= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung"

Transkript

1 Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen verlaufen. Die Seiten enthalten jeweils eine Nullstelle bzw. einen Extremalpunkt. -. Geben Sie das Symmetrieverhalten von f begründet an! /. Berechnen Sie die Nullstellen von f! / 5. Berechnen Sie die Extremalpunkte des Graphen von f! / 5.4 Berechnen Sie die Wendepunkte des Graphen von f! / 7.5 Berechnen Sie den Flächeninhalt des beschriebenen Rechtecks! (Falls Sie. bzw.. nicht lösen können, lesen Sie die entsprechenden Werte näherungsweise in der Zeichnung ab!).6 Stellen Sie die Gleichung der Normalen n von f im Koordinatenursprung auf! Tragen Sie die Normale in die Skizze ein!.7 Berechnen Sie die Schnittpunkte der Normalen n mit den Rechteckseiten! (Falls Sie. bzw.. nicht lösen können, beschreiben Sie den Lösungsweg, um die Schnittpunkte zu finden, schrittweise als Text!) / 4 / 4 / Aufgabenvorschlag B Abschlussprüfung Fachoberschule Seite von

2 Abschlussprüfung Fachoberschule () Aufgabenvorschlag B /5 Eine punktsymmetrische ganzrationale Funktion f fünften Grades verläuft durch den Punkt P (,5). Die Tangente von f an der Stelle Die zweite Ableitung an der Stelle x = ist gleich. x = verläuft durch den Punkt P ( ). Bestimmen Sie das Gleichungssystem zur Berechnung der Funktionsgleichung dieser Funktion. Die Lösung dieses Gleichungssystems ist nicht erforderlich. Lösen Sie stattdessen das folgende Gleichungssystem und bestimmen Sie damit die gesuchte 5 Funktionsgleichung f ( x) = ax + bx + cx der Funktion f. 5a + 4b + c = 7 5a + b + c = 8,5 a 8b c = 5 / 5 Gegeben ist die Funktion f mit f( x) = x 8x + 6 x ; x [;4]. (siehe Zeichnung) In die vom Graphen von f und der x-achse eingeschlossene Fläche soll ein möglichst großes Dreieck einbeschrieben werden. Die untere Seite des Dreiecks liegt auf der x- Achse vom Ursprung bis zur Stelle x. Die rechte Seite ist eine Parallele zur y-achse mit dem Punkt A auf dem Graphen von f. a b. Weisen Sie nach, dass die Funktionsgleichung der Zielfunktion zur Bestimmung des Flächeninhaltes wie folgt lautet: Ax = x x x + ( ) 4 8 / 5. Wie groß sind die Seiten a und b des Dreiecks mit dem größten Flächeninhalt? / 7. Berechnen Sie den Flächeninhalt dieses Dreiecks. / Aufgabenvorschlag B Abschlussprüfung Fachoberschule Seite von

3 Abschlussprüfung Fachoberschule () Aufgabenvorschlag B 4 Runden Sie alle Ergebnisse und Zwischenergebnisse auf Stellen nach dem Komma. / Eine Werbeagentur hat für einen Kunden ein Firmenlogo entworfen, das den Buchstaben W darstellt und an der Fassade der Firmenzentrale des Kunden angebracht werden soll. In der Abbildung ist das Logo durch die grau gefärbte Fläche dargestellt, deren Ränder die Graphen der Funktionen f und g mit den Funktionsgleichungen 4 f( x) =,5x x + 4 und 4 gx ( ) =, 4x,8 x + 4, 6 sind. ( LE m) Das Logo ist 6,5 m hoch und ganz oben 6 m breit. 4. Berechnen Sie das Integral Fläche durch eine Schraffur in der Abbildung. I = f( x) dxund markieren Sie die entsprechende 4. Am oberen Ende des Logos soll in der Weihnachtszeit der Zwischenraum durch eine Lichterkette überbrückt werden, die mindestens die Länge a haben muss (siehe Abbildung ). Berechnen Sie a. / 7 / 8 4. Berechnen Sie den Flächeninhalt des Firmenlogos. / 5 Ende der Aufgabenstellung Aufgabenvorschlag B Abschlussprüfung Fachoberschule Seite von

4 Abschlussprüfung Fachoberschule Erwartungshorizont für Aufgabenvorschlag B Teilaufgaben BE in AB Erbrachte Teilleistung I II III BE Begutachtung. Keine Symmetrie, da sowohl gerade als auch ungerade Exponenten vorhanden. Nullstellenberechnung 4 f( x) = x + x + x= x( x + x+ ) = x = oder x + x + = Nullstelle x N = Aus der Skizze Nullstelle x = entnommen und Polynomdivision N ( x x ) : ( x ) x x = + + durchgeführt Die Gleichung x + x+ = gelöst und die Nullstellen x = und x 4 = berechnet N N. Notwendige Bed. f ( x) = 4x + 6x+ = Aus der Skizze Extremstelle x E = entnommen und Polynomdivision ( 4x + 6x+ ):( x+ ) = 4x + 4x+ durchgef. Die Gleichung 4x + 4x+ = gelöst und die Extremstellen xe,66 und xe,66 berechnet Hinr. Bed. f ( x E ) geprüft f ( x) = x + 6 f ( ) = 6< HP f (,66) 6,9 < HP f (,66) 4,9 > TP y-koordinaten berechnet und Punkte angegeben HP (- ); HP (,66 4,848); TP(-,66 -,48) 5 Zwischensumme: Aufgaben..bis. Erwartungshorizont B Abschlussprüfung Fachoberschule Fach Seite von 6

5 Erwartungshorizont B Zwischensumme: Aufgaben..bis..4 Notwendige Bed. f ( x) = x + 6= Wendestellen xw,77 und xw,77berechnet Hinreichende Bed. f ( x) = 4x geprüft f (, 77) < Links-Rechts-Wendepunkt f (, 77) > Rechts- Links-Wendepunkt y-koordinaten berechnet und Punkte angegeben WP (,77;,644) WP =(-,77;-,64).5 Breite = LE Höhe = 5,96 LE A =5,588 FE.6 Normalensteigung m N = = f () Normalengleichung nx ( ) = x Einzeichnen der Normalen.7 Schnittpunkt mit der senkrechten Seite n( ) = P( ) Schnittpunkt mit der waagerechten Seite nx ( ) =,48 x =, 696 Q, 696,48 S s ( ) Alternative: Lösungsweg beschrieben Möglichkeit von Schnittpunkten der Normalen mit der senkrechten bzw. waagerechten Rechtecksseite formuliert y P als Funktionswert von n beschrieben x Q als Nullstelle von n beschrieben 5 4 Mögliche BE: 4 Erreichte BE Endsumme Aufgabe Erwartungshorizont B Abschlussprüfung Fachoberschule Seite von 6

6 Erwartungshorizont B Aufg. Erwartete Teilleistung Ansatz: 5 f ( x) = ax + bx + cx 4 f ( x) = 5ax + bx + c f ( x) = ax + 6bx Bedingungsgefüge:. f ( ) =,5 Punkt P (,5). Δy f '( ) = mt = Δ x Anstieg bei x = (,5) = = 5,5 ( ). f ''( ) =. Ableitung bei x = BE in AB Erbrachte Teilleistung I II III BE Begutachtung Gleichungssystem: a b c =,5 5a + b + c = 5,5 a 6b = Lösungen des gegebenen Gleichungssystems a= ; b= ; c=,5 Funktionsgleichung: 5 f ( x) = x + x +,5x 5 Summe: Mögliche BE: 5 Erreichte BE Endsumme Aufgabe Erwartungshorizont B Abschlussprüfung Fachoberschule Seite von 6

7 Erwartungshorizont B Aufg. Erwartete Teilleistung. Hauptbedingung HB: Flächeninhalt eines Dreieckes: A = gh Ax ( ) = x f( x) = x( x 8x + 6x) 4 = x 4x + 8x = x x 4x+ 8. A ( x) = x x + 6x A ( x) = = x x + 6x = x 6x + 8x = x x 6x+ 8. ( ) x = Flächeninhalt Null 6 6 x/ = ± 8 = ± 4 x = 4 Flächeninhalt Null x = f() = 8 a = und b = 8 Ax ( ) = x f( x) = 8= 8 Das Dreieck hat einen Flächeninhalt von 8 FE. BE in AB Erbrachte Teilleistung I II III BE Begutachtung Summe: Mögliche BE: 5 Erreichte BE Endsumme Aufgabe Erwartungshorizont B Abschlussprüfung Fachoberschule Seite 4 von 6

8 Erwartungshorizont B BE in AB Erbrachte Teilleistung Aufg. 4 Erwartete Teilleistung I II III BE Begutachtung ( ) 4. I = f ( x) dx = f ( x) dx = F( ) F( ) wegen Symmetrie F ist Stammfunktion von f F x =,5x x + 4x 5 ( ) ( ) ( ) F = 6,5 und F = I =, Schraffur 4. Ansatz: ( ) 4 g x = 6,5,4x,8 x,65 = Substitution x = z führt zu der Gleichung,4z,8 z,65 = z 4,5z 4,5 = z = -,789 ( nicht sinnvoll) und Lösungen: z = 5,89 Resubstitution ergibt x / =± 5,89 =±,986 Also ist a = 4,596m 4,596m Zwischensumme: 8 6 Aufgaben 4. bis 4. Erwartungshorizont B Abschlussprüfung Fachoberschule Seite 5 von 6

9 Erwartungshorizont B 4. Der gesuchte Flächeninhalt ist Ages = A A A, wobei A = Flächeninhalt des Rechtecks von bis der Höhe 6,5 = 7,5,98 ( ), ( s.o. ) A = f x dx = und A = Inhalt der Fläche zwischen dem Graph von g und der Gerade h mit h x = 6,5 ( ) ( ) ( ) ( ) A d x dx = D,98 D Zwischensumme: 8 6 Aufgaben 4. bis 4. 4 d ist die Differenzfunktion von g und h 4 d( x) = h( x) g( x) =,4x +,8 x +,65 D ist die Stammfunktion von d 5 D( x) =,8x +,6x +,65 x D(,97) 5,946 und D( ) = A,89 A ges,8 Das Logo hat einen Flächeninhalt von ca.,8 m². 5 BE Summe: 7 Mögliche BE: Erreichte BE Endsumme Aufgabe 4 Erwartungshorizont B Abschlussprüfung Fachoberschule Seite 6 von 6

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (A) Prüfungstag 5. Mai Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Abschlussprüfung Fachoberschule 2014 Mathematik

Abschlussprüfung Fachoberschule 2014 Mathematik Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen

Mehr

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn) Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach Mathematik (A) Prüfungstag 9. April 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach (B) Prüfungstag. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (A) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik Abschlussprüfung Fachoberschule 01 Herbst 1 Funktionsuntersuchung /0 Die Absprung- und Tauchphase eines Schwimmers kann vom Absprung vom Startblock bis zum Wiederauftauchen durch den Graphen der Funktion

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Abschlussprüfung an der Fachoberschule im Herbst 0 (A) Nur für die Lehrkraft Prüfungstag 7. November 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B , (Mathematik) / Gegeben ist eine Funktion f mit der Funktionsgleichung f ( x) = x x + x 6x+ ; x. Untersuchen Sie das Symmetrieverhalten des Graphen von f und begründen Sie Ihre Aussage. /. Untersuchen

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2012

Abschlussprüfung an der Fachoberschule im Herbst 2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Name, Vorname Klasse Abschlussprüfung an der Fachoberschule im Herbst 0 (B) Prüfungstag 0..0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (B) Prüfungstag 6. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (B) Name, Vorname Klasse Prüfungstag 4. Juni 00 Prüfungszeit Zugelassene

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik bschlussprüfung Fachoberschule 5 Herbst ufgabenvorschlag B Funktionsuntersuchung / Gegeben ist die Funktion f mit der Funktionsgleichung Der Graph der Funktion ist G f. f 5 5 ; IR.. Untersuchen Sie das

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (A) Name, Vorname Klasse Prüfungstag 5. Mai 00 Prüfungszeit Zugelassene

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

1. Mathematikklausur NAME:

1. Mathematikklausur NAME: Themen: Ganzrationale Funktionen: Skizzieren, untersuchen bestimmen. 1. Mathematikklausur NAME: Schreiben Sie die Lösung mit dem Lösungsweg auf ein kariertes Doppelblatt. Lassen Sie auf jeder Seite einen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Mathematik EF. Bernhard Scheideler

Mathematik EF. Bernhard Scheideler Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................

Mehr

1 Ableitungen. Hinweise und Lösungen:

1 Ableitungen. Hinweise und Lösungen: Hinweise und Lösungen: http://mathemathemathe.de/analsis/analsis-grundagen Ableitungen Übung.: Einfache Ableitungen - Bestimme die ersten Ableitungen a) f() = 7 + + 8 b) f() = a + a a K(t) = t t + 0 Übung.:

Mehr

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten

TK II Mathematik 2. Feststellungsprüfung Nachprüfung Arbeitszeit: 120 Minuten . Feststellungsprüfung Nachprüfung 19.0.005 1. Untersuchen Sie die Funktion p ( ) = + 16 auf Monotonie und geben Sie auf Grund dieses Ergebnisses die Lage des Scheitels an. (10. Der Graph einer ganz rationalen

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Berufsoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Berufsoberschule im Schuljahr 00/0 Fach (B) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

Aufgabenanalyse Pflichtaufgabe 2 Ganzrationale Funktionen Seite 1 von 10

Aufgabenanalyse Pflichtaufgabe 2 Ganzrationale Funktionen Seite 1 von 10 Aufgabenanalyse Pflichtaufgabe Ganzrationale Funktionen Seite von Allgemeines zur Aufgabenstellung: Die Aufgabenstellung gibt in der Regel eine kubische Funktion in ihrer allgemeinen Form oder in ihrer

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung

Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2013

Abschlussprüfung an der Fachoberschule im Herbst 2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Herbst 013 Fach (B) Prüfungstag. November 013 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen?

Aufgabe Was wissen Sie über die Symmetrie ganzrationaler Funktionen? R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Lösungen VBKA Ganzrationale Funktionen I Zur Vorbereitung einer Klassenarbeit en: A A A A A A A4 A4 n n Was bedeutet: f(x) = a x + a x +... + a x + a x +

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie)

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie) I. Grenzverhalten von Funktionen. Verhalten einer Funktion für bzw.. Bestimmen Sie den Grenzwert a) b) ) ( + ( ) c) ( + ) ( ) II. Symmetrie.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften.

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades Beispielseite (Band ). Ganzrationale Funktionen.4 Nullstellen bei Funktionen. Grades Funktionen. Grades ohne Absolutglied Bei ganzrationalen Funktionen. Grades ohne Absolutglied beginnt die Nullstellenberechnung

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens?

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen.

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen. Abschlussprûfung Berufskolleg (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg Analysis 2 Ganzrationale Funktionen zusammen mit Exponentialfunktionen Jahrgänge 2009 bis 2016 Text Nr. 74302 Stand

Mehr

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt:

Klausur 12/I Thema: Integralrechnung Teil A (hilfsmittelfrei) 1. Eine Stammfunktion von f x =3 x 1 heißt: mg.odt 5..9 Klausur /I A Thema: Integralrechnung Teil A (hilfsmittelfrei). Eine Stammfunktion von f = heißt: ln ln. Die erste Ableitung der Funktion f = lautet: 8 d beträgt: '. Die Funktion f = ³ 8 ist

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 1 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 016 1 Aufgabe

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

Übungen: Tangenten an ganzrationale Funktionen Lösungen und Lösungshinweise

Übungen: Tangenten an ganzrationale Funktionen Lösungen und Lösungshinweise Übungen: Tangenten an ganzrationale Funktionen Lösungen und Lösungshinweise Aufgabe 1: Bestimme jeweils die 1. Ableitung der Funktionen. a) f(x) = (2 + x)(x² + 1) / Ausmultiplizieren = 2x² + 2 + x³ + x

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Nordrhein-Westfalen. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Nordrhein-Westfalen. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Nordrhein-Westfalen Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung

Mehr

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit

Mehr

Passerellen Prüfungen 2009 Mathematik

Passerellen Prüfungen 2009 Mathematik Passerellen Prüfungen 2009 Mathematik 1. Analysis: Polynom und Potenzfunktionen Gegeben sind die beiden Funktionen 21 und 32. a) Bestimmen Sie die Null, Extremal und Wendepunkte der beiden Funktionen.

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

Abiturprüfung Mathematik, Grundkurs

Abiturprüfung Mathematik, Grundkurs M GK HT 1 Seite 1 von 2 Abiturprüfung 2009 Mathematik, Grundkurs Aufgabenstellung Die Höhe eines Strauches in den ersten zwanzig Tagen nach dem Auspflanzen wird durch die Funktion h mit der Funktionsgleichung

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

4. FUNKTIONSANPASSUNGEN

4. FUNKTIONSANPASSUNGEN 4. FUNKTIONSANPASSUNGEN 04. Da die Funktion einen Hoch- und einen Tiefpunkt besitzt, muss sie mindestens dritten Grades sein. Eine kurzfristige Prognose ist mit dieser Funktion wahrscheinlich möglich,

Mehr

Zentrale Klausur am Ende der Einführungsphase Mathematik

Zentrale Klausur am Ende der Einführungsphase Mathematik Seite von 5 Zentrale Klausur am Ende der Einführungsphase Aufgabenstellung 0 Mathematik Aufgabe : Untersuchung ganzrationaler Funktionen Gegeben ist die Funktion f mit der Gleichung: 3 f( x) = x 3 x. 4

Mehr