Muster für den Schultest. Muster Nr. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Muster für den Schultest. Muster Nr. 1"

Transkript

1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält drei Schultests aus den vergangenen Jahren. Zum Teil sind einige Lösungen zu den Aufgaben angegeben. Diese Lösungen sind ohne Gewähr und verstehen sich als Skizzen, d. h. die Aufgaben müssten in einer Klausur ausführlicher bearbeitet und mit kommentierenden Texten versehen werden. Auf den Internetseiten der Kultusministerien in Sachsen und Baden-Württemberg finden Sie weitere Übungsaufgaben, wenn Sie nach den Abschlussklausuren für die Realschule suchen. Der Schultest ist jedes Jahr gleich aufgebaut: Er enthält jeweils eine Aufgabe zu den folgenden fünf Gebieten: Funktionen und ihre graphische Darstellung; Lösung von Gleichungen und Gleichungssystemen; ebene Geometrie; räumliche Geometrie; Zinseszinsrechnung. Muster Nr. 1 Aufgabe 1: Eine Normalparabel p hat die Gleichung y = x 2 2x 3. Berechnen Sie den Scheitelpunkt der Parabel. Eine Gerade g mit der Steigung m = 2 schneidet die Parabel im Punkt P(3 0). Berechnen Sie den zweiten Schnittpunkt von g und p. Aufgabe 2: Bestimmen Sie die Lösungsmenge der folgende Gleichung über der Grundmenge R: (x 2) 2 (x 1)(3x + 5) = 2x 1 Aufgabe 3: Ein Würfel hat das Volumen V W = 512cm 3. Eine quadratische Pyramide, deren Grundfläche der Grundfläche des Würfels entspricht, hat das gleiche Volumen wie der Würfel. Um wie viel ist die Pyramide höher als der Würfel? Aufgabe : Im unten abgebildeten Viereck ABCD (Abbildung 1 auf Seite 1) sind gegeben: Berechnen Sie die Größe des Winkels γ 3 BC = 3, 7cm; EC =, cm; AE = cm; γ 1 = γ 2 Abbildung 1: Skizze Aufgabe 5: Herr M legt 5000 Euro bei seiner Bank an. Der jährlich gleich bleibende Zinssatz beträgt p Prozent. Die Zinsen werden mitverzinst. Nach Ablauf von fünf Jahren erhält Herr M 657,0 Euro Zinsen. Wie hoch war der Zinssatz? Wieviel Zinsen hätte Herr M erhalten, wenn er am Ende des zweiten Jahres 1000 Euro abgehoben hätte? Informationen zur Veranstaltung auf Seite 1 von 6

2 Muster Nr. 2 Aufgabe 1: Eine Normalparabel p 1 hat die Gleichung y = x 2 + 2x 3. Die Normalparabel p 2 ist nach unten geöffnet und hat den Scheitelpunkt S 2 ( 2 9). Durch die Schnittpunkte der Parabeln verläuft die Gerade g. Bestimmen Sie rechnerisch die Gleichung der Geraden. Hinweis: Notieren Sie alle Ihre Rechnungen. Aufgabe 2: R): Bestimmen Sie die Lösungen der Gleichung für x (a R ist ein konstanter Wert, die Grundmenge ist 2x 2 + ax = a 2 (x + a) 2 12 Hinweis: Beachten Sie, dass es je nach dem Wert von a keine, genau eine oder zwei Lösungen gibt! Aufgabe 3: Ein Körper besteht aus einer Halbkugel und einem aufgesetzten Kegel mit α = 5 (siehe Achsenschnitt in Abbildung 2 auf Seite 2). Das Volumen der Halbkugel beträgt 86 cm 3. Berechnen Sie die Oberfläche des Körpers! Abbildung 2: Skizze Achsenschnitt Aufgabe : In dem rechtwinkligen Dreieck ABC sind gegeben (Abbildung 3 auf Seite 2): Berechnen Sie den Flächeninhalt des Dreiecks! BC = 3 cm DC = 5 cm γ 2 = 13, 67 Abbildung 3: Skizze des rechtwinkligen Dreiecks Aufgabe 5: Herr E legt einen bestimmten Betrag bei der Bank an. Der jährlich gleich bleibende Zinssatz beträgt 0,5 Prozent. Zinsen werden mitverzinst. Nach Ablauf des ersten Jahres hebt er 200 Euro ab, nach Ablauf des zweiten Jahres 300 Euro. Am Ende des dritten Jahres beträgt sein Sparguthaben 1526,65 Euro. Berechnen Sie den ursprünglich angelegten Betrag! Informationen zur Veranstaltung auf Seite 2 von 6

3 Lösungsskizze zum Muster Nr. 2 Alle Lösungen sind ohne Gewähr! Aufgabe 1 Insgesamt 20 Punkte Form 1 Funktionsgleichung für p 2 (mit Scheitelpunktsform): 5P p 2 (x) = (x + 2) = (x 2 + x + ) + 9 = x 2 x + 5 Schnittpunkte: 9 Geradengleichung: g = mx + b P 1 ( 5), P 2 (1 0) Zweipunktform: p 1 (x) = p 2 (x) x 2 + 2x + 3 = x 2 x + 5 2x 2 + 6x 8 = 0 x 2 + 3x = 0 x = 2 3 ± x = 3 2 ± 5 2 x = x = 1 m = y 2 y 1 x 2 x 1 = ( ) = 1 b = y 1 mx 1 = 5 ( 1) ( ) = 1 g : y = x + 1 Aufgabe 2 Insgesamt 20 Punkte, Form 2P 2x 2 + ax = a 2 (x + a) x 2 + ax = a 2 x 2 2ax a x 2 + ax = x 2 2ax 12 3x 2 + 6ax + 12 = 0 x 2 + 2ax + = 0 x = a ± a 2 a < 2 keine Lösung a = 2 genau eine Lösung a > 2 zwei Lösungen Aufgabe 3 Informationen zur Veranstaltung auf Seite 3 von 6

4 Insgesamt 20 Punkte Es gilt: V Ku = 3 πr3 und damit 1 2 V Ku = 2 3 πr3! = 86. und damit: r = 9 3 π Es gilt: A Ku = πr 2. und damit: 1 2 A Ku = 2πr 2 = π. Es gilt: M Ke = πrs. und: s = r cos(5 ) = r 0,5 2 = 2r. und damit: M ke = π. und insgesamt A ges = A Ku + M Ke = 81 3 π(2 + 2) 05 Form P Aufgabe In rechtwinkligen Dreieck ABC sind gegeben (Abbildung auf Seite ): Berechnen Sie den Flächeninhalt des Dreiecks! BC = 3 cm DC = 5 cm γ 2 = 13, 67 Abbildung : Skizze Insgesamt 20 Punkte Ein möglicher Lösungsweg: Form P cos(γ 1 ) = 3 5 γ 1 53, 13 γ = γ 1 + γ 2 66, 8 AB = tan(γ) 3 7 A = = 10, 5. Aufgabe 5 G xn bedeutet Grundkapital nach x Jahren nach einem Abheben und G xv bedeutet Grundkapital nach x Jahren vor einem Abheben: Insgesamt 20 Punkte Form P G 3v = 1526, 65 G 2n 1, 005 = G 3v G 2n = 1519, 05 G 2v = G 2n = 1819, 05 G 1n 1, 005 = G 2v G 1n = 1810 G 1v = G 2n = 2010 G 0 1, 005 = G 1v G 0 = 2000 Informationen zur Veranstaltung auf Seite von 6

5 Muster Nr. 3 Aufgabe 1: Eine nach oben geöffnete Normalparabel hat den Scheitelpunkt S 2 (2 3). Eine Gerade g hat die Steigung m = 1 und schneidet die Parabel in P( 1). Berechnen Sie die Koordinaten des zweiten Schnittpunkts von Parabel und Gerade. Aufgabe 2: Bestimmen Sie die Definitions- und die Lösungsmenge der Gleichung: 2x 2 + x 9 x 1 = x + 5 Aufgabe 3: Ein quadratisches Prisma und eine quadratische Pyramide haben gleich große Grundflächen. Das Prisma hat die Höhe h = 5 cm und die Grundkante a = 3 cm. Das Volumen der Pyramide ist halb so groß wie das Volumen des Prismas. Berechnen Sie die Höhe der Pyramide. Aufgabe : Im rechtwinkligen Dreieck ABC sind gegeben (Abbildung auf Seite 5): BC = 3, 3cm; DC =, cm; γ 2 = 18, 1 Berechnen Sie den Flächeninhalt des Dreiecks ADC (Achtung: nicht Dreieck ABC!) Aufgabe 5: Karl legt am Anfang eines Jahres einen bestimmten Geldbetrag bei seiner Bank an. Der jährlich gleich bleibende Zinssatz beträgt 3,5 Prozent. Die Zinsen werden mitverzinst. Nach Ablauf des ersten Jahres hebt er 700 Euro ab, nach Ablauf des zweiten Jahres 500 Euro. Am Ende des dritten Jahres beträgt sein Sparguthaben 3 721,87 Euro. Wie viel hatte Karl ursprünglich angelegt? Alle Lösungen sind ohne Gewähr! Aufgabe 1 Gerade g(x) = x 3 Parabel: f (x) = (x 2) 2 3 = x 2 x + 1 Schnittpunkte: Schnittpunkte: P(/1) und P(1/ 2). Lösungsskizze zum Muster Nr. 3 f (x) = g(x) x 2 x + 1 = x 3 x 2 5x + = 0 x = 5 2 ± x = 5 2 ± 3 2 x = x = 1 Informationen zur Veranstaltung auf Seite 5 von 6

6 Aufgabe 2 Definitionsmenge: D = R \ {1}. Lösungsmenge: 2x 2 +x 9 x 1 = x + 5 2x 2 + x 9 = x 2 + x 5 x 2 3x = 0 x = 3 2 ± x = 3 2 ± 2 5 x = 1 x = Lösungsmenge: L = { 1, }. Aufgabe 3 Es gilt: V Prisma = 1 2 V Pyramide V Prisma = G h = = 5 V Pyramide = 22, 5 = 1 3 G h = 3 h h = 22,5 3 = 7, 5 Aufgabe A = 1 2 g h Grundseite: g = AC = BC cos(γ 1 +γ 2 ) cos(γ 1 ) = BC DC γ 1 1, 1 g = AC 6, 50 Höhe des Dreiecks ADC: h = sinγ 2 DC 1, 37 A = 1 2 g h, 5 Aufgabe 5 Grundkapital: G Kapital nach dem ersten Jahr: G 1 = G 1, 035 Kapital nach dem zweiten Jahr G 2 = (G 1 700) 1, 035 Kapital nach dem dritten Jahr G 3 = (G 2 500) 1, 035! = 3271, 87 und damit: 3721, 87 = ((G 1 700) 1, ) 1, 035 = ((G 1, ) 1, ) 1, 035 = G 1, , , 035 Man erhält: G = 3721, , ,035 1,035 3 = 500 Informationen zur Veranstaltung auf Seite 6 von 6

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Baden-Värttemberg. q = 21,7" Pflichtbereich Blatt 1 von 4. AE = 10,3 cm F = 37,0o. BE = 4,2 cm. Abschlussprüfung an Realschulen

Baden-Värttemberg. q = 21,7 Pflichtbereich Blatt 1 von 4. AE = 10,3 cm F = 37,0o. BE = 4,2 cm. Abschlussprüfung an Realschulen Baden-Värttemberg NSTERUM FÜR KULTUS, JUGEND UND SPORT Abschlussprüfung an Realschulen Prüfu n gsfach : Mathematik Bearbeitungszeit: 1 80 Minuten Haupttermin 2011 Pflichtbereich Blatt 1 von 4 Zugelassene

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Prüfung zum mittleren Bildungsabschluss 2006

Prüfung zum mittleren Bildungsabschluss 2006 Prüfung zum mittleren Bildungsabschluss 2006 Pflichtaufgaben Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, lineare und quadratische Funktionen, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Kroemer

Kroemer Kroemer - 02011-1- Normalparabel 13 y 2.0 2.1 3.0 3.1 4.0 4.1 5.1 5.2 6.1 6.2 12 11 10 9 8 7 6 5 4 3 2 1 0-7 -6-5 -4-3 -2-1 0 1 2 3 4 5 6 7 8 9-1 -2 Aufgabe: a) Zeichne eine Normalparabel p: y= x² - erstelle

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr) 10. Klasse der Haupt-/Mittelschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 011 (0. Juni 011 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des Mittleren Schulabschlusses

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Serie: E1 Lösungen Aufgabe 1 3 P. Vereinfachen Sie so weit wie möglich: 4a 1 2a 5 5 b 2 5 4a 1 2a 4a 20ab

Mehr

Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015

Technische Oberschule Stuttgart. Aufgabensammlung zur Aufnahmeprüfung Mathematik 2015 Aufgabensammlung zur Aufnahmeprüfung Mathematik 05 Aufgabe Lösen Sie die folgenden Gleichungen möglichst geschickt. a) (x 3) (3 + x) = 0 b) x 36 = 0 5 c) x 5x 0 + = 4 d) ( x 6) (3x + 8) = 0 Aufgabe Bestimmen

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Berufsmaturitätsprüfung 2006 Mathematik

Berufsmaturitätsprüfung 2006 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Grundwissen 9. Klasse

Grundwissen 9. Klasse Grundwissen 9. Klasse ) Rationale und irrationale Zahlen Quadratwurzel b ist diejenige nichtnegative Zahl, die quadriert b ergibt: b b ( 5 ) 5 Die Zahl b heißt Radikand; b 0 : es gibt keine Quadratwurzel

Mehr

PARABELN. 10. Klasse

PARABELN. 10. Klasse PARABELN 0. Klasse Jens Möller Owingen Tel. 0755-9 HUjmoellerowingen@aol.comU INHALTSVERZEICHNIS NORMALPARABEL PARABELN MIT FORMFAKTOR VERSCHIEBUNG IN Y-RICHTUNG VERSCHIEBUNG IN X-RICHTUNG 5 ALLGEMEINE

Mehr

Prüfung zum mittleren Bildungsabschluss 2006

Prüfung zum mittleren Bildungsabschluss 2006 Prüfung zum mittleren Bildungsabschluss 2006 Pflichtaufgaben Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und

Mehr

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen

Teil 4. Aufgaben Nr. 14 bis 18 Hier nur Lösung von Nr. 14. Auf der Mathematik-CD befinden sich alle Lösungen Teil 4 Aufgaben Nr. 4 bis 8 Hier nur Lösung von Nr. 4. Auf der Mathematik-CD befinden sich alle Lösungen Parabelfunktionen mit vielen Zusatzaufgaben (Keine Integration) Datei Nr. 405 S Januar 00 Friedrich

Mehr

Prüfung zum mittleren Bildungsabschluss 2004

Prüfung zum mittleren Bildungsabschluss 2004 Prüfung zum mittleren Bildungsabschluss 2004 Pflichtaufgaben Mathematik x+3 45 Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen

Mehr

1 Finanzmathematik (21 Punkte)

1 Finanzmathematik (21 Punkte) - 2 - AP WS 04M 1 Finanzmathematik (21 Punkte) Herr A freut sich über seinen Lottogewinn in Höhe von 141.783,76. Er legt 75 % davon bei seiner Bank zu einem Zinssatz von 3,5 % an. 1.1 Berechnen Sie, über

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k.

1. Zeichnen Sie die Geraden g, h und k in ein rechtwinkliges Koordinatensystem. 2. Bestimmen Sie die Gleichungen der Geraden g, h und k. Zweijährige zur Prüfung der Fachschulreife führende Berufsfachschule (BFS) Mathematik (9) Hauptprüfung 007 Aufgaben Aufgabe A. Die Geraden g, h und k schneiden sich im Punkt P(,). Der Punkt Q(,) liegt

Mehr

Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2

Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2 Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK

ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 2012 MATHEMATIK 10. KLSSE DER MITTELSHULE BSHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SHULBSHLUSSES 2012 MTHEMTIK am 20. Juni 2012 von 8:30 Uhr bis 11:00 Uhr Jeder Schüler muss e i n e von der Prüfungskommission ausgewählte

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Aufnahmeprüfung 017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Lösungen Serie: E1 basierend auf dem Lehrmittel Mathematik Hohl Allgemeine Richtlinien für die Korrektur

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E" : E",

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E : E, 4 Aufgaben im Dokument Aufgabe P1/2010 Ein zusammengesetzter Körper besteht aus einem Zylinder und aufgesetztem Kegel. Aus diesem Körper wird eine Halbkugel herausgearbeitet (siehe Achsenschnitt). 3,0

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Prüfung zum mittleren Bildungsabschluss 2007

Prüfung zum mittleren Bildungsabschluss 2007 Prüfung zum mittleren Bildungsabschluss 2007 Pflichtaufgaben Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und müssen mit

Mehr

Nicht für den Prüfling bestimmt!

Nicht für den Prüfling bestimmt! 0. KLASSE DER MITTELSCHULE ABSCHLUSSPRÜFUNG ZUM ERWERB DES MITTLEREN SCHULABSCHLUSSES 0 MATHEMATIK 0. Juni 0 80 Uhr 00 Uhr Hinweise zu. Auswahl. Korrektur und Bewertung. Lösung der Prüfungsaufgaben Nicht

Mehr

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10

Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10 Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Inhalt der Lösungen zur Prüfung 2005:

Inhalt der Lösungen zur Prüfung 2005: Inhalt der Lösungen zur Prüfung 005: Pflichtteil Wahlteil ufgabe W1 10 Wahlteil ufgabe W 14 Wahlteil ufgabe W3 18 Wahlteil ufgabe W4 3 Wichtige Hinweise zum opyright: Das Werk und seine Teile sind urheberrechtlich

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Die einfachste quadratische Funktion besitzt die Funktionsgleichung =. Die graphische Darstellung der quadratischen Funktion ergibt eine Kurve, welche Normalparabel heisst und folgendes

Mehr

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen

Realschule Schüttorf Arbeitsblatt Mathematik Klasse 10d Dezember 2006 Quadratische Funktionen Arbeitsblatt Mathematik Klasse 0d Dezember 006. Bestimme zu den vier Parabeln die zugehörigen Funktionsgleichungen.. Beschreibe den Verlauf der folgenden Funktionen. Benutze dabei folgende Begriffe: gestreckt

Mehr

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.

- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen. MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 009 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen

Mehr

1. Algebra 1.1. Gleichungssysteme Quadratische Gleichungen Bruchgleichungen Quadratische und lineare Funktionen...

1. Algebra 1.1. Gleichungssysteme Quadratische Gleichungen Bruchgleichungen Quadratische und lineare Funktionen... Inhalt der Lösungen: Algebra Gleichungssysteme Quadratische Gleichungen 6 Bruchgleichungen 6 4 Quadratische und lineare Funktionen 8 Stereometrie Kegel und Zylinder Quadratische Pyramide 5 Mehrseitige

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 009 (. Juni 009 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Funktionen, Gleichungen, geometrische Körper und Trigonometrie

Funktionen, Gleichungen, geometrische Körper und Trigonometrie Mathematik-Klassenarbeit Nr. 4 VERGL. Klassen 9 02.07.14 Funktionen, Gleichungen, geometrische Körper und Trigonometrie Hilfsmittel: Nicht programmierbarer Taschenrechner Hinweise: Bei allen Rechnungen

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma

Körper Lösungen. 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges sechsseitiges Prisma regelmäßige vierseitige

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Fit für den Mathematik-Lehrgang? Teste dich selbst!

Fit für den Mathematik-Lehrgang? Teste dich selbst! Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner

Mehr

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, Parabeln und Geraden, Gleichungssysteme

Algebra: (ab Seite 2) Quadratische Gleichungen, Bruchgleichungen, Parabeln und Geraden, Gleichungssysteme Vorwort: Sehr geehrte Schülerinnen und Schüler, anhand der folgenden 11 Fragen können Sie sich schnell und nachhaltig alle Kenntnisse aneignen, die Sie für eine erfolgreiche Mathematik-Prüfung benötigen

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK Prüfungstag: 11. Mai 2016 (HAUPTTERMIN) Prüfungsbeginn: 08:00 Uhr BESONDERE LEISTUNGSFESTSTELLUNG Schuljahr 2015/2016 MATHEMATIK Hinweise für die Teilnehmerinnen und Teilnehmer Bearbeitungszeit: 180 Minuten

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben:

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: 10,7 5,5 9,6 48,2 Berechnen Sie den Winkel. Wie groß ist der Flächeninhalt des Dreiecks? Lösung: 42 21,9 Tipp: Sinussatz und trigonometrischen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 010 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 Das radioaktive Cäsium-137 wird in der

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

7 Aufgaben im Dokument. Aufgabe P5/2010

7 Aufgaben im Dokument. Aufgabe P5/2010 Aufgabe P5/2010 7 Aufgaben im Dokument Die nach unten geöffnete Parabel hat die Gleichung 5. Zeichnen Sie die Parabel in ein Koordinatensystem. Die Gerade hat die Steigung und schneidet die -Achse im Punkt

Mehr

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Lineare Funktionen und Gleichungen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Lineare Funktionen und Gleichungen Üben in drei

Mehr

Grundwissen 9-1. Aufgabe Seite 1. Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c.

Grundwissen 9-1. Aufgabe Seite 1. Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c. Grundwissen 9-1. Aufgabe 23.01.2016 Seite 1 Die Terme f(x) = 35x 2 31x + 6 und g(x) = a(x b)(x c) sind äquivalent. Bestimme a, b und c. Grundwissen 9-1. Lösung 23.01.2016 Seite 2 Weil f(x) und g(x) äquivalent

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses 0. Klasse der Haupt-/Mittelschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 0 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt!

Mehr

Verkaufspreis Bruttopreis MWSt

Verkaufspreis Bruttopreis MWSt 1.SA 1. Löse die angegebene Formel nach c auf: x = aa ( + c) ( a+ b+ c) 6. Schreibe den Ansatz in Form einer Gleichung und löse diese: a) Nach Abzug von 3% Skonto werden für eine Ware S 15510,30 bezahlt.

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik. <Datum>

Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik. <Datum> Schriftliche Prüfungsarbeit zur erweiterten Berufsbildungsreife und zum mittleren Schulabschluss 2014 im Fach Mathematik Arbeitszeit: 10:00 12:15 Uhr Bearbeitungszeit: 135 Minuten Zugelassene Hilfsmittel:

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Abschlussprüfung 2016 Mathematik schriftlich

Abschlussprüfung 2016 Mathematik schriftlich schriftlich Bemerkungen: Hilfsmittel: Punktetotal Die Prüfungsdauer beträgt 3 Stunden. Beginnen Sie jede Aufgabe auf einem neuen Blatt! Alle Zwischenergebnisse ungerundet weiterverwenden und nur das Endergebnis

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Können wir das schaffen? Yo, wir schaffen das!

Können wir das schaffen? Yo, wir schaffen das! Können wir das schaffen? Yo, wir schaffen das! Inhaltsverzeichnis 1) Alles klar? Überprüfe dein Wissen für die Abschlussprüfung 2) Übersicht Kurze Übersicht mit Seitenzahlen der Formelsammlung Übersicht

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8)

Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

Körper. Körper. Kompetenztest. Name: Klasse: Datum:

Körper. Körper. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche idealisierten Grundformen entsprechen den Bildern? Ordne die Bezeichnungen den Bildern zu. vierseitiges Prisma regelmäßige dreiseitige Pyramide regelmäßiges

Mehr

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie

Prüfungsteil 2, Aufgabe 4 Analytische Geometrie Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Arbeit A Seite 1 Mecklenburg - Vorpommern Realschulprüfung 1996 im Fach Mathematik Arbeit A Seite 2 Pflichtteil 1. Bei einer Geschwindigkeitskontrolle innerhalb einer Ortschaft durchfuhren die Meßstelle

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr