Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung"

Transkript

1 Einführung in die Algebra - ein paar Hinweise zur Prüfungsvorbereitung Ihre Vorbereitung auf die mündliche Prüfung sollte in mehreren Schritten verlaufen: Definitionen und Sätze Die wichtigen Definitionen und Sätze aus der Vorlesung sollten Sie auswendig können, da direkt danach gefragt wird. Es kann durchaus sinnvoll sein, Definitionen und Sätze wie Vokabeln zu lernen (also alles aus der Vorlesungsmitschrift auf Karteikarten herausschreiben usw.). Wichtig ist, Definitionen und Sätze vollständig und präzise zu lernen - durch Weglassen einzelner Voraussetzungen werden die meisten Statements falsch oder sinnlos. Zum Beispiel ist die Frage Was ist eine Faktorgruppe? durch Das ist G durch H. nicht beantwortet (denn es ist nicht klar was G und H für Objekte sein sollen, was G/H überhaupt sein soll, und wieso dies eine Gruppe ist). Eine vollständige Antwort wäre z.b. Sei G eine Gruppe und H in G ein Normalteiler, das bedeutet ghg 1 = H für alle g aus G. Dann definiert man G/H als die Menge der Äquivalenzklassen nach der Äquivalenzrelation g g falls (g ) 1 g in H liegt. Auf G/H hat man eine wohldefinierte Gruppenstruktur durch gh g H := (gg )H. Fragen nach Definitionen sollten auch nie mit einem Beispiel beantwortet werden, sondern eben immer mit der allgemeinen Definition (auf obige Frage ist Zum Beispiel Z/nZ keine Antwort). Fragen nach Sätzen können sowohl ganz direkt sein, z.b. Was besagt der Chinesische Restesatz, als auch eher indirekt im Zusammenhang mit der Theorie, z.b. Welche Zusammenhänge gibt es zwischen den Begriffen prim und irreduzibel?. Eine optimale Antwort wäre Die Begriff prim und irreduzibel sind für Elemente in nullteilerfreien Ringen definiert. Prime Elemente sind immer irreduzibel. In faktoriellen Ringen, also zum Beispiel in Hauptidealringen, sind die Begriffe äquivalent nach einem Satz aus der Vorlesung. Im Allgemeinen aber nicht, ein Beispiel ist das irreduzible Element 2 in Z[ 5], denn 2 teilt 6 gleich (1 + 5)(1 5), aber keinen der Faktoren, ist also nicht prim. Beispiele und Techniken Sie sollten für alle in der Vorlesung behandelten Themen einen gewissen Beispielvorrat kennen. Für jede Eigenschaft einer Gruppe/eines Rings/einer Körpererweiterung, die definiert wurde, sollten sie mindestens ein Beispiel bzw. eine Beispielklasse und ein 1

2 Gegenbeispiel kennen. Für jede Voraussetzung in einem Satz aus der Vorlesung sollten Sie sich ein Gegenbeispiel überlegen, warum der Satz ohne diese Voraussetzung nicht mehr gilt. Sie sollten die konkreten Rechentechniken, die in der Vorlesung und den Übungen benutzt wurden, beherrschen, also z.b.: das Rechnen in Restklassengruppen und Permutationsgruppen, das Arbeiten mit den Sylowsätzen, das Rechnen in Restklassenringen, die Arbeit mit Irreduzibilitätskriterien, die Berechnung von Minimalpolynomen und Zerfällkörpern, sowie die Berechnung einiger typischer Galoisgruppen. Zusammenhang und Beweise Im nächsten Schritt sollten Sie sich den Aufbau der Vorlesung im Großen klar machen. Welche Sätze sind für das weitere Vorgehen relevant? Welche haben unmittelbare konkrete Anwendungen? Welche werden an entscheidenen Stellen im weiteren Aufbau der Theorie bzw. in Beweisen benötigt (dafür kann es sinnvoll sein, ein Gerüst der einzelnen Kapitel knapp schriftlich zusammenzufassen)? Welche Rolle spielte welcher Abschnitt für das große Ziel der Vorlesung, nämlich den Beweis der Nichtauflösbarkeit allgemeiner Gleichungen vom Grad 5? Sie sollten außerdem Beweisskizzen zu den wichtigsten Sätzen kennen. Einige Sätze haben kurze, aber für die Theorie typische Beweistechniken, nach denen gefragt wird. Typische Beispiele sind: Homomorphiesatz für Gruppen, Klassifikation der zyklischen Gruppen, Satz von Lagrange, Charakterisierung primer und maximaler Ideale durch ihre Faktorringe, Euklidische Ringe sind Hauptidealringe, prime Elemente sind irreduzibel, Reduktionskriterium, Beschreibung einfacher Körpererweiterungen K(a), Kroneckerkonstruktion. Die Prüfung selbst dauert 30 Minuten und findet im Raum F unter Anwesenheit von Prüfer, Beisitzer bzw. Beisitzerin (der/die das Protokoll führt) und Kandidat bzw. Kandidatin statt. Die Prüfung verläuft als Prüfungsgespräch, d.h. es gibt keine vorher festgelegte Liste von Fragen. Im Lauf der Prüfung werden sowohl alle Abschnitte der Vorlesung (Gruppentheorie, Ringtheorie, Körpertheorie, Galoistheorie) als auch verschiedene Kompetenzen, wie z.b. Reproduktion von gelernten Definitionen und Sätzen, Anwendung der Theorie auf konkrete (Rechen-)Beispiele, Diskussion von Beispielklassen und Gegenbeispielen, Einordnung von Definitionen und Sätzen in den Aufbau der Theorie, Herleitung von Beweisskizzen, geprüft. Die Prüfung 2

3 wird stets mit einer grundlegenden Frage aus der Gruppentheorie starten, wie z.b. Was ist eine Gruppe?, Was ist eine Untergruppe einer Gruppe?, Was sind Nebenklassen in Gruppen?, Was ist eine Faktorgruppe?. Nach Ablauf der Prüfung werden Sie kurz herausgebeten, nach wenigen Minuten Wartezeit wird Ihnen die Note mit Begründung mitgeteilt. Sie können die Fragen sowohl mündlich als auch schriftlich beantworten, eine Mischung aus beidem ist am sinnvollsten (rein mündliche Beantwortung ist, besonders bei längeren Formeln, Definitionen oder Notationen sehr schwierig; rein schriftliche Beantwortung ergibt kein Prüfungsgespräch auch das (präzise) Sprechen über Mathematik ist eine Kompetenz, die in der Prüfung getestet wird). Im Gegensatz zu einer Klausur können Sie in einer mündlichen Prüfung gerne nachfragen, wenn Ihnen die Frage nicht ganz klar ist, oder wenn Sie etwas Hilfestellung brauchen. Sollte Ihre Antwort nicht richtig sein, bekommen Sie sofort Rückmeldung, und das Gespräch wird als nächstes darum gehen, den Fehler zu klären. Sollte Ihre Antwort nicht ausführlich oder präzise genug sein, wird es ein oder mehrere Nachfragen zur Präzisierung geben (die Prüfung wird aber nie zu lange bei einem Thema steckenbleiben, das Ihnen offensichtlich nicht liegt). Sie dürfen auch gerne versuchen, die Richtung des Prüfungsgesprächs mitzugestalten (z.b. Zu den Sylowsätzen dürfen Sie mich nicht so genau fragen, aber ich kann Ihnen etwas zu auflösbaren Gruppen erzählen, Den Beweis habe ich nicht gelernt, aber ich kann Ihnen zwei Beispiele dazu sagen ) oder auch mal bei einen Thema passen. Allerdings gibt es einige für die Vorlesung zentrale Themen, bei denen das nicht möglich ist (siehe unten). Vage Fragen (z.b. Wozu ist der algebraische Abschluss gut?, Was fanden Sie in der Ringtheorie am interessantesten? ) sind eine Einladung an Sie, für einen Abschnitt der Prüfung Ihr Wissen aus diesen Bereichen (Definitionen, Sätze, Beispiele, Beweisskizzen, Aufbau der Theorie) nach eigenem Geschmack strukturiert darzustellen. Einige Themen sind für die Algebra so grundlegend, dass ihr Verständnis (zumindest in einem gewissen Umfang) für das Bestehen der Prüfung unerlässlich sind. Dies betrifft besonders: Verständnis der Begriffe Gruppe, Ring, Körpererweiterung, das Verständnis des Konzept von Restklassenmengen und Faktorstrukturen (Faktorgruppen und Faktorringe). Sie müssen z.b. wissen und in der Prüfung erklären können, dass die Elemente von G/H die Form gh 3

4 haben; dabei ist gh eine Teilmenge von G (nämlich gerade eine Äquivalenzklasse bezüglich einer Äquivalenzrelation). Ferner müssen Sie das Rechnen in Z/nZ beherrschen, Verständnis des Begriffs Homomorphismus, Formulierung und Verständnis von Homomorphiesätzen (machen Sie sich beim Lernen einmal klar, wie oft diese in Beweisen benutzt wurden), das Konzept eines Ideals in einem Ring, die Begriffe prim und irreduzibel in Ringen, Verständnis des Begriffs der Charakteristik eines Körpers und der Auswirkungen auf die Struktur eines Körpers, einfache Körpererweiterungen K K(a), grundlegendes Verständnis des Zusammenhangs zwischen Polynomgleichungen und Körpererweiterungen. Unabdingbar für das Bestehen der Prüfung ist auch die Fähigkeit, präzise mathematisch formulieren zu können. Ein Beispiel: auf die Frage Was ist eine Gruppe? ist die Antwort G ist eine Gruppe, wenn g h assoziativ, mit neutralem und inversen Elementen ist in vielerlei Hinsicht falsch bzw. sehr unpräzise. Zu allererst ist eine Gruppe eine Menge (mit einer Verknüpfung ), in obiger Antwort wird aber überhaupt nicht gesagt, was G als mathematisches Objekt sein soll (es könnte also z.b. die Nachfrage kommen was ist G? Ist es eine Zahl? Eine Menge? Eine Abbildung? Ein Element einer Menge? ). Als nächstes wird eine Eigenschaft von G definiert durch Benutzung von g und h, die aber überhaupt noch nicht vorkamen. Man muss also sagen, was g und h sein sollen, nämlich Elemente von G (hier käme also die Nachfrage: was sind denn g und h? Wie können Sie eine Eigenschaft von G definieren durch eine Eigenschaft von g, wenn g noch nicht definiert ist? ) Ferner muss gesagt werden, dass G dadurch zu einer Gruppe wird, das etwas für alle g und h aus G gilt (Nachfrage: Muss das für ganz spezielle g und h gelten? für bestimmte? für beliebige? ). Nächster Fehler: g h ist das Ergebnis einer Multiplikation, also wieder ein Element aus G. Als solches kann es nicht assoziativ sein. Was an einer Gruppe assoziativ ist, ist die Abbildung : G G G (Nachfrage: Was ist g h? Ist es ein Element aus G? Was bedeutet es für ein Element aus G, assoziativ zu sein? ). Eine 4

5 gute Antwort wäre daher: Eine Gruppe ist eine Menge G, zusammen mit einer Verknüpfung : G G G, die folgende Eigenschaften erfüllt:.... Besonders ist zu beachten: durch präzises Formulieren erspart man sich viele Nachfragen (die aber nötig sind, um das Gesagte zu präzisieren). 5

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG Christian Karpfinger Kurt Meyberg Algebra Gruppen - Ringe - Korper Spektrum 9*M. AKADEMISCHER VERLAG Vorwort 0 Vorbemerkungen 1 0.1 Womit befasst sich die Algebra? 1 0.2 Gruppen, Ringe, Korper 2 1 Halbgruppen

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg

Algebra. Gruppen - Ringe - Körper. Bearbeitet von Christian Karpfinger, Kurt Meyberg Algebra Gruppen - Ringe - Körper Bearbeitet von Christian Karpfinger, Kurt Meyberg 4. Auflage 2017. Buch. XXII, 467 S. Softcover ISBN 978 3 662 54721 2 Weitere Fachgebiete > Mathematik > Algebra Zu Leseprobe

Mehr

1 Herangehensweise an eine Aufgabe

1 Herangehensweise an eine Aufgabe Im Folgenden seien sofern nicht anders angegeben G eine Gruppe, R, S Ringe, I, J Ideale, K, L Körper, p Z eine Primzahl und m Z. 1 Herangehensweise an eine Aufgabe Soll man einen gewissen Sachverhalt A

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

Probeklausur zur Algebra

Probeklausur zur Algebra Probeklausur zur Algebra Prof. Dr. C. Löh/D. Fauser/J. Witzig 9. Februar 2018 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler S n C n D n A n Automorphismengruppe Definition: Gruppe Definition: Nebenklasse Eigenschaften: Äquivalenzrelation Satz: Lagrange Definition: Normalteiler Einheitswurzelgruppe C n = {ζ C; ζ n = 1} Permutationsgruppe

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018

Klausur zur Algebra. Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Klausur zur Algebra Prof. Dr. C. Löh/D. Fauser/J. Witzig 16. Februar 2018 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,... Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit

Mehr

Inhaltsverzeichnis. Leitfaden 1

Inhaltsverzeichnis. Leitfaden 1 Inhaltsverzeichnis Leitfaden 1 1 Gruppen 5 1.1 Halbgruppen, Gruppen und Untergruppen... 5 1.1.1 Innere Verknüpfungen und Halbgruppen... 5 1.1.2 Beispiele... 6 1.1.3 Definition einer Gruppe... 8 1.1.4 Abschwächung

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

3.5 Faktorzerlegung von Polynomen

3.5 Faktorzerlegung von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,

Mehr

Einführung in die Algebra Blatt 1 Abgabe

Einführung in die Algebra Blatt 1 Abgabe Blatt 1 Abgabe 2.5.2017 Begründen Sie, dass die folgende Menge mit der dazugehörigen Multiplikation eine Halbgruppe bildet. Entscheiden Sie, welche der Halbgruppen eine Gruppe ist. (i) G = Z 1 versehen

Mehr

INHALTSVERZEICHNIS XII

INHALTSVERZEICHNIS XII Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen... 1 1.1 Innere Verknüpfungen und Halbgruppen... 1 1.2 Beispiele... 2 1.3 Definition einer Gruppe... 4 1.4 Abschwächung der Gruppenaxiome...

Mehr

Inhaltsverzeichnis. Bibliografische Informationen digitalisiert durch

Inhaltsverzeichnis. Bibliografische Informationen  digitalisiert durch Inhaltsverzeichnis Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen 1 1.1 Innere Verknüpfungen und Halbgruppen 1 1.2 Beispiele 2 1.3 Definition einer Gruppe 4 1.4 Abschwächung der Gruppenaxiome 4 1.5

Mehr

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig

Elemente der Algebra. Eine Einführung in Grundlagen und Denkweisen. Von Doz. Dr. Peter Göthner Universität Leipzig Elemente der Algebra Eine Einführung in Grundlagen und Denkweisen Von Doz. Dr. Peter Göthner Universität Leipzig B. G. Teubner Verlagsgesellschaft Stuttgart Leipzig 1997 Inhalt 1 Strukturen mit einer binären

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 30.1.2014 M. Isberner MafI1-Tutorium 30.1.2014 1 / 16 Thema heute Thema heute: Algebra (Teil 3) Kern Faktorstrukturen (für Ringe) Homomorphismen (für

Mehr

Übungsblatt 11. Hausübungen

Übungsblatt 11. Hausübungen Übungsblatt 11 Hausübungen Die Hausübungen müssen bis Mittwoch, den 09.01.19, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Das Lemma von Gauß und Quotientenringe

Das Lemma von Gauß und Quotientenringe Das Lemma von Gauß und Quotientenringe Proseminar Körpertheorie, 02.05.2013 Fabian Cejka Prof. K. Wingberg, K. Hübner Zusammenfassung In diesem Teil des Proseminars wird zunächst bewiesen, dass jedes irreduzible

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Lehrbuch der Algebra

Lehrbuch der Algebra Gerd Fischer Lehrbuch der Algebra Mit lebendigen Beispielen, ausfuhrlichen Erlauterungen und zahlreichen Bildern Unter Mitarbeit von Florian Quiring und Reinhard Sacher vieweg Inhaltsverzeichnis Gruppen

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname:

MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA I. Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/ Februar Nachname: Vorname: Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/2017 KLAUSUR ZUR ALGEBRA I 15. Februar 2017 MUSTERLÖSUNG Nachname: Vorname: Studiengang: Aufgabe 1 2 3 4 5 6 7 8 9 Summe Punktzahl /60

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 7 Nebenklassen Definition 7.1. Sei G eine Gruppe und H G eine Untergruppe. Wir setzen x H y (und sagen, dass x und y äquivalent

Mehr

Bei Fragen oder Bemerkungen (speziell Hinweise auf Fehler aller Art sind willkommen) schicken Sie ein an

Bei Fragen oder Bemerkungen (speziell Hinweise auf Fehler aller Art sind willkommen) schicken Sie ein  an Algebra II LVA 405.096 C. Fuchs Inhaltsübersicht 27.06.2018 Inhaltsübersicht Es werden die folgenden Themen behandel: Lösungsformeln, Nachträge aus der Ringtheorie (insbesondere über Polynomringe, Resultante,

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 13.07.2018 Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n

Mehr

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten

Klausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Klausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Zeige, daß die folgenden Polynome irreduzibel über Q sind:

Zeige, daß die folgenden Polynome irreduzibel über Q sind: Aufgabe 1. Zeige, daß die folgenden Polynome irreduzibel über Q sind: i) f = X 10 + 2X 8 + 4X 6 + 6X 4 + 8X 2 + 10. (3 Punkte) ii) g = X 4 + 3X 3 + 5X 2 + 7X + 9. (3 Punkte) Für i) funktioniert Eisenstein

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I Stefan K. 3.Übungsblatt Algebra I Aufgabe 1 a) zu zeigen: Z(G) ist ein Normalteiler in G Nach Definition des Zentrums ist Z(G) = {h G hg = gh g G}, = {h G hgh 1 = g g G}. (1) Nachweis, daß Z(G) G eine

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen / Teil III: Ringe 34 Satz 4.2.11 (Chinesischer Restsatz, Ring-Version) Sind N teilerfremd (d.h. ggt( ) =1), so ist die Abbildung ein Ring-Isomorphismus. :

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

Kap. II Ringe und Körper

Kap. II Ringe und Körper Chr.Nelius:Grundzüge der Algebra (WS 2005/06) 1 Kap. II Ringe und Körper Zur Untersuchung von Gruppen haben wir einige Methoden herangezogen, die für die Algebra typisch sind: Bildung von Untergruppen

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Klausur zur Algebra (B3)-Lösungen

Klausur zur Algebra (B3)-Lösungen Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3)-Lösungen Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte

Mehr

Algebra Zusammenfassung

Algebra Zusammenfassung Algebra Zusammenfassung Dr. Urs Hartl WS 02/03 Einleitung: Auflösen von Polynomgleichungen Der Name Algebra ist arabischen Ursprungs und bedeutete Rechnen mit Gleichungen und Lösen derselben. In der Algebra

Mehr

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element.

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element. Ordnung einer Gruppe Definition Ordnung einer Gruppe Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. 1 Die Ordnung von G ist ord(g) := G. 2 Die Ordnung eines Elements a G ist ord G

Mehr

Einführung in die Algebra

Einführung in die Algebra Einführung in die Algebra Teül von PROF. DR. FALKO LORENZ Westfälische Wilhelms-Universität, Münster 2., überarbeitete Auflage XiSfSrOl«Wissenschaftsverlag Mannheim/Leipzig/Wien/Zürich INHALTSVERZEICHNIS!

Mehr

Klausur zur Algebra (B3)

Klausur zur Algebra (B3) Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 13. März 2017 Simon Müller Wintersemester 2016/2017 Klausurnummer: 1 Klausur zur Algebra (B3) Matrikelnummer: Pseudonym: Aufgabe 1 2 3 4 5 6 7 erreichte Punktzahl

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Thema: Die Einheitengruppe des Restklassenrings /n

Thema: Die Einheitengruppe des Restklassenrings /n RWTH Aachen Lehrstuhl D für Mathematik Betreuer: Prof. U. Schoenwaelder Hausaufsatz zur Vorlesung Algebra I im WS 99/00 Thema: Die Einheitengruppe des Restklassenrings /n Vorgelegt von Sascha Haarkötter

Mehr

Grundbegriffe aus der Vorlesung Algebra

Grundbegriffe aus der Vorlesung Algebra Grundbegriffe aus der Vorlesung Algebra 17. Februar 2010 Dieses Glossar enthält die wichtigsten Begriffe und auch einige der wichtigsten Aussagen der Vorlesung. Zusätzliche Dinge (nicht klausurrelevant)

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)

Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Galois-Erweiterungen und Hauptsatz der Galois-Theorie

Galois-Erweiterungen und Hauptsatz der Galois-Theorie Galois-Erweiterungen und Hauptsatz der Galois-Theorie Stephanie Zube Andy Schärer 8. April 2009 Inhaltsverzeichnis 1 Erinnerungen 2 2 Galois-Erweiterungen 3 3 Der Hauptsatz der Galois-Theorie 5 A Literaturverzeichnis

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 14 Restklassenbildung Nach Satz 13.6 ist der Kern eines Ringhomomorphismus ein Ideal. Man kann umgekehrt zu jedem Ideal I R in

Mehr

LINEARE ALGEBRA II JÜRGEN HAUSEN

LINEARE ALGEBRA II JÜRGEN HAUSEN LINEARE ALGEBRA II JÜRGEN HAUSEN i Jürgen Hausen Lineare Algebra II Shaker Verlag Aachen 2013 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 11 Zerfällungskörper Wir wollen zu einem Polynom F K[X] einen Körper konstruieren, über dem F in Linearfaktoren zerfällt. Dies

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Algebra I - Wintersemester 05/06 - Zusammenfassung

Algebra I - Wintersemester 05/06 - Zusammenfassung Algebra I - Wintersemester 05/06 - Zusammenfassung Die Autoren 28. September 2017 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus.

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Algebra II, SS September 2011 Aufgaben zur Körpertheorie. (+1 + i), x 2 = 1 2. ( 1 + i), x 4 = 1 2

Algebra II, SS September 2011 Aufgaben zur Körpertheorie. (+1 + i), x 2 = 1 2. ( 1 + i), x 4 = 1 2 1. Zeige, dass Q(, i) Zerfällungskörper von X 4 + 1 Q[X] ist. Lösung: Die vier Nullstellen von X 4 + 1 über Q sind x 1 = 1 (+1 + i), x = 1 (+1 i), x 3 = 1 ( 1 + i), x 4 = 1 ( 1 i). Damit ist ein Zerfällungskörper

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Lineare Algebra und Analytische Geometrie I*

Lineare Algebra und Analytische Geometrie I* Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 27. Juni 2007 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 5 0.1 Mengentheoretische Grundlagen........................

Mehr

ALGEBRA, WINTERSEMESTER 2014/15

ALGEBRA, WINTERSEMESTER 2014/15 ALGEBRA, WINTERSEMESTER 2014/15 KARIN BAUR Zusammenfassung. Algebra, 4stündig, Wintersemester 2014/15, KFU Graz. Kurze Übersicht über den Inhalt der Vorlesung. Teil I: Gruppen Im ersten Teil geht es vor

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II

Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Verständnisfragen: Lineare Algebra und Analytische Geometrie I und II Matrizen, lineare Gleichungssysteme Wie kommt man von einem linearen Gleichungssystem zu einer Matrix? Was ist die Zeilenstufenform?

Mehr

Ich benötige einen Schein. Ich habe bereits genug Scheine.

Ich benötige einen Schein. Ich habe bereits genug Scheine. 1 Klausur 20.01.2003 Algebra I WS 2002/03 Dr. Elsholtz Name, Vorname Matr.nummer Fachrichtung Fachsemester Ich benötige einen Schein. Ich habe bereits genug Scheine. Die folgende Klausur hat mehr Aufgaben

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

6. Musterlösung zu Mathematik für Informatiker II, SS 2004

6. Musterlösung zu Mathematik für Informatiker II, SS 2004 6 Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 61 (Quadrismus) (7 Punkte) Wir wollen untersuchen, was Quadrieren in den multiplikativen Gruppen Z p mit p

Mehr

Körper- und Galoistheorie. Nachklausur mit Lösungen

Körper- und Galoistheorie. Nachklausur mit Lösungen Fachbereich Mathematik/Informatik 14. Januar 2012 Prof. Dr. H. Brenner Körper- und Galoistheorie Nachklausur mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben

Mehr

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014

Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014 Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition

Mehr

Lineare Algebra und Analytische Geometrie I*

Lineare Algebra und Analytische Geometrie I* Lineare Algebra und Analytische Geometrie I* Prof. Dr. Jürg Kramer Mitschrift von Michael Kreikenbaum Version vom 28. August 2006 2 Inhaltsverzeichnis 0 Gruppen, Ringe, Körper 4 0.1 Mengentheoretische

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 24.10.2017 24. Vorlesung Kongruenzrelationen in Gruppen Faktorgruppe nach einer Kongruenzrelation R Normalteiler in Gruppen Faktorgruppe nach einem Normalteiler

Mehr

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik

Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik Klausur zu Mathematische Grundlagen BachelorStudiengänge der Informatik SS 2016, 16.07.2016 Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 23 Aufgaben. Es sind maximal

Mehr

Christian Karpfinger. Arbeitsbuch Algebra. Aufgaben und Lösungen mit ausführlichen Erklärungen und Hinführungen

Christian Karpfinger. Arbeitsbuch Algebra. Aufgaben und Lösungen mit ausführlichen Erklärungen und Hinführungen Arbeitsbuch Algebra Christian Karpfinger Arbeitsbuch Algebra Aufgaben und Lösungen mit ausführlichen Erklärungen und Hinführungen Christian Karpfinger TU München Zentrum Mathematik - M11 München, Deutschland

Mehr

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen

Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen 70 2.5 Ringe und Körper Wir betrachten jetzt algebraische Strukturen mit zwei inneren Verknüpfungen. 2.5.1 Definition (Ring) Ist R eine Menge mit zwei inneren Verknüpfungen +: R R R und : R R R, dann heißt

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. 29.11.2018 32. Vorlesung Homomorphiesatz für Ringe Chinesischer Restsatz, speziell für Ringe Z n Lösen von t simultanen linearen Kongruenzen Sonderfall t = 2 Anwendungen, z.b. schnelle Addition

Mehr

Serie 3: Gruppen, Ringe und Körper

Serie 3: Gruppen, Ringe und Körper D-MATH Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 3: Gruppen, Ringe und Körper 1. Im Folgenden sei n N und Z/nZ bezeichne die Menge der Äquivalenzklassen von Z bezüglich der Relation: k n l n k l

Mehr

Ringe und Körper. Das Homomorphieprinzip für Ringe

Ringe und Körper. Das Homomorphieprinzip für Ringe Ringe und Körper Das Homomorphieprinzip für Ringe Wir beginnen mit einem Beispiel. R = Z/m Z sei die Faktorgruppe von Z nach der Untergruppe m Z, m IN. Für m = 0 ist der kanonische Homomorphismus Z Z/m

Mehr

2 Gruppen, Ringe, Körper, Algebren

2 Gruppen, Ringe, Körper, Algebren 2 Gruppen, Ringe, Körper, Algebren 2.1 Gruppen Definition 2.1. Sei G eine Menge, 1 G G, sowie : G G G eine Abbildung (statt (g,h) schreiben wir meistens g h und nennen eine binäre Verknüpfung). Wir nennen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Probeklausur zur Algebra I

Probeklausur zur Algebra I Probeklausur zur Algebra I Prof. Dr. S. Bosch/C. Löh Februar 2008 Name: Matrikelnummer: ZIV-Kennung: Vorname: Studiengang: Übungsleiter: Diese Klausur besteht aus 8 Seiten (die ersten beiden Seiten sind

Mehr

Lineare Algebra I (Lehramt Gymnasium)

Lineare Algebra I (Lehramt Gymnasium) Lineare Algebra I (Lehramt Gymnasium) Technische Universität München, WS 2013/14 Vorlesung: Caroline Lasser (aktualisiert am 31. Januar 2014) 1 Vorspiel Mengen (15.10.): intuitiver Mengenbegriff, x M,

Mehr

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den 1. Übungsblatt für den 11. 3. 2010 1. Es seien a, b Z. Beweisen Sie: a) a b T (a) T (b) b) Für jedes k Z gilt: T (a) T (b) = T (a) T (b + ka) c) Für jedes k Z gilt: ggt(a, b) = ggt(a, b + ka). 2. Für n

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Skript Algebra I WS 2002/03. Fachbereich Mathematik/Informatik Universität Osnabrück

Skript Algebra I WS 2002/03. Fachbereich Mathematik/Informatik Universität Osnabrück Skript Algebra I WS 2002/03 Tim Römer Fachbereich Mathematik/Informatik Universität Osnabrück Inhaltsverzeichnis Kapitel 1. Gruppentheorie 5 1. Grundbegriffe der Gruppentheorie.....................................

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr