Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I"

Transkript

1 Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff nur kurz um unsere mathematischen Operationen einzuführen. Also, erst mal ganz einfach: Eine Menge ist eine Zusammenfassung unterscheidbarer Objekte zu einer Gesamtheit. z.b. die Menge aller geraden natürlichen Zahlen {2,4,6,8, } oder die Menge aller LMU- Biologiestudenten, die im WS 6/7 begonnen haben {Hans Wurscht, }. So, nachdem wir jetzt wissen was eine Menge ist, können wir uns auch vorstellen was zwei Mengen sind, und etwas ganz wichtiges damit machen: nämlich eine Abbildung zwischen ihnen definieren. Was soll das sein? Eine Abbildung (später nennen wir das Funktion) ordnet jedem Element der ersten Menge, nennen wir sie M 1 ein Element der zweiten Menge M 2 zu. Dabei muss folgendes erfüllt sein: z.b.: jedes Element der ersten Menge bekommt ein Element der zweiten Menge zugeordnet M 1 M 2 Wenn nun die betrachteten Mengen zwischen der Abbildung keine abstrakten Objekte enthalten, sondern jeweils der Zahlkörper der reellen Zahlen (IR) kann man, weil auf IR Rechenoperationen definiert sind und IR eine Anordnung besitzt (z.b. 3 > 3 1/2 ), die Funktionen graphisch darstellen und differenzieren und integrieren. Also: M 1 = IR, M 2 = IR mit einer Funktion(Abbildung) f zwischen M 1 und M 2. Zunächst schauen wir uns mal einige Funktionen an, um ein Gefühl davon zu bekommen wie sich verschiedene Funktionen in Abhängigkeit ihrer Variablen verhalten

2 f(x) = x^2 f(x) = x^ f(x) =,33 x^3 +,5 x^2 f(x) = 1/x f(x) = sin(x) f(x)= x^,

3 f(x) = e^x f(x) = ln(x) 5,1 5,1 1,1 15,1, Differenzieren Nachdem wir nun eine Vorstellung davon haben was eine Funktion f: IR IR ist kann man sich Gedanken über die Eigenschaften solcher Funktionen machen. Eine für uns sehr wichtige Eigenschaft ist die Steigung einer Funktion an einem gewissen Punkt. Was soll das sein? Bildlich gesprochen ist die Steigung einer Funktion am Punkt x 1 die Steigung einer Tangente an die Funktion am Punkt x 1. f(x) = y Tangente t(x) Steigung: y/ x y x x 1 x Und für die Ableitung f (x) einer Funktion f gilt: Die Ableitungsfunktion f (x) ist eine Funktion von x, die für x = x i den Funktionswert der Steigung der Tangente am Punkt x i besitzt.

4 Beim Ableiten der in dieser Vorlesung behandelten (stetigen) Funktionen entstehen wieder (stetige) Funktionen. Auch diese lassen sich zeichnen. Diese Ableitungsfunktionen geben uns eine Information darüber für welche x-werte unsere ursprüngliche Funktion steigt (Ableitungsfunktion > ), fällt (Ableitungsfunktion < ) oder konstant bleibt (Ableitungsfunktion = ). Beim Ableiten gelten folgende Regeln:

5 Also, wir wissen jetzt was eine Ableitung ist und können sie (nach etwas Übung) an einer Funktion durchführen. Diese Funktion können wir dann wieder zeichnen. Das ist alles recht theoretisch und es fehlt noch die Verbindung zu realen Beispielen. Das wird sofort nachgeholt: Wir betrachten noch einmal den Alee Effekt: Für eine Vogelpopulation auf einer Insel interessiert uns bei welchen Populationsgrössen die Population stabil ist: Was heiß stabil? Stabil heißt, dass sich die Population mit der Zeit nicht ändert. Wie lässt sich das mathematisch ausdrücken? Was gibt denn die Änderung einer Funktion an? Die Steigung. Wie bestimmt man die Steigung einer Funktion? Durch die Ableitung! Sie ist Null, wenn sich die Funktion nicht ändert. Das trifft auf die Funktion f(x) = const. zu. Sie ist > wenn die Funktion ansteigt. Sie ist < wenn die Funktion abfällt. Wenn also die zeitliche Ableitung der Funktion, die die Population beschreibt bekannt ist, weiß ich für welche Populationsgrössen die Population wächst, schrumpft oder für uns oft am interessantesten- konstant bleibt. Die Differentialgleichung für eine Vogelpopulation lautet x & = x + x 2 2x 3 3 Wir haben also die Ableitung nach der Zeit für eine Vogelpopulation gegeben. Wenn wir also berechnen, für welche x die rechte Seite der obigen Gleichung Null wird, wissen wir für welche Populationsgrößen x 1,2,3, sich die Population nicht ändert. Das sind unsere Gleichgewichts-punkte.

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)

Mehr

ARBEITSBLATT 6-5. Kurvendiskussion

ARBEITSBLATT 6-5. Kurvendiskussion ARBEITSBLATT 6-5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

Mathematik I - Woche 4

Mathematik I - Woche 4 Mathematik I - Woche 4 Philip Müller 1 Ableitung 1.1 Bedeutung der Ableitung Die Bedeutung 1 der ersten Ableitung ist, dass sie ein Mass für die Änderung einer Funktion ist. Wenn der Wert der Ableitung

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Kugelgleichungen. Oberfläche von KK oder KmK ist der entsprechende Teil der Kugeloberfläche. zusammen mit der begrenzenden Kreisfläche

Kugelgleichungen. Oberfläche von KK oder KmK ist der entsprechende Teil der Kugeloberfläche. zusammen mit der begrenzenden Kreisfläche Kugelgleichungen Bezeichnungen: Kugelkappe KK Kugel Kugelkappe KmK Mantelfläche von KK oder KmK ist der entsprechende Teil der Kugeloberfläche ohne die begrenzende Kreisfläche Oberfläche von KK oder KmK

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Bisher haben wir immer eine Funktion gegeben gehabt und sie anschließend diskutiert. Nun wollen wir genau das entgegengesetzte unternehmen. Wir wollen

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 6. Oktober 2017, 12:57 Alexander

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen

Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen Kapitel 6. Differenzialrechnung für Funktionen von mehreren Variablen 6.1 Funktionen von mehreren Variablen Eine Abbildung f : D R, D R n, ordnet jedem n-tupel x = (x 1, x 2,...,x n ) D (eindeutig) eine

Mehr

Lösen von Differentialgleichungen durch Reihenentwicklung

Lösen von Differentialgleichungen durch Reihenentwicklung Lösen von Differentialgleichungen durch Reihenentwicklung Thomas Wassong FB17 Mathematik Universität Kassel 30. April 2008 Einführung Reihen in der Mathematik Reihen zum Lösen von Differentialgleichungen

Mehr

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56

Kapitel 7. Differentialrechnung. Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 2017/18 7 Differentialrechnung 1 / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f x = f (x 0 + x) f (x 0 ) x = f (x)

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Aufgaben zu den Ableitungsregeln

Aufgaben zu den Ableitungsregeln Aufgaben zu den Ableitungsregeln 1.0 Bestimmen Sie die Gleichung der Tangente im Punkt P(2;?) an den Graphen der folgenden Funktionen. 1.1 f(x) = x 2 2x 1.2 f(x) = (x + 1 2 )2 1.3 f(x) = 1 2 x2 3x 1 2.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 6. Semester ARBEITSBLATT 1 DIFFERENTIALRECHNUNG

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 6. Semester ARBEITSBLATT 1 DIFFERENTIALRECHNUNG ARBEITSBLATT DIFFERENTIALRECHNUNG Folgendes Problem ist gegeben. Wir haben eine gegebene Funktion und möchten in einem beliebigen Punkt dieser Funktion die Tangente legen. Die Frage ist nun natürlich:

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Bestimmung einer ganzrationalen Funktionenschar

Bestimmung einer ganzrationalen Funktionenschar Bestimmung einer ganzrationalen Funktionenschar x Gesucht ist eine Schar f a ganzrationaler Funktionen. Grades, deren Graphen durch A(0 ) und B( ) verlaufen und in A die Steigung a haben. Funktionenschar

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Auffrischungskurs Mathematik WS 2017/18 7 Differentialrechnung 1 / 75 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrechnung f = f 0 + f 0 = f 0 0 heißt Differenzenquotient an der Stelle 0., Sekante 0, f 0 f 0 Josef Leydold Auffrischungskurs

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Allgemeine Funktionsgleichungen. Eine allgemeine Funktionsgleichung besteht aus Parametern (Koeffizienten) und der zugehörigen Funktionsvariablen.

Allgemeine Funktionsgleichungen. Eine allgemeine Funktionsgleichung besteht aus Parametern (Koeffizienten) und der zugehörigen Funktionsvariablen. Allgemeine Funktionsgleichungen Eine allgemeine Funktionsgleichung besteht aus Parametern (Koeffizienten) und der zugehörigen Funktionsvariablen. Beispiele: Lineare Funktion: f(x) = a*x +b Quadratische

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

2) 2 4 in der größtmöglichen Definitionsmenge

2) 2 4 in der größtmöglichen Definitionsmenge Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird

Mehr

Einleitung...?? I Grundlagen aus Mengenlehre und Logik...?? II Von den ganzen Zahlen bis zu den reellen Zahlen...??

Einleitung...?? I Grundlagen aus Mengenlehre und Logik...?? II Von den ganzen Zahlen bis zu den reellen Zahlen...?? Inhalt der Vorlesung Einleitung..........................................................?? I Grundlagen aus Mengenlehre und Logik............................?? II Von den ganzen Zahlen bis zu den reellen

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke

Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke Einführung in die Differenzialrechnung Teil I Klasse 10 B / Schuljahr 2018 / 19 Deyke www.deyke.com Diff_Teil_I.pdf Einführung in die Differenzialrechnung Etwas Wirtschaftsmathematik: Einführung Seite

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1 Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 2017 Aufgabe 1 Übungen zur Vorlesung Mathematik II 4. Übung,

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I

Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle

Mehr

Anwendung der Differentiation in der Marginalanalyse

Anwendung der Differentiation in der Marginalanalyse Anwendung der Differentiation in der Marginalanalyse Bereits in Thema 5 wurde vorgestellt, wie bei einer (ökonomischen) Funktion f über f(x) f(x 0 ) f (x 0 ) (x x 0 ) proportional die Ableitung an der

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

Integrieren und Differenzieren

Integrieren und Differenzieren Integrieren und Differenzieren Beispiele und Übungen Dieses Hand-Out ist fad. Es enthält nur eine Liste an Beispielen und eine Liste an Übungen. Meine Empfehlung ist: Lies dir die Beispiele durch, mache

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A I - Lösung GS.06.0 - m_nt-a_lsg_gs.pdf Abschlussprüfung 0 - Mathematik Nichttechnik A I - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( x) D f = IR. x x x mit der Definitionsmenge Teilaufgabe. (7

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung II

Abitur 2015 Mathematik Infinitesimalrechnung II Seite 1 Abitur 2015 Mathematik Infinitesimalrechnung II Gegeben ist die Funktion g : x ln(2x + 3) mit maximaler Definitionsmenge D und Wertemenge W. Der Graph von g wird mit G g bezeichnet. Teilaufgabe

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Merksatz Begriff der Funktion

Merksatz Begriff der Funktion Der Begriff Funktion Um uns klar zu machen, was eine Funktion (lateinisch functio) ist, betrachten wir uns die Gegenüberstellung nachfolgender Situationen. Die Temperatur eines Gewässers wird in verschiedenen

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. I. Nullstellen Arbeitsblatt I.1 Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der Faktoren null wird, sonst nicht. Beispiele:

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Mathematik: Mag. Schmid Wolfgang+ LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION

Mathematik: Mag. Schmid Wolfgang+ LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Mathematik: Mag. Schmid Wolfgang LehrerInnenTeam ARBEITSBLATT 6-8 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Wir wollen uns zu diesem Aufgabenbereich noch einige komplexere Aufgabenstellungen überlegen: Beispiel:

Mehr

DIFFERENTIALRECHNUNG - ABLEITUNG

DIFFERENTIALRECHNUNG - ABLEITUNG DIFFERENTIALRECHNUNG - ABLEITUNG Hintergründe Differenzenquotient und Differentialquotient Beim Ableiten versucht man die Steigung einer Kurve zu berechnen. Da aber eine solche Kurve (wie auch im Bild

Mehr

Analysis f(x) = x 2 1. (x D f )

Analysis f(x) = x 2 1. (x D f ) Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren ZK M A (mit CAS) Seite von 5 Beispielklausur für zentrale Klausuren Aufgabenstellung Mathematik Die Titanwurz ist die Pflanze, die die größte Blüte der Welt hervorbringt. Für ein Referat hat ein Schüler

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Das Newton-Verfahren

Das Newton-Verfahren 1/14 Das Newton-Verfahren 11./12. Jgst. Bayern Doris Behrendt Gymnasium Marktbreit Stand: 12. März 2016 2/14 Formelsammlung Seite 72 oben, vierter Punkt: Newton-Iterationsformel: x n+1 = x n f(x n) f (x

Mehr

Einführungsbeispiel Kostenfunktion

Einführungsbeispiel Kostenfunktion Einführungsbeispiel Kostenfunktion Sie bauen eine Fabrik für Luxusautos auf und steigern die Produktion jeden Monat um 1000 Stück. Dabei messen Sie die jeweiligen Kosten und stellen sie grafisch dar. Die

Mehr

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen

Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG...2 Arbeitsbogen Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG... Arbeitsbogen -...............5 5...5 6...6 7...6 8...7 9...8 Lösungen zum AB ANALYSIS DIFFERENTIALRECHNUNG Arbeitsbogen - Bestimmen Sie a) b) + a) Bei so

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik A II - Lösung GS 9.6.7 - m7_nt-a_lsg_gs.pdf Abschlussprüfung 7 - Mathematik Nichttechnik A II - Lösung Teilaufgabe. Der Graph einer ganzrationalen Funktion f vierten Grades mit D f IR ist symmetrisch zur y-achse und

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage. 1.3 Aussagen In der Mathematik geht es um Aussagen. Eine Aussage ist ein statement, das entweder wahr oder falsch sein kann. Beides geht nicht! Äußerungen, die nicht die Eigenschaft haben, wahr oder falsch

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 12. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.de Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:

Mehr

MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL

MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL MATHEMATIK Arbeitsbogen 1-3 TELEKOLLEG MULTIMEDIAL ANAL ALYSIS DIFFERENTIALRECHNUN HNUNG Autor: W. Fraunholz, J. Dillinger 2005 by TR-Verlagsunion GmbH, München... Name Straße Ort Kolleggruppe Bitte verwenden

Mehr

Lösung zur Übung 8 vom

Lösung zur Übung 8 vom Lösung zur Übung 8 vom 02.2.204 Aufgabe 29 Leiten Sie die nachfolgenden Funktionen ab: a) y(x) = cos(x) c) y(x) = cos 3 (x) e) y(x) = x3 b) y(x) = cos 2 (x)e x d) y(x) = tanh(x) f) y(x) = cos(x) + tan(x)

Mehr

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion

f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion Mathematik für Naturwissenschaftler I 2.8 2.8 Umkehrfunktionen 2.8. Definition Sei f eine Funktion. Eine Funktion f heißt Umkehrfunktion, wenn f (w) = z für w = f(z). f darf nicht mit f(z) = (f(z)) verwechselt

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik Seite 1 von 5 Zentrale Klausur am Ende der Einführungsphase 2013 Mathematik Aufgabenstellung Aufgabe 1: Untersuchung ganzrationaler Funktionen Gegeben ist die Funktion f mit der Gleichung: f 1 2 3 x x

Mehr

AF2 Funktionsgraphen interpretieren

AF2 Funktionsgraphen interpretieren Was kann man aus einem Funktionsgraphen ablesen? Anhand eines Funktionsgraphen kann man viele Informationen ablesen. Der Verlauf des Graphen und besondere Punkte der Funktion werden daran deutlich. Allgemein

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4

f(x) = 2 3 x3 + 3x 2 + 4x. Stellen Sie fest ob es sich jeweils um ein lokales Maximum oder Minimum handelt. ( 9 4 ) 8 4 Übungen zur Mathematik II für Studierende der Informatik und Wirtschaftsinformatik (Analysis und Lineare Algebra) im Sommersemester 017 Fachbereich Mathematik, Stefan Geschke, Mathias Schacht A: Präsenzaufgaben

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

B Anwendungen der Differenzialrechnung

B Anwendungen der Differenzialrechnung B Anwendungen der Differenzialrechnung Kurvendiskussionen Um den Verlauf eines Funktionsgraphen zu bestimmen, kann eine Wertetabelle aufgestellt werden. Dies kann jedoch sehr mühselig sein und es ist nicht

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Es gibt eine Heuristik, mit der sich die Primzahldichte

Es gibt eine Heuristik, mit der sich die Primzahldichte Es gibt eine Heuristik, mit der sich die Primzahldichte 1 ln(x) für großes x N plausibel machen lässt. Die Idee besteht darin, das Änderungsverhalten der Primzahldichte bei x zu untersuchen. Den Ansatz

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx =

Übung 13. Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = Übung 3 Aufgabe 48) Integrieren Sie die folgenden Funktionen a) tan(x)dx b) e x cos(x)dx c) +ax dx Die Lösungen a) Wir schreiben den Tangens als das Verhältnis von Sinus und Cosinus. tan(x)dx = sin(x)

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 4. Semester ARBEITSBLATT 1 FUNKTIONEN. Was ist eine Funktion?

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 1 4. Semester ARBEITSBLATT 1 FUNKTIONEN. Was ist eine Funktion? Mathematik: Mag. Schmid Wolfgang Arbeitsblatt. Semester ARBEITSBLATT FUNKTIONEN Was ist eine Funktion? Stellen wir uns Folgendes vor: Wir stehen vor einem Schaufenster und betrachten die Waren, welche

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Technik - A II - Lösung Teilaufgabe 1.0 Abschlussprüfung Berufliche Oberschule Mathematik Technik - A II - Lösung Teilaufgabe. Gegeben sind die reellen Funktionen f( x) mit x IR. Teilaufgabe. (5 BE) Untersuchen Sie das Verhalten der Funktionswerte

Mehr

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung

Prüfungsteil B, Aufgabengruppe 1: Analysis. Bayern Aufgabe 1. BundesabiturMathematik: Musterlösung Abitur MathematikBayern 04 Prüfungsteil B, Aufgabengruppe BundesabiturMathematik: Prüfungsteil B, Aufgabengruppe : Bayern 04 Aufgabe a). SCHRITT: SCHNITTPUNKTE MIT DEN KOORDINATENACHSEN Die Koordinatenachsen

Mehr

IK Ökonomische Entscheidungen und Märkte LVA

IK Ökonomische Entscheidungen und Märkte LVA IK Ökonomische Entscheidungen und Märkte LVA LVA-Leiter: Michael Noldi Einheit 1: Vorbesprechung und mathematische Grundlagen Vorbesprechung und mathematische Grundlagen IK WS 2014/15 1 Organisatorisches

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr