebe: Lehrbuch der Mathemati Bad, 3.Aufl. Versio 00, Kapitel Mege ud Abbilduge Abschitt.A, Aufg., p. 5.7.00 : Für Mege A ud B sid folgede Aussage

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen Übug zur Vorlesug Eiführug i die Algebra Prof. Dr. J. H. Bruiier Stepha Ehle Sommersemester 2009 Lösugshiweise zu Übugsblatt 3 Aufgabe G3.1 Automorphisme vo Das ist im Prizip lieare Algebra: Sei f Aut(

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

IMAGINÄRE UND KOMPLEXE ZAHLEN SIEGFRIED PETRY

IMAGINÄRE UND KOMPLEXE ZAHLEN SIEGFRIED PETRY IMAGINÄRE UND KOMPLEXE ZAHLEN SIEGFRIED PETRY Fassug vom. Februar 3 I h a l t Grudlage ud Voraussetzuge: Reelle Zahle Imagiäre Zahle 3 Komplee Zahle 4 4 Darstellug ompleer Zahle i der Zahleebee 5 5 Reche

Mehr

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so:

Die Lösung der Rekursion. mit a, c, d R >0, b N >0 verhält sich so: Asymptotische Notatio Ladaus asymptotische Notatio O, Ω, o, ω, Θ, wird vorausgesetzt siehe Folie auf webseite oder eischlägige Literatur (z.b. Corme, Leiserso, Rivest) Geometrische Reihe α 0 folgt aus

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

MATHE-BRIEF. April 2016 Nr. 68. Wer fürchtet sich vor der vollständigen Induktion? Als ich als Mathematik-Student zum ersten Mal einen Beweis

MATHE-BRIEF. April 2016 Nr. 68. Wer fürchtet sich vor der vollständigen Induktion? Als ich als Mathematik-Student zum ersten Mal einen Beweis MATHE-BRIEF April 01 Nr. 8 Herausgegebe vo der Österreichische Mathematische Gesellschaft http: // www.oemg.ac.at / Mathe Brief mathe brief@oemg.ac.at Wer fürchtet sich vor der vollstädige Iduktio? Als

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

3. Erste Eigenschaften der reellen Zahlen: Körper

3. Erste Eigenschaften der reellen Zahlen: Körper 3. Erste Eigeschafte der reelle Zahle: Körper 27 3. Erste Eigeschafte der reelle Zahle: Körper I Notatio 1.15 habe wir bereits die reelle Zahle R als Mege der Pute auf eier Gerade eigeführt. Ma a aber

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr