Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen.

Größe: px
Ab Seite anzeigen:

Download "Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen."

Transkript

1 bildung Vom Kleinen zum Großen Thomas Westermann 4. Lange Nacht der Mathematik HS Karlsruhe 12. Mai 2006

2 Formen und

3 Formen und

4 Formen und

5 Formen und

6 A R U B L

7 R L UB = UR + UL U B U = RI() t + LI'() t B R U t B L It () = (1 e ) R Modellierung Verständnis der Vorgänge

8 Viele Ingenieurprobleme werden durch Modelle beschrieben, die auf (partielle) führen. Bei einfachen Problemen/DG Ausgereifte Methoden der Mathematik Kontinuierliche Beschreibung Bei komplizierten Vorgängen Geeignete DG finden DG lösen 2 2 a a a = μa+ Da + a 2 t b x b b = + + t x 2 2 a νb Db b 2 0? 0

9 Beschreibung Schneeflocke Küste Farn Fraktalgemüse

10 Beschreibung Kochsche Schneeflocke

11 Beschreibung Kochsche Schneeflocke

12 Beschreibung Geometrische Eigenschaften - Objekt entsteht durch eine Iteration (Rekursion) - Start mit einer Anfangskonfiguration - Feste Regel, die lokal angewendet wird - Besitzt bei beliebiger Vergrößerung noch Feinstruktur - Selbstähnlich - Unendlicher Umfang aber beschränkter Flächeninhalt Objekte, welche die obigen Eigenschaften besitzen, bezeichnet man als (lat. fractus = gebrochen).

13 Beschreibung

14 Fellmuster?

15 Zwiebelzellen: Waben: Prinzipien natürlicher bildung Regelmäßige Anordnung Zellen sind regelmäßig in einem Verbund angeordnet. Alle Zellen sind gleich und haben identische Struktur. Jede Zelle hat die gleiche Funktion Software. Wechselwirkung Nur lokale Interaktion mit Nachbarn. Die Entwicklung einer Zelle kann nur von ihr selbst und ihren Nachbarn beeinflusst werden. r Automat - besteht aus einem Verbund von Zellen (Gitter) - und die Wechselwirkung erfolgt durch lokal definierte Regeln.

16 Bausteine zellulärer 1. Zellraum Gleiche diskrete Zellen Alle Zellen identisch 2. Nachbarschaften 3. Zustandsentwicklung Anfangszustand Übergangsregeln: Die Zustandsentwicklung jeder Zelle hängt nur von dem Zustand der Zelle selbst und ihren Nachbarn ab.

17 1D zellulärer Automat? Regeln 0? 0 n 1? 0 n 0 n+1 1? 1 n 1 n+1 0? 1 n 0 n+1 1 n+1 Ergebnis n = 0 n = 1 n = 2 n = 3 n = 4

18 Reaktions-s-Modell Konkurrenz als macher Modell nach Turing: entstehen durch Konkurrenz zwischen zwei unterschiedlichen Kräften. Annahme: Zwei chemische Substanzen: Morphogene Aktivator: initiiert und verstärkt eine Struktur Inhibitor: verhindert und schwächt Strukturbildung ab Aktivator Inhibitor

19 Reaktions-s-Modell Modell nach Young Zellraum: zweidimensionales Gebiet Nachbarschaft: Kreis mit Radius R Zustände: schwarz: aktive, differenzierte Zelle weiß: inaktive, undifferenzierte Zelle Regeln: Nur die differenzierten Zellen können die zwei Morphogene bilden, die Summe der Aktivator und Inhibitor Einflüsse entscheidet! Der Aktivator erhält das Gewicht 1, aber nur einen kleinen Aktionsradius R a < R. Der Inhibitor erhält das Gewicht w i, er wirkt in der äußeren Nachbarschaft zwischen R a und R.

20 Reaktions-s-Modell Variation der Inhibitorstärke w i w i =

21 Ende

22 Literatur: M. Reck: Wie kommt der Leopard zu seinen Flecken, MNU51/1, 38, 1998 M. Gerhardt, H. Schuster: Das digitale Universum, Vieweg 1995 H. Meinhardt: Wie Schnecken sich in Schale werfen, Springer 1997 J. Murray: Wie der Leopard zu seinen Flecken kommt, Spektrum der Wissenschaft 5, 88, 1988 Bilder: Google Programme: Matthias Süß, Hochschule Karlsruhe, Seminararbeit im Studiengang Sensorsystemtechnik Michael Reck, Klettgau-Gymnasium, Waldshut-Tiengen Kontakt: thomas.

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler Zelluläre Automaten Sommerakademie Ftan 2004 Daniel Abler Zelluläre Automaten 1.Merkmale komplexer Systeme bzw. zellulärer Automaten 2.Grundcharakteristika - Game of Life 3.Definition 4.Eigenschaften und

Mehr

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem?

x 2 +1=0? Wo sind die Nullstellen von x 2 +1 versteckt? 5. Lange Nacht der Mathematik Thomas Westermann Wo ist das Problem? =0? im n Wo sind die Nullstellen von versteckt? Thomas Westermann 5. Lange Nacht der Mathematik HS Karlsruhe 5. April 008 Parabeln y=x : Normalparabel Einfache Funktion Scheitel bei S=(0/0) Einen Schnittpunkt

Mehr

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ BERÜHMTE KURVEN Gruppenleiter: Jürgen Appell, Kristina Appell, Anna Martellotti Hilfskräfte: Alison Cross, Ruth Smith Teilnehmer(innen): Ann-Christin Gerstner, Matthias Geuder, Michael Kierstein, Lukas

Mehr

Reaktions-Diffusions-Modelle

Reaktions-Diffusions-Modelle Reaktions-Diffusions-Modelle Gegenstück zu zellulären Automaten: ebenfalls raumorientiert, mit fester Nachbarschaftsrelation und kontextsensitiven Regeln aber: kontinuierlich in Raum, Zeit und Strukturen

Mehr

Eine kleine Reise durch die Welt der zellulären Automaten

Eine kleine Reise durch die Welt der zellulären Automaten Eine kleine Reise durch die Welt der zellulären Automaten Wolfgang Oehme, Universität Leipzig 1. Einleitung 2. Zelluläre Automaten 2.1. Game of Life als klassischer zellulärer Automat 2.2. Populationsdynamik

Mehr

Fraktale. Mathe Fans an die Uni. Sommersemester 2009

Fraktale. Mathe Fans an die Uni. Sommersemester 2009 Fraktale Mathe Fans an die Uni Ein Fraktal ist ein Muster, das einen hohen Grad Selbstähnlichkeit aufweist. Das ist beispielsweise der Fall, wenn ein Objekt aus mehreren verkleinerten Kopien seiner selbst

Mehr

Fakultät für Physik und Geowissenschaften

Fakultät für Physik und Geowissenschaften Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Wissenschaftliche Arbeit Populationsdynamik mit Zellulären Automaten Mathias Förster Betreuer an der Universität:

Mehr

Wie Schnecken sich in Schale werfen

Wie Schnecken sich in Schale werfen Hans Meinhardt Wie Schnecken sich in Schale werfen Muster tropischer Meeresschnecken als dynamische Systeme Mit Beiträgen und Bildern von Przemyslaw Prusinkiewicz und Deborah R. Fowler Mit 120 Abbildungen,

Mehr

Zelluläre Automaten. Zelluläre Automaten sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster

Zelluläre Automaten. Zelluläre Automaten sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster Motivation sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster einfache Zellen räumlich angeordnet einfache Interaktionsmuster (Beziehungen zwischen benachbarten Zellen)

Mehr

Algorithmen in Zellularautomaten. Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie

Algorithmen in Zellularautomaten. Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie Algorithmen in Zellularautomaten Thomas Worsch Institut für Theoretische Informatik Karlsruher Institut für Technologie Sommersemester 08 Grundlegende Definitionen. Beispiel. Betrachten wir die folgende

Mehr

Zelluläre Automaten. 1. Einleitung: Definitionen und Geschichte

Zelluläre Automaten. 1. Einleitung: Definitionen und Geschichte Zelluläre Automaten 1. Einleitung: Definitionen und Geschichte Zelluläre Automaten sind mathematische Idealisierungen von physikalischen (chemischen, biologischen...) Systemen, in welchen sowohl die Raum-

Mehr

Kunst und Wissenschaft

Kunst und Wissenschaft Kunst und Wissenschaft HS 8 Visualisierung von Newton-Fraktalen Inhalt 1. Ist Schönheit Harmonie? Mathematik in Musik und Malerei 2. Warum heissen Fraktale Fraktale? oder: was ist hier zerbrochen? 3. Was

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Kopf- & Fußbildung der Hydra

Kopf- & Fußbildung der Hydra Kopf- & Fußbildung der Hydra Übersicht I. Die Biologie der Hydra II. Modellierung der Hydra III. Experiment vs. Theorie Übersicht I. Die Biologie der Hydra II. Modellierung der Hydra III. Experiment vs.

Mehr

Grund- und Angleichungsvorlesung Trägheitsmoment.

Grund- und Angleichungsvorlesung Trägheitsmoment. 2 Grund- und Angleichungsvorlesung Physik. Trägheitsmoment. WS 18/19 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 17: Zelluläre Automaten II Dirk Frettlöh Technische Fakultät / Richtig Einsteigen 11.6.2014 Conway s Game Of Life (GoL) [Demo. Gezeigt und erklärt werden:] Regeln

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 3 [Bildquellen: Wikipedia User David Madore, Inductiveload ] Grundlagen 2: Funktionen, Berechenbarkeit und emergente Komplexität Michael Wand

Mehr

Zellen. Gegeben sei ein Raum und ein Gitter, das den Raum in gleichförmige und gleichgroße Zellen aufteilt.

Zellen. Gegeben sei ein Raum und ein Gitter, das den Raum in gleichförmige und gleichgroße Zellen aufteilt. Zellen Gegeben sei ein Raum und ein Gitter, das den Raum in gleichförmige und gleichgroße Zellen aufteilt. Zellen Gegeben sei ein Raum und ein Gitter, das den Raum in gleichförmige und gleichgroße Zellen

Mehr

Panorama der Mathematik und Informatik

Panorama der Mathematik und Informatik Panorama der Mathematik und Informatik 15: Zelluläre Automaten II Dirk Frettlöh Technische Fakultät / Richtig Einsteigen Recall: Conway s Game Of Life (GoL) Regeln Still lifes, oscillators, spaceships,

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 25. November 2017

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 25. November 2017 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 25. November 2017 unser Programm 11. November: 1. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche,

Mehr

PSE Verkehrssimulation

PSE Verkehrssimulation PSE Verkehrssimulation Einführung in die Thematik Michael Moltenbrey, Dirk Pflüger 16. Oktober 2007-1- Gliederung Motivation Ablauf des Praktikums Aufgabenstellungen Scheinkriterien Gruppeneinteilung Einführung

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2014 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Unendliche Gruppen als geometrische Objekte

Unendliche Gruppen als geometrische Objekte Unendliche Gruppen als geometrische Objekte Ralf Meyer Georg-August-Universität Göttingen 12. November 2004 1 Endlich erzeugte Gruppen und die Wortmetrik Wir definieren endlich erzeugte Gruppen und führen

Mehr

Sozialwissenschaftliche Modelle und Daten SoSe 2010

Sozialwissenschaftliche Modelle und Daten SoSe 2010 Sozialwissenschaftliche Modelle und Daten SoSe 2010 LS Sozialwissenschaftliche Methodenlehre und Sozialstatistik C. Dudel C. Dudel Sozialwissenschaftliche Modelle und Daten SoSe 2010 1 23 1 Formalia 2

Mehr

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger Iteriertes Funktionensystem Martin Aigner Rainer Brodinger Martin Rieger Agenda Einleitendes Beispiel Definition und Beschreibung Einsatzgebiete / Anwendungen weitere Beispiele Sierpinski-Dreieck "Das

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Fraktale. 1. Fortgesetzte Bifurkationen der gleichen Art

Fraktale. 1. Fortgesetzte Bifurkationen der gleichen Art Fraktale 1. Fortgesetzte Bifurkationen der gleichen Art Bisher wurden nur Selbstorganisationsphänomena betrachtet, die durch einzelne Bifurkationen beschrieben werden können. Viele reale Prozesse bestehen

Mehr

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München

Diskrete Strukturen. Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Diskrete Strukturen c Javier Esparza und Michael Luttenberger Chair for Foundations of Software Reliability and Theoretical Computer Science Technische Universität München Montag 16 Oktober, 2017 p.2 Was

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

Spatial Games. Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher. Anne-Marie Rambichler, Christoph Wichmann. 23.

Spatial Games. Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher. Anne-Marie Rambichler, Christoph Wichmann. 23. Spatial Games Vortrag im Rahmen der Vorlesung Spieltheorie von M.Schottenloher Anne-Marie Rambichler, Christoph Wichmann 23. März 2009 Anne-Marie Rambichler, Christoph Wichmann () Spatial Games 23. März

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

3 Endliche Muster und Konfigurationen

3 Endliche Muster und Konfigurationen 3 Endliche Muster und Konfigurationen Wir gehen von nun an immer davon aus, dass 0 N ist. 3.1 Definition Eine Teilmenge P Q heißt genau dann Ruhemenge oder passiv, wenn für alle l : N Q mit ran(l) P gilt:

Mehr

Kombinatorik. Matthias Bayerlein Matthias Bayerlein Kombinatorik / 34

Kombinatorik. Matthias Bayerlein Matthias Bayerlein Kombinatorik / 34 Kombinatorik Matthias Bayerlein 25.6.2010 Matthias Bayerlein Kombinatorik 25.6.2010 1 / 34 Überblick Grundlagen aus der Schule Spezielle Zahlenfolgen Zusammenfassung Matthias Bayerlein Kombinatorik 25.6.2010

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Kapitel 5.6: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 5.6: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 5.6: Nichtlineare Rekursionen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 5.4.3 Master-Theorem: Lineare Rekursionen 5.6 Nichtlineare Rekursionen 5.6.1 Logistische Rekursion

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Binomialverteilung und deren Anwendung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Binomialverteilung und deren Anwendung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Binomialverteilung und deren Anwendung Das komplette Material finden Sie hier: School-Scout.de Wiederholung: Zufallsexperiment,

Mehr

Kombinatorik. 1. Permutationen 2. Variationen 3. Kombinationen. ad 1) Permutationen. a) Permutationen von n verschiedenen Elementen

Kombinatorik. 1. Permutationen 2. Variationen 3. Kombinationen. ad 1) Permutationen. a) Permutationen von n verschiedenen Elementen Kombinatorik Zur Berechnung der Wahrscheinlichkeit eines zusammengesetzten Ereignisses ist oft erforderlich, zwei verschiedene Anzahlen zu berechnen: die Anzahl aller Elementarereignisse und die Anzahl

Mehr

Das Baseler Problem =?

Das Baseler Problem =? Das Baseler Problem + + 3 + 4 + 5 + 6 + 7 +... =? Das Baseler Problem Geschichte 644 durch den italienischen Mathematiker Pietro Mengoli formuliert Es versuchten sich diverse Mathematiker an dem Problem,

Mehr

Nichtlineare Phänomene und Selbstorganisation

Nichtlineare Phänomene und Selbstorganisation Nichtlineare Phänomene und Selbstorganisation Von Dr. rer i.. ibü: Rein*»i M ce Doz. Dr. rer. nat. nabii. Jürn Schmelzer Prof. Dr. rer. nat. habil. Gerd Röpke Universität Rostock Mit zahlreichen Figuren

Mehr

Lernmodul 2 Modelle des Raumes

Lernmodul 2 Modelle des Raumes Folie 1 von 21 Lernmodul 2 Modelle des Raumes Bildnachweis: www. tagesschau.de Folie 2 von 21 Modelle des Raumes Übersicht Motivation Was ist Raum? Formalismus und Invarianz Metrischer Raum/Euklidischer

Mehr

Das Schubfachprinzip

Das Schubfachprinzip Das Schubfachprinzip Norbert Koksch, Dresden Literatur: Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger. Vieweg-Verlag. 1. Was ist das Schubfachprinzip? Die folgenden Aussagen sind offenbar

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2011 Mathematik Rechenfertigkeiten Übungen Donnerstag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dominik

Mehr

Einführung zur Einführung in die Mathematik

Einführung zur Einführung in die Mathematik Einführung zur Einführung in die Mathematik Jens Jordan Universität Würzburg Institut für Mathematik Tutoren: Julia Koch, Rintaro Ono, Ruben Schulze und Florian Göpfert 12.10.2009 Wer seid Ihr? Der Vorkurs

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel

Mehr

Synthetische Muster für lokale Suchalgorithmen

Synthetische Muster für lokale Suchalgorithmen Medizin Michael Dienst Synthetische Muster für lokale Suchalgorithmen Wissenschaftlicher Aufsatz Synthetische Muster für lokale Suchalgorithmen Beuth-Hochschule für Technik FB VIII Maschinenbau, Umwelt-

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2012 Mathematik Rechenfertigkeiten Übungen Donnerstag Dr. Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 190, 8057 Zürich Erstellt von Dr. Irmgard Bühler (Überarbeitung: Dr.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.

Mehr

! Modellierung und Simulation 1 (SIM1)

! Modellierung und Simulation 1 (SIM1) ! Modellierung und Simulation 1 (SIM1) 1. Veranstaltung: Einführung 18.10.16 Andreas Vogel andreas.vogel@gcsc.uni-frankfurt.de!!! Organisatorisches Modellierung und Simulation 1 (M-SIM1c; evtl. M-SIM1a,

Mehr

Kapitel 5.5: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 5.5: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 5.5: Nichtlineare Rekursionen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 e H! e t u 2 Ankreuzliste für Übungsgruppen 1 4 3 7 5 5 6 6 9 10 8 2 2 10 3 5.3.3 Master-Theorem:

Mehr

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels

9 Fraktale. Dabei hängt das Ergebnis vom Maßstab der Karte und von der eingestellten Weite des Stechzirkels 79 9 Fraktale Problemstellung Im Jahr 1967 veröffentlichte der Mathematiker Benoit Mandelbrot 3 eine Arbeit mit dem Titel How long is the coast of Britain? Statistical self-similarity and fractional dimension.

Mehr

Höher, Schneller, Weiter!

Höher, Schneller, Weiter! Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Höher, Schneller, Weiter! Das Extremalprinzip Das Extremalprinzip ist eine vielseitig einsetzbare Lösungstechnik für mathematische

Mehr

Erfolgsgeschichte eines stochastischen Prozesses: Die Brown sche Bewegung

Erfolgsgeschichte eines stochastischen Prozesses: Die Brown sche Bewegung Erfolgsgeschichte eines stochastischen Prozesses: Die Brown sche Bewegung Wolfgang König Weierstraß-Institut Berlin und Technische Universität Berlin W. König Tag der Mathematik 8. Mai 2010 p.1/10 Robert

Mehr

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51

Kombinatorik. Simon Rainer 21. Juli Simon Kombinatorik 21. Juli / 51 Kombinatorik Simon Rainer sr@mail25.de 21. Juli 2015 Simon Rainersr@mail25.de Kombinatorik 21. Juli 2015 1 / 51 Was ist Kombinatorik? Teilgebiet der diskreten Mathematik Endliche oder abzählbar unendliche

Mehr

Perkolation Zusammenhang mit RG

Perkolation Zusammenhang mit RG Perkolation Zusammenhang mit RG 19.07.2017 TU Darmstadt Fachbereich Physik Johannes Reinhard 1 Agenda 1.1 Einführung und Motivation 1.2 Grundlagen 2.1 Erzeugende Funktion 2.2 Perkolation in einer Dimension

Mehr

Asymptotische Komplexität

Asymptotische Komplexität Asymptotische Komplexität f B n hängt wesentlich von der Variablen x i ab,, 1 i n, wenn es Werte a j für 1 j n, j i, derart gibt, dass f(a 1,..., a i 1, 0, a i+1,..., a n ) f(a 1,..., a i 1, 1, a i+1,...,

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) Systemanalyse und Modellbildung

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Ein verändertes Gesicht der Informatik am Gymnasium Lehrplanänderungen 2003 Lehramt Informatik

Ein verändertes Gesicht der Informatik am Gymnasium Lehrplanänderungen 2003 Lehramt Informatik Ein verändertes Gesicht der Informatik am Gymnasium Lehrplanänderungen 2003 Lehramt Informatik Inhaltsübersicht Informationszentrierter Ansatz - neue Lehrpläne in Bayern Informatik in der Unterstufe Lehrplanübersicht

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 12. Thomas Worsch Fakultät für Informatik Institut für Theoretische Informatik Sommersemester 2018 Ziele Diffusion weitere Beispiele: Wellen, BZ-Reaktion, Reaktions-Diffusions-Systeme

Mehr

1 Rotating Calipers. 2 Antipodal und Copodal. 3 Distanzen Rechtecke Eigenschaften

1 Rotating Calipers. 2 Antipodal und Copodal. 3 Distanzen Rechtecke Eigenschaften 1 Rotating Calipers 2 3 Rotating Calipers - Algorithmus Konvexes Polygon mit parallelen Stützgeraden Rotating Calipers - Finder Shamos lässt 1978 zwei Stützgeraden um ein Polygon rotieren Zwei Stützgeraden

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

6. Texterkennung in Videos Videoanalyse

6. Texterkennung in Videos Videoanalyse 6. Texterkennung in Videos Videoanalyse Dr. Stephan Kopf 1 Übersicht Motivation Texterkennung in Videos 1. Erkennung von Textregionen/Textzeilen 2. Segmentierung einzelner Buchstaben 3. Auswahl der Buchstabenpixel

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Bernd Jahne Digitale Bildverarbeitung 6., überarbeitete und erweiterte Auflage Mit 248 Abbildungen und 155 Übungsaufgaben und CD-ROM Sy Springer Inhaltsverzeichnis I Grundlagen 1 Anwendungen und Werkzeuge

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Prüfung 2 semesterbegleitende Zwischenprüfungen: Termine: am 12.11.2013 und 10.12.2013, Beginn jeweils 8.00 Uhr (!) im

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen, dem sogenannten Prinzip der vollständigen Induktion.

Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen, dem sogenannten Prinzip der vollständigen Induktion. Schülerzirkel Mathematik Fakultät für Mathematik Universität Regensburg Induktion 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + Wir beschäftigen uns im folgenden mit einem wichtigen Aspekt der natürlichen Zahlen,

Mehr

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung

K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 017 Klasse: g Profil: MN / M Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne

Mehr

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale Computergrafik SS 2016 Oliver Vornberger Vorlesung vom 03.05.2016 Kapitel 11: Fraktale 1 Selbstähnlichkeit 2 Koch'sche Schneeflocke a+(x-a) cos(60 ) - (y-b) sin(60 ) b+(y-b) cos(60 ) + (x-a) sin(60 ) a,b

Mehr

Didaktik des Sachrechnens

Didaktik des Sachrechnens Didaktik des Sachrechnens 6. Geometrie in der Anwendung Eine Auswahl Pont de la Caille, Frankreich (eigenes Foto) 1 6. Geometrie in der Anwendung Eine Auswahl 6.1 Satzgruppe des Pythagoras 6.2 Ähnlichkeit

Mehr

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)

Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte

Mehr

schreiben, wobei p und q ganze Zahlen sind.

schreiben, wobei p und q ganze Zahlen sind. Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer?

Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Kryptographie und elliptische Kurven - oder: Wie macht man Mathematikern das Leben schwer? Harold Gutch logix@foobar.franken.de KNF Kongress 2007, 25. 11. 2007 Outline Worum geht es überhaupt? Zusammenhang

Mehr

Hauptseminar Verkehrssimulation: Ein Blick hinter die Kulissen Vorbesprechung

Hauptseminar Verkehrssimulation: Ein Blick hinter die Kulissen Vorbesprechung Hauptseminar Verkehrssimulation: Ein Blick hinter die Kulissen Vorbesprechung Michael Moltenbrey Dirk Pflüger Scientific Computing in Computer Science Garching, 24. Juli 2006 Michael Moltenbrey, Dirk Pflüger

Mehr

Modelle räumlicher Simulation 6.0b Überblick

Modelle räumlicher Simulation 6.0b Überblick Modelle räumlicher Simulation 6.0b Überblick Zelluläre Automaten Agentenbasierende Modelle Regeln Gleichartige Zellen, die verschiedene Eigenschaften besitzen können, die einem Raum angeordnet sind, der

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

4.15 Buch I der Elemente

4.15 Buch I der Elemente 4.15 Buch I der Elemente Das erste Buch der Elemente beginnt mit 23 Definitionen, 5 Postulate und einige Axiomen (von denen man in späteren Ausgaben bis zu 9 findet). Die ersten fünf Definitionen lauten

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Programmierpraktikum Verkehrssimulation

Programmierpraktikum Verkehrssimulation Programmierpraktikum Verkehrssimulation Einführung in die Thematik Michael Moltenbrey, Dirk Pflüger 24. April 2006 1 Gliederung Motivation Ablauf des Praktikums Aufgabenstellungen Scheinkriterien Gruppeneinteilung

Mehr

Prof. Dr. T. Westermann. imath

Prof. Dr. T. Westermann. imath imath Intention: Um für die Studierenden das Arbeiten mit aufgaben modern und attraktiv zu gestalten, wurde das interaktive imath-system entwickelt: Eine interaktive, elektronische Aufgabensammlung zur

Mehr

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel

6.5 Die Taylor-Reihe. Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel 6.5 Die Taylor-Reihe Start: Erinnerung an den Satz über die geometrische Reihe. Für die endliche geometrische Reihe gilt die Summenformel N q n = qn+ q für q C \ {}. Für q < ist die unendliche geometrische

Mehr

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8

Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Woche 08/12 15/12 4. Gershgorin-Kreise, Stabilität und Kondition 1 / 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Umgang mit der Matlab-Umgebung Darstellung einfacher Graphen Analyse der

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

QUANTEN. Geometrische Punkte werden durch Gebilde kleinster Ausdehnung ersetzt! [Text eingeben]

QUANTEN. Geometrische Punkte werden durch Gebilde kleinster Ausdehnung ersetzt! [Text eingeben] QUANTEN Geometrische Punkte werden durch Gebilde kleinster Ausdehnung ersetzt! [Text eingeben] Inzwischen kommt kein Physik-Student mehr an der Quantenphysik vorbei. Daher sollte sich auch endlich die

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 20/2 R. Steuding (HS-RM) NumAna Wintersemester 20/2 / 20 2. Reihen R. Steuding (HS-RM) NumAna

Mehr

Zelluläre Automaten SoSe 2011

Zelluläre Automaten SoSe 2011 Zelluläre Automaten SoSe 2011 LS Sozialwissenschaftliche Methodenlehre und Sozialstatistik C. Dudel C. Dudel Zelluläre Automaten SoSe 2011 1 35 Bisher Leslie-Modell: Makro Galton-Watson-Prozess: Mikro

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

Seminararbeit Zahlentheorie. Gitter und der Minkowskische Gitterpunktsatz

Seminararbeit Zahlentheorie. Gitter und der Minkowskische Gitterpunktsatz Seminararbeit Zahlentheorie Gitter und der Minkowskische Gitterpunktsatz Natascha Bilkic und Andreas Welling 4. Dezember 2007 Inhaltsverzeichnis I. Einführung 3 8.1. Definition: Gitter................................

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: otto@theory.informatik.uni-kassel.de

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Semester: Studiengang: Dozent: Termine:

Semester: Studiengang: Dozent: Termine: 1 Semester: Studiengang: Dozent: Termine: Winter 2011/12 Mathematik (Bachelor) Prof. Dr. Wolfgang Lauf Mo., 15:15 16:45 Uhr, E204 Di., 13:30 15:00 Uhr, E007 2 Erwartungen / Vorlesung Vorstellung Daten

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2018/2019 1 / 40 Überblick Überblick Grundlegendes zu Markov-Ketten

Mehr