Prüfungsaufgaben Wahrscheinlichkeit und Statistik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfungsaufgaben Wahrscheinlichkeit und Statistik"

Transkript

1 Aufgabe P8: 2008 Aufgabe 1 von 17 In einem Behälter liegen fünf blaue, drei weiße und zwei rote Kugeln. Mona zieht eine Kugel, notiert die Farbe und legt die Kugel wieder zurück. Danach zieht sie eine zweite Kugel. 1. Wie groß ist die Wahrscheinlichkeit, dass zwei gleichfarbige Kugeln gezogen werden? 2. Wie groß ist die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist?

2 Aufgabe W4a: 2008 Ein Glücksrad mit den Mittelpunktswinkeln 60 ; 120 und 180 ist mit den Zahlen 20; 10 und 6 beschriftet. Es wird zweimal gedreht. 1. Wie groß ist die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen genau 30 ergibt? 2. Wie groß ist die Wahrscheinlichkeit, dass die Summe größer als 12 ist? 3. Mit welcher Wahrscheinlichkeit ist die Summe kleiner als 30? Aufgabe 2 von 17

3 Aufgabe P7: 2009 Aufgabe 3 von 17 Die Jungen der Klasse 8a und 8b werden gemeinsam in einer Sportgruppe unterrichtet.beim Ballwurf werden von den 10 Schülern der 8a und den 13 Schülern der 8b folgende Weiten (Angaben in Meter) erzielt: 8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, , Bestimmen Sie jeweils den Zentralwert und den Mittelwert (arithmetisches Mittel) der 8a und der 8b. 2. Paul aus der Klasse 8a, der am weitesten geworfen hat, wird aus der Wertung genommen, weil er einen zu leichten Ball verwendet hat. Welche Auswirkungen hat dies auf den Zentralwert und das arithmetische Mittel der 8a?

4 Aufgabe P8: 2009 Aufgabe 4 von 17 In einem Gefäß befinden sich eine weiße, vier rote und fünf blaue Kugeln. Es werden nacheinander zwei Kugeln ohne Zurücklegen gezogen. 1. Mit welcher Wahrscheinlichkeit werden zwei verschiedenfarbige Kugeln gezogen? 2. Wie groß ist die Wahrscheinlichkeit, dass höchstens eine der gezogenen Kugeln rot ist?

5 Aufgabe W4a: 2009 Zwei Spielwürfel werden geworfen. Die beiden gewürfelten Augenzahlen werden addiert (Augensummen). 1. Welche Wahrscheinlichkeit hat das Ereignis "Augensumme kleiner als 5"? 2. Bei einem Pasch sind die Augenzahlen gleich. Wie groß ist die Wahrscheinlichkeit keinen Pasch zu werfen? 3. Nennen Sie zwei Ereignisse, für die sich die Wahrscheinlichkeit ergibt. Aufgabe 5 von 17

6 Aufgabe P6: 2010 In einem Behälter befinden sich drei blaue und drei rote Kugeln. Viola führt zwei Zufallsexperimente durch: Experiment 1: Sie zieht zwei Kugeln mit Zurücklegen Experiment 2: Sie zieht zwei Kugeln ohne Zurücklegen Sie vermutet: "In beiden Experimenten ist die Wahrscheinlichkeit, zwei verschiedenfarbige Kugeln zu ziehen, fünfzig Prozent." Überprüfen Sie diese Vermutung. Aufgabe 6 von 17

7 Aufgabe P7: 2010 Aufgabe 7 von 17 Die Klasse 10c wurde über die Anzahl der im letzten Monat versandten SMS befragt. Die Tabelle zeigt die Angaben von 12 Jungen und von 15 Mädchen: Jungen Mädchen Um wieviel Prozent liegt das arithmetische Mittel der versandten SMS der 15 Mädchen über dem der 12 Jungen?. 2. Geben Sie die Zentralwerte der beiden Datenreihen an. 3. Florian (20 SMS), Eva (15 SMS) und Laura (170 SMS) können ihre Werte erst nachträglich mitteilen. Welchen Einfluss hat dies auf die bereits ermittelten Zentralwerte? Begründen Sie Ihre Aussage.

8 Aufgabe W4a: 2010 Aufgabe 8 von 17 Die beiden Glücksräder werden gedreht. Die Ergebnisse beider Glücksräder werden addiert. Es werden zwei Gewinnsituationen angeboten: Gewinnsituation A: "Summe 8 oder 9" Gewinnsituation B: "alle anderen Summen" 1. Für welche würden Sie sich entscheiden? 2. Anschließend wird das rechte Glücksrad so verändert, dass die Sektoren der Zahlen 4 und 5 jeweils den Mittelpunktswinkel 90 erhalten. Für welche Gewinnsituation würden Sie sich jetzt entscheiden?

9 Aufgabe P7: 2011 Aufgabe 9 von 17 Eine Maschine füllt 1 kg-mehltüten ab. Bei einer Qualitätskontrolle werden die tatsächlichen Gewichte ermittelt. Der Boxplot zeigt das Ergebnis der erfassten Stichprobe auf Gramm (g) gerundet. Geben Sie das untere und das obere Quartil sowie den Zentralwert an. Nehmen Sie zu folgender Aussage Stellung: "Das arithmetische Mittel der Stichprobe beträgt 999 g."

10 Aufgabe P8: 2011 Aufgabe 10 von 17 Für eine Geburtstagsparty werden 20 Glückskekse gebacken, unterschiedlich gefüllt und in einen Korb gelegt. 12 Kekse enthalten jeweils ein Sprichwort 6 Kekse enthalten jeweils einen Witz die restlichen werden mit jeweils einem Kinogutschein gefüllt 1. Welche Wahrscheinlichkeit hat das Ereignis "mit einem Zug ein Sprichwort ziehen"? 2. Wie groß ist die Wahrscheinlichkeit für das Ereignis "beim gleichzeitigen Ziehen von zwei Glückskeksen unterschiedliche Füllungen erhalten"?

11 Aufgabe W4a: 2011 Aufgabe 11 von 17 Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit jeweils verbundenen Gewinne. 1. Ein Los kostet 2,00. Berechnen Sie den Erwartungswert. 2. Um den Gewinn für das soziale Projekt zu erhöhen, geben die Klassen 50 weitere Nieten in die Lostrommel. Welchen Betrag können die Abschlussklassen spenden, wenn alle Lose verkauft werden?

12 Aufgabe P4: 2012 Seit dem Jahr 2007 können Städte und Kommunen Umweltzonen zur Reduzierung des Schadstoffausstoßes durch Fahrzeuge einrichten. Zur Kennzeichnung werden grüne, gelbe und rote Plaketten verwendet. Aufgabe 12 von 17 In einem Parkhaus stehen 51 Autos mit einer grünen, 23 Autos mit einer gelben und 11 Autos mit einer roten Umweltplakette. An der Ausfahrt fahren zwei Autos nacheinander aus. 1. Mit welcher Wahrscheinlichkeit haben die beiden ausfahrenden Autos Plaketten mit der gleichen Farbe? 2. Wie groß ist die Wahrscheinlichkeit, dass mindestens eines der beiden ausfahrenden Autos eine grüne Plakette hat?

13 Aufgabe P7: 2012 Bei einer Umfrage in der Klasse 9a der Pestalozzi- Realschule wurden 21 Schülerinnen und Schüler über die Höhe ihres monatlichen Taschengeldes befragt. 1. Stellen Sie die Verteilung der Daten in einem Boxplot dar. Geben Sie die dafür notwendigen Kennwerte an. 2. Vier weitere Schülerinnen und Schüler der 9a wurden nachträglich befragt. Sie erhalten folgende Taschengeldbeträge: 10, 20, 30 und 40. Verändert sich dadurch der Boxplot? Begründen Sie Ihre Aussage. Aufgabe 13 von 17

14 Aufgabe W4a: 2012 Bei einer Wohltätigkeitsveranstaltung führt die Klasse 10a der Neckar- Realschule ein Glücksspiel durch. Ein Glücksrad wird einmal gedreht. Die Wahrscheinlichkeit für Rot beträgt 25%, für Gelb. Folgender Gewinnplan ist vorgesehen: Farbe Gewinn Rot 4,00 Gelb 1,50 Blau 0,60 Aufgabe 14 von Pro Spiel werden 2,00 Einsatz verlangt. Berechnen Sie den Erwartungswert. 2. Die Klasse möchte ihren zu erwartenden Gewinn pro Spiel verdoppeln. Dabei sollen das Glücksrad und der Einsatz pro Spiel nicht verändert werden. Stellen sie einen möglichen Gewinnplan auf.

15 Aufgabe P7: 2013 Aufgabe 15 von 17 In einer Schale liegen gleich aussehende Schokowürfel. Sechs Schokowürfel sind mit Marzipan, vier mit Nougat und zwei mit Karamel gefüllt. 1. Anstasia zieht gleichzeitig zwei Schokowürfel. Mit welcher Wahrscheinlichkeit zieht sie zwei Schokowürfel mit unterschiedlichen Füllungen? In einer anderen Schale liegen von jeder Sorte halb so viele Schokowürfel (dreimal Marzipan, zweimal Nougat, einmal Karamel). Leon zieht ebenfalls zwei Schokowürfel mit einem Griff. Er behauptet: "Die Wahrscheinlichkeit, zwei Schokowürfel mit unterschiedlichen Füllungen zu ziehen, bleibt gleich." 2. Hat Leon Recht? Begründen Sie durch Rechnung.

16 Aufgabe P8: 2013 Aufgabe 16 von 17 Drei Jugendgruppen wurden über den Zeitraum von einer Woche nach ihren Online-Zeiten bei der Nutzung "Sozialer Netzwerke" befragt. Dabei ergaben sich folgende Zeitangaben in Minuten. 1. Zu welchen Gruppen gehören die beiden abgebildeten Boxplots? Begründen Sie Ihre Antwort. 2. Erstellen Sie für die dritte Gruppe den fehlenden Boxplot.

17 Aufgabe W4a: 2013 Aufgabe 17 von 17 Die beiden Netze zeigen die Augenzahlen zweier besonderer Spielwürfel. Beide Spielwürfel werden gleichzeitig geworfen. 1. Wie groß ist die Wahrscheinlichkeit mindestens eine "Sechs" zu werfen? Die beiden Würfel werden für ein Glücksspiel eingesetzt. Dazu wird nebenstehender Gewinnplan geprüft. 2. Berechnen Sie den Erwartungwert. 3. Der Veranstalter des Glückspiels möchte beim Würfelnetz die "Fünf" durch eine "Sechs" ersetzen. Der Gewinnplan soll gleich bleiben. Wäre dies für ihn vorteilhaft? Begründen Sie.

18 Lösungen

19 Lösungsblatt 1 p Berechnung der Wahrscheinlichkeit, dass zwei gleichfarbige Kugeln gezogen werden: Antwort: Die Wahrscheinlichkeit, dass zwei gleichfarbige Kugeln gezogen werden beträgt 38%. 2. Berechnung der Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist: Antwort: Die Wahrscheinlichkeit, dass von den beiden gezogenen Kugeln eine rot und eine weiß ist beträgt 12%.

20 Lösungsblatt 2 w4a Berechnung der Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen genau 30 ergibt: = = 30 Antwort: Die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen genau 30 ergibt, beträgt 11,1%. Berechnung der Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen größer als 12 ist: Da alle Ereignisse außer das folgende zutreffen = 12 beträgt die Wahrscheinlichkeit Antwort: Die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen größer als 12 ist, beträgt 75%. Berechnung der Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen kleiner als 30 ist: (Wahrscheinlichkeiten für <30!) Antwort: Die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen kleiner als 30 ist, beträgt 86,1%.

21 Lösungsblatt 3 p Der Zentralwert der Klasse 8a beträgt 32 m. Das arithmetische Mittel der Klasse 8a beträgt 34,4 m. Der Zentralwert der Klasse 8b beträgt 30 m. Das arithmetische Mittel der Klasse 8b beträgt 32 m. 2. Der Zentralwert der Klasse 8a beträgt unverändert 32 m. Das arithmetische Mittel der Klasse 8a hat sich auf 32,6 m verringert.

22 Lösungsblatt 4 1. Berechnung der Wahrscheinlichkeit, dass zwei verschiedenfarbige Kugeln gezogen werden: p Antwort: Die Wahrscheinlichkeit, dass zwei verschiedenfarbige Kugeln gezogen werden beträgt 64,4%. 2. Berechnung der Wahrscheinlichkeit, dass höchstens eine der gezogenen Kugeln rot ist: Alle Zugkombinationen sind möglich außer. Antwort: Die Wahrscheinlichkeit, dass höchstens eine der gezogenen Kugeln rot ist, beträgt 86,7%.

23 Lösungsblatt 5 w4a Die Bedingung "Augensumme kleiner als 5" erfüllen 6 Ereignisse. Antwort: Die Wahrscheinlichkeit mit zwei Würfeln eine Augensumme kleiner als 5 zu werfen beträgt 16,7%. 2. Die Bedingung "keinen Pasch werfen" erfüllen 30 Ereignisse. Antwort: Die Wahrscheinlichkeit mit zwei Würfeln keinen Pasch zu werfen beträgt 83,3%. 3. Die Bedingung "Augensumme 10" erfüllen 3 Ereignisse. Antwort: Die Wahrscheinlichkeit mit zwei Würfeln die Augensumme 10 zu werfen beträgt.

24 Lösungsblatt 6 p Ex 1: Die Wahrscheinlichkeit, dass zwei verschiedenfarbige Kugeln gezogen werden beträgt 50%. Ex 2: Die Vermutung ist falsch, da die Wahrscheinlichkeit, dass zwei verschiedenfarbige Kugeln gezogen werden im 2. Experiment 60% beträgt.

25 Lösungsblatt 7 1. Das arithmetische Mittel der von den Jungen versandten SMS beträgt 40. Das arithmetische Mittel der von den Mädchen versandten SMS beträgt 60. Das arithmetische Mittel der Mädchen liegt 50% über dem arithmetischen Mittel der Jungen. 2. Der Zentralwert der Jungen beträgt 30. Der Zentralwert der Mädchen beträgt 47. p Der Zentralwert der Jungen verändert sich von 30 auf 25. Der Zentralwert der Mädchen beträgt nach wie vor 47, da sich die nachträglichen Werte links und rechts des Zentralwertes einordnen.

26 Lösungsblatt 8 w4a Die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen 8 oder 9 ergibt, beträgt 50%. D.h. Die Wahrscheinlichkeit für Situation A oder B sind gleich groß. 2. Die Wahrscheinlichkeit, dass die Summe der erhaltenen Zahlen 8 oder 9 ergibt, vermindert sich auf 46,9%. D.h. Die Wahrscheinlichkeit für Situation B verbessert sich auf 53,1%. Nach der Veränderung müsste man auf B setzen.

27 Lösungsblatt 9 p Unteres Quartil: Oberes Quartil: Zentralwert: 2. Das arithmetische Mittel kann man in einem Boxplot nicht ablesen.

28 Lösungsblatt 10 p Da von 20 Glückskeksen 12 mit einem Sprichwort versehen sind, beträgt die Wahrscheinlichkeit mit einem Zug ein Sprichwort zu ziehen, 2. Die Wahrscheinlichkeit, bei dem gleichzeitigen Ziehen zweier Glückskekse, unterschiedliche Füllung zu erhalten, beträgt 56,84%.

29 Lösungsblatt 11 w4a Es ergeben sich folgende Gewinnwerte: zieht man eine Niete, so hat man 2 Verlust - 2 zieht man einen Kleinpreis, so hat man zwar einen Gewinn von 4, muss aber den Kaufpreis von 2 abziehen + 2 zieht man einen Hauptpreis, so hat man zwar einen Gewinn von 20, muss aber den Kaufpreis von 2 abziehen + 18 Antwort: Dert Erwartungswert beträgt - 0, Nach der Beigabe von 50 zusätzlichen Nieten sind insgesamt 250 Lose in der Trommel. Davon sind 200 Nieten, 40 Kleingewinne und 10 Hauptgewinne. Antwort: Der Spendenbetrag beträgt 140.

30 Lösungsblatt Berechnung der Wahrscheinlichkeiten für die Ausfahrt zweier Autos mit gleicher Farbe: p Antwort: Die Wahrscheinlichkeit, dass zwei Autos mit derselben Farbe rausfahren, beträgt 44,34%. 2. Berechnung der Wahrscheinlichkeiten für die Ausfahrt, dass mindestens eines der beiden ausfahrenden Autos eine grüne Plakette hat: Antwort: Die Wahrscheinlichkeit, dass bei der Ausfahrt mindestens ein Auto eine grüne Plakette hat, beträgt 84,29%.

31 Lösungsblatt 13 p Die Kennwerte ändern sich nicht, da zum ersten, zweiten, dritten und vierten Quartil der Daten jeweils ein Wert dazukommt. Damit ändert sich auch der Boxplot nicht. Antwort: Der Boxplot verändert sich nicht, weil man die gleichen Kennwerte erhält. (Berechnung möglich, aber nicht zwingend notwendig!)

32 Lösungsblatt 14 w4a Gewinnwerte bleibt das Rad auf Rot stehen, hat man einen Gewinn von 4, muß aber den Kaufpreis von 2 abziehen bleibt das Rad auf Gelb stehen, hat man einen Gewinn von 1,50, muß aber den Kaufpreis von 2 abziehen bleibt das Rad auf Blau stehen, hat man einen Gewinn von 0,60, muß aber den Kaufpreis von 2 abziehen + 2-0,50-1,40 Antwort: Der Erwartungswert beträgt - 0,25 2. Möchte man den zu erwartenden Gewinn pro Spiel verdoppeln, so muss der Erwartungswert - 0,50 betragen. Wir setzen für E=-0,50 ein und berechnen x 1(ROT) neu. Die beiden anderen Farben ändern wir nicht! Der neue Gewinnplan sieht dann so aus: Farbe Rot Gelb Blau Gewinn 3,00 (berechnet!) 1,50 (alter Wert) 0,60 (alter Wert) Andere Ergebnisse sind möglich!

33 Lösungsblatt 15 p Die Wahrscheinlichkeit, dass zwei Schokowürfel mit unterschiedlicher Füllung mit einem Griff gezogen werden beträgt 66,7% 2. Leon's Behauptung ist falsch, da die Wahrscheinlichkeit, dass zwei Schokowürfel mit unterschiedlicher Füllung mit einem Griff gezogen werden, 73,3% beträgt.

34 Lösungsblatt 16 p Zunächst werden die Kennwerte aus den Ranglisten ermittelt, daraus können wir ablesen: Der gezeigte Boxplot (1) gehört zur Gruppe B. (Zentralwert 75) Der gezeigte Boxplot (2) gehört zur Gruppe C. (Zentralwert 90) Fehlender Boxplot der Gruppe A:

35 Lösungsblatt 17 w4a Die Wahrscheinlichkeit mit den beiden Würfeln midenstens eine "Sechs" zu werfen beträgt 44,4 %. 2. Gewinn = Preis-Einsatz!!! Antwort: Der Erwartungswert beträgt -0,25 3. Antwort: Der Erwartungswert beträgt jetzt 0, das heißt, es wäre für den Veranstalter nicht vorteilhaft.

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25 8 Aufgaben im Dokument Aufgabe P7/2009 Die Jungen der Klassen 8a und 8b werden gemeinsam in einer Sportgruppe unterrichtet. Beim Ballwurf werden von den 10 Schülern der 8a und den 13 Schülern der 8b folgende

Mehr

A B A A A B A C. Übungen zu Frage 110:

A B A A A B A C. Übungen zu Frage 110: Übungen Wahrscheinlichkeit Übungen zu Frage : Nr. : Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit

Mehr

Aufgabe P3/2012 Auf einem gleichschenkligen Dreiecksprisma liegt der Streckenzug +,-. mit der Länge 23,4. Es gilt:

Aufgabe P3/2012 Auf einem gleichschenkligen Dreiecksprisma liegt der Streckenzug +,-. mit der Länge 23,4. Es gilt: Abschluss Realschule BW 2012 Aufgabe P1/2012 Die Rechtecke und sind kongruent. Sie haben die Punkte und gemeinsam, wobei auf der Strecke liegt. Es gilt: 4,5 29 Berechnen Sie den Flächeninhalt des Vierecks.

Mehr

Baden-Värttemberg. q = 21,7" Pflichtbereich Blatt 1 von 4. AE = 10,3 cm F = 37,0o. BE = 4,2 cm. Abschlussprüfung an Realschulen

Baden-Värttemberg. q = 21,7 Pflichtbereich Blatt 1 von 4. AE = 10,3 cm F = 37,0o. BE = 4,2 cm. Abschlussprüfung an Realschulen Baden-Värttemberg NSTERUM FÜR KULTUS, JUGEND UND SPORT Abschlussprüfung an Realschulen Prüfu n gsfach : Mathematik Bearbeitungszeit: 1 80 Minuten Haupttermin 2011 Pflichtbereich Blatt 1 von 4 Zugelassene

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK

BSZ für Bau- und Oberflächentechnik des Landkreises Zwickau Außenstelle Limbach-Oberfrohna STOCHASTIK . Ordnen Sie die in den folgenden Bildern dargestellten Wahrscheinlichkeitsfunktionen nach den Erwartungswerten ihrer Zufallsgröße X mit x, 2,, 4, 5 größten Erwartungswert. i. Beginnen Sie mit dem Bild

Mehr

Pfadwahrscheinlichkeiten

Pfadwahrscheinlichkeiten Pfadwahrscheinlichkeiten Die Wahrscheinlichkeit, beim zweimaligen Würfeln eine Doppelsechs zu erzielen, beträgt 6. Das Ergebnis legt die Vermutung nahe, dass wir lediglich, also die Wahrscheinlichkeit,

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

Inhaltsverzeichnis Stochastik

Inhaltsverzeichnis Stochastik Inhaltsverzeichnis Stochastik Seite WIKI zur Stochastik 03 0 WIKI zu den Urnenmodellen 04 Grundlagen Aufgabenblatt 05 Lösungen zum Aufgabenblatt 07 Aufgabenblatt 2 Lösungen zum Aufgabenblatt 2 3 Aufgabenblatt

Mehr

Level 1 Grundlagen Blatt 2

Level 1 Grundlagen Blatt 2 Level 1 Grundlagen Blatt 2 Dokument mit 1 Aufgaben Aufgabe A9 Ein Glücksrad besteht aus 3 Feldern, die folgendermaßen beschriftet sind: 1.Feld: 2,00 2. Feld: 5,00 3. Feld: 0,00 Das 1. Feld hat einen Mittelpunktswinkel

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung. In einer Urne befinden sich 3 schwarze und weiße Kugel. Wir entnehmen der Urne eine Kugel, notieren die Farbe und legen die Kugel in die Urne zurück. Dieses

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau Berechnung von Wahrscheinlichkeiten beim Ziehen mit und ohne Zurücklegenn Ziehen mit Zurücklegenn Wir betrachten folgendes Beispiel: In einer Urne sind 2 rote und 3 blaue Kugeln.. Wenn man hier eine Kugel

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Erfolg im Mathe-Abi 2013

Erfolg im Mathe-Abi 2013 Gruber I Neumann Erfolg im Mathe-Abi 2013 Vorabdruck Pflichtteil Stochastik für das Abitur ab 2013 zum Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Vorwort Vorwort Erfolg von

Mehr

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.

Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe. Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2 Lapace-Experimente ================================================================== 1. a) Wie groß ist die W'keit, beim Werfen eines Laplace-Würfels eine Sechs zu erhalten? b) Wie groß ist die W'keit,

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Vorbereitung für die Arbeit: Satz des Pythagoras

Vorbereitung für die Arbeit: Satz des Pythagoras Vorbereitung für die Arbeit: Satz des Pythagoras Satz des Pythagoras: 1. Die Dreiecke sind nicht im Richtigen Maßstab gezeichnet. Welcher der Dreiecke ist rechtwinklig. 2. Berechne die Längen der fehlenden

Mehr

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.

Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte

Mehr

Die Begriffe»sicher«,»möglich«und»unmöglich« VORANSICHT. = das kann niemals geschehen. = das trifft immer zu. = das kann sein, ist aber nicht sicher

Die Begriffe»sicher«,»möglich«und»unmöglich« VORANSICHT. = das kann niemals geschehen. = das trifft immer zu. = das kann sein, ist aber nicht sicher 1 Die Begriffe»sicher«,»möglich«und»unmöglich«VORANSI 1. Was bedeuten die 3 Begriffe? Verbindet sie mit der richtigen Erklärung. unmöglich möglich sicher = das kann niemals geschehen = das trifft immer

Mehr

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt.

a) Bestimmen Sie die Gleichung des Kreises in der Form x 2 +y 2 +ax+by+c = 0 und zeigen Sie, dass der Punkte A( 3 7) auf dem Kreis liegt. ETH-Aufnahmeprüfung Herbst 215 Mathematik II (Geometrie/Statistik) Aufgabe 1 Gegeben ist der Kreis mit Mittelpunkt M( 5 2) und Radius r = 85. a) Bestimmen Sie die Gleichung des Kreises in der Form x 2

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Aufgabe 10 Die Zufallsvariable ist binomialverteilt mit

Aufgabe 10 Die Zufallsvariable ist binomialverteilt mit Level Grundlagen Blatt 2 Dokument mit 8 Aufgaben Aufgabe Die Zufallsvariable ist binomialverteilt mit und,3. Welches der beiden Histogramme zeigt die Wahrscheinlichkeitsverteilung von? Begründen Sie Ihre

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Schriftliche Abiturprüfung Mathematik 2013

Schriftliche Abiturprüfung Mathematik 2013 (8) Stochasti Pflichtteil Aufgabe 8.1 In einem Behälter befinden sich 2 rote und 4 blaue Kugeln. Es werden 2 Kugeln mit Zurüclegen gezogen. a) Berechnen Sie die Wahrscheinlicheit, dass mindestens eine

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

Daten und Zufall Beitrag 14 Erwartungswert kennenlernen 1 von 32. Welchen Gewinn kann man bei Glücksspielen erwarten? Den Erwartungswert kennenlernen

Daten und Zufall Beitrag 14 Erwartungswert kennenlernen 1 von 32. Welchen Gewinn kann man bei Glücksspielen erwarten? Den Erwartungswert kennenlernen IV Daten und Zufall Beitrag Erwartungswert kennenlernen von 3 Welchen Gewinn kann man bei Glücksspielen erwarten? Den Erwartungswert kennenlernen Von Alessandro Totaro, Stuttgart Illustriert von Oliver

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm.

Bernoulli-Kette. f) Verallgemeinere das letzte Ergebnis. g) Veranschauliche die Ereignisse in dem Diagramm. Bernoulli-Kette Die Anzahl der 0/-Folgen der Länge n mit k Einsen sollte bekannt sein. Wir haben 0 Äpfel in einer Reihe vor uns liegen. Jeder Apfel ist mit 40%-iger Wahrscheinlichkeit wurmstichig ( =).

Mehr

DEMO für Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Wahrscheinlichkeitsrechnung Erwartungswert u.a.. Erwartungswert. Varianz und Standardabweichung. Spiele bewerten Datei Nr. Stand. April 0 Friedrich W. Buckel DEMO für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Anna Lena Frtunic, EF, 14/15 x Erwartungswert

Name, Klasse, Jahr Schwierigkeit Mathematisches Thema Anna Lena Frtunic, EF, 14/15 x Erwartungswert Anna Lena Frtunic, EF, 14/15 x Erwartungswert In einem Geschäft stehen drei Glücksräder mit jeweils acht gleich großen Feldern mit den Zahlen von 1 bis 8. Es gibt nun einen Rabatt auf die Ware, welcher

Mehr

Übungen zur Kombinatorik

Übungen zur Kombinatorik 1. Das Paradoxon des Chevalier de Méré: De Méré fand es paradox, dass beim Würfeln mit drei Würfeln die Augenzahlsumme 11 häufiger zustande kam als die Augenzahlsumme 12. Wie lauten die tatsächlichen Wahrscheinlichkeiten

Mehr

Abitur 2017 Mathematik Stochastik III

Abitur 2017 Mathematik Stochastik III Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2017 Mathematik Stochastik III Teilaufgabe Teil A 2 (3 BE) Ein Glücksrad hat drei Sektoren, einen blauen, einen gelben und einen roten. Diese sind unterschiedlich

Mehr

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s

Zufallsgröße: X : Ω R mit X : ω Anzahl der geworfenen K`s 4. Zufallsgrößen =============================================================== 4.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Vorbereitung für die Arbeit

Vorbereitung für die Arbeit Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.

Mehr

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Aufgabe Aufgabe 2 Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker.2.202 Aufgabe Aufgabe 2 Bei einem Zufallsexperiment werden zwei Würfel geworfen und

Mehr

Arbeitsblatt Wahrscheinlichkeit

Arbeitsblatt Wahrscheinlichkeit EI 8a 2010-11 MATHEMATIK Arbeitsblatt Wahrscheinlichkeit gelöst! 1. Aufgabe Wahrscheinlichkeit (hier wird dann auch mal gerundet!) a) Merksatz: Wahrscheinlichkeiten kann man immer (nicht ganz. dann, wenn

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich

Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich Lösungen zu den Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Station Ziegenproblem. Hilfestellungen

Station Ziegenproblem. Hilfestellungen Station Ziegenproblem Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Ziegenproblem. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Statistik und Wahrscheinlichkeit. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mayr Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Statistik und Wahrscheinlichkeit Üben in drei Differenzierungsstufen

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Rechnen mit Wahrscheinlichkeiten 16. Juni 2009 Dr. Katja Krüger Universität Paderborn 1 Inhalt Ereignisse i und deren Wahrscheinlichkeit h hk i Laplace-Regel Baumdiagramm

Mehr

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen

Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform

Mehr

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe

Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Stochastik Übungsaufgaben (Taschenrechner erlaubt) Binomialverteilung Oberstufe Alexander Schwarz www.mathe-aufgaben.com November 2015 1 Aufgabe 1: Ist der Zufallsversuch eine Bernoulli-Kette? Wenn ja,

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen:

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: http://www.serlo.org/ 1. In einer Schulklasse ergaben sich bei einer Mathematikschulaufgabe folgende Noten: Note 1

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! =

Es wird aus einer Urne mit N Kugeln gezogen, die mit den Zahlen 1,..., N durchnummiert sind. (N n)! n! = N! (N n)!n! = Übungsblatt Höhere Mathematik - Weihenstephan SoSe 00 Michael Höhle, Hannes Petermeier, Cornelia Eder Übung: 5.6.00 Die Aufgaben -3 werden in der Übung am Donnerstag (5.6. besprochen. Die Aufgaben -6 sollen

Mehr

Mathematik (A) Hauptschule

Mathematik (A) Hauptschule Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 2008 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung dürfen benutzt werden. Name: Klasse: Datum:

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Stochastik. Grundwissenskatalog G8-Lehrplanstandard

Stochastik. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Stochastik Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E

Mehr

Laplace-Formel. Übungsaufgaben

Laplace-Formel. Übungsaufgaben Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Aufgaben zur Stochastik

Aufgaben zur Stochastik Aufgaben zur Stochastik Wahrscheinlichkeiten über Baumdiagramme und bei Binomialverteilung bestimmen 1) Laura und Xenia gehen auf ein Fest. a) An einem Losestand gibt es 2 Gefäße mit Losen. Im ersten Gefäß

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Zahlenstrahl. Zahlenvergleich 0,554 0,5 0 0, Kaufpreis ermitteln

Zahlenstrahl. Zahlenvergleich 0,554 0,5 0 0, Kaufpreis ermitteln Zahlenstrahl Welche Zahlen gehören an den Zahlenstrahl? Schreiben Sie die fehlenden Zahlen an den Zahlenstrahl. Zahlenvergleich Kreuzen Sie die den größten Zahlenwert an. 000,0000 0 6 0 0-6, Millionen

Mehr

Einführung: Kaum Theorie, aber viel Training. Mehr Theorie in Zusätzliche Aufgabensammlung in 34021

Einführung: Kaum Theorie, aber viel Training. Mehr Theorie in Zusätzliche Aufgabensammlung in 34021 STOCHASTIK Binomialverteilung Einführung: Kaum Theorie, aber viel Training Mehr Theorie in 3402 Zusätzliche Aufgabensammlung in 3402 Ausführliche Erklärung des Einsatzes dreier Rechner: Grafikrechner:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26

Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Daten und Zufall Beitrag 1 Einführung in die Wahrscheinlichkeitsrechnung 1 von 26 Dem Zufall auf der Spur ein Stationenlauf zur Einführung in die Wahrscheinlichkeitsrechnung Von Matthias Nowak, Schorndorf

Mehr

Testverfahren. 1. Pepsi vs. Coca-Cola

Testverfahren. 1. Pepsi vs. Coca-Cola 1. Pepsi vs. Coca-Cola Testverfahren Über Geschmack lässt sich bekanntermaßen streiten. Häufig stellt sich nämlich die Frage, ob der Unterschied zwischen zwei Produkten überhaupt feststellbar ist. Einer

Mehr

Wiederholung der Hauptklausur STATISTIK

Wiederholung der Hauptklausur STATISTIK Name, Vorname: Matrikel-Nr. Die Klausur enthält zwei Typen von Aufgaben: Teil A besteht aus Fragen mit mehreren vorgegebenen Antwortvorschlägen, von denen mindestens eine Antwort richtig ist und von denen

Mehr

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen.

Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine Zeichengeräte darfst du benutzen. Liebe Schülerin, lieber Schüler! Die Abschlussarbeit besteht aus zwei Heften. Heft 1 Kurzformaufgaben Diese Aufgaben sind ohne Taschenrechner in maximal 45 Minuten zu lösen. Die Formelsammlung und deine

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr

Lehrerfortbildung: Stochastik

Lehrerfortbildung: Stochastik Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem

Mehr

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden.

Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden. Buchstabensalat In einem dunklen Gefäß liegen 5 rote Kugeln mit dem Buchstaben U, 5 gelbe mit dem Buchstaben S und 5 grüne mit dem Buchstaben N. Am Nachmittag spielt Pia wieder einmal mit dem geheimnisvollen

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr