MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK"

Transkript

1 MATHEMATIK MTA 12 SCHULJAHR 07/08 STATISTIK PROF. DR. CHRISTINA BIRKENHAKE Inhaltsverzeichnis 1. Merkmale 2 2. Urliste und Häufigkeitstabellen 9. Graphische Darstellung von Daten Lageparameter Modus Median Quantile Arithmetisches Mittel Streuungsmaße Spannweite Varianz und Standardabweichung Variationskoeffizient 2. Korrelation und Regression Aufgaben 28 birken/. 1

2 2 PROF. DR. CHRISTINA BIRKENHAKE Klassenfragebogen 1. Merkmale Merkmal: Merkmalsträger Merkmalswert die Eigenschaft, die bei einer statistischen Untersuchung abgefragt wird. z.b. Geschlecht,... Objekt/Lebewesen, das das Merkmal trägt. z.b. Schüler dieser Klasse, Schüler in Nürnberg die Angabe, die bei der Befragung eines Merkmals festgestellt wurde. z.b. Merkmal: Geschlecht Merkmalswerte: m. und w. Skalierung/Ordnung von Merkmalen: Skala Merkmal Beispiele Nominalskala qualitative Merkmale Geschlecht, Beruf OrdinalSkala ordinale Merkmale Noten Metrische Skala quantitative Merkmale Größe, Datum Intervalskala, z.b. Temperatur metrische Skala Verhältnisskala, z.b. Länge Skalierung Ordung Verhältnisskala Intervalskala Ordinalskala Nominalskala abnehmendes Informationsniveau

3 Fragebogen Klasse: Datum: Geschlecht m. w. Blutgruppe 0 A B AB Ihr Schlafbedürfnis viel mittel wenig Wann sind Sie gestern zu Bett gegangen? Wählen Sie eine ganze Zahl zwischen 0 und 100 Alter Jahre Größe cm Wieviel Münzgeld haben Sie dabei? Cent

4 Urliste: Klasse Datum Nr. Geschlecht Blutgruppe Schlafbedürfnis Bettruhe

5 Urliste: Klasse Datum Nr. Zahl Alter Größe Münzgeld

6 PROF. DR. CHRISTINA BIRKENHAKE Häufigkeitstabellen zum Fragebogen vom Merkmal: Geschlecht i x i h i f i H i F i 1 m. 2 w. Merkmal: Blutgruppe i x i h i f i H i F i A B 4 AB Merkmal: Schlafbedürfnis i x i h i f i H i F i 1 1 = viel 2 2 = mittel = wenig Merkmal: Bettruhe i h i f i H i F i

7 MATHEMATIK MTA 12 7 Merkmal: Zahl i h i f i H i F i Merkmal: Alter i ]x u i, x o i ] h i f i H i F i

8 8 PROF. DR. CHRISTINA BIRKENHAKE Merkmal: Größe i ]x u i, x o i ] h i f i H i F i Merkmal: Münzgeld i h i f i H i F i

9 MATHEMATIK MTA 12 9 n x 1,..., x ν h i 2. Urliste und Häufigkeitstabellen Bezeichnungen in Häufigkeitstabellen Stichprobenumfang Merkmalswerte absolute Häufigkeit des Merkmals x i h h ν = n f i = h i n (100%) relative Häufigkeit des M.W. x i f f ν = 100% nur bei ordinalen und metrischen Merkmalen: H i absolute Summenhäufigkeit des M.W. x 1 H i = h h i H 1 = h 1, H ν = h h ν = n F i = H i n relative Summenhäufigkeit des M.W. x i F i = f 1 + f i F 1 = f 1, F ν = Hν n = 100% Klasseneinteilung Bei quantitativen Merkmalen: Spektrum der Merkmalswerte wird in Intervalle aufgeteilt. Beispiel Merkmal: Münzgeld, Spektrum: 0 10 e Klassen: [0, 100[, [100, 200[, [200; 00[,... Klassenbreite nicht notwendig konstant! klassifizierte Häufigkeitsverteilungen x u i x o i Klassenuntergrenze Klassenobergrenze [x u i ; x o i [ oder ]x u i ; x o i ] i-te Klasse Typ einer Häufigkeitsverteilung: diskrete Verteilung nichtklassifizierte Verteilung

10 10 PROF. DR. CHRISTINA BIRKENHAKE. Graphische Darstellung von Daten Stabdiagramm (Arbeitsblatt Stabdiagramm und Histogramm) h i x 1 x 8 Eignung: qualitative, ordinale, diskrete quantitative Häufigkeitsverteilungen Kreisdiagramm Eignung: qualitative, ordinale, diskrete quantitative Häufigkeitsverteilungen, wie bei Stabdiagramm. Winkel proportional zur Häufigkeit h i. Winkel für Merkmal x i : 0 f i Histogramm Eignung: Klassifizierte quantitative Häufigkeitsverteilungen. x-achse: Klassengrenzen x u 1, x u 2,..., x o ν x i Über jeder Klasse: Rechteck, Rechteckfläche proportional zur Häufigkeit h i Rechteckfläche = Höhe Breite Klassenbreite = x o i x u i Rechteckhöhe = Fläche Breite h i (x o i xu i ) Klassendichte d i := h i (x o i xu i ) Rechteckhöhe d i

11 Stabdiagramm und Histogramm h i x 1 x 8 Fall I: Stabdiagramm ist nominal skaliert, d.h. x 1,... x 8 sind Namen. Fall II: Stabdiagramm ist quantitativ skaliert, z. B. mit x 1 = 10, x 2 = 20,..., x 8 = 80 x i hi xi

12 Histogramme Häufigkeitstabelle: Größe der Schüler einer Klasse Nr. Größe x in cm h i Kastenhöhe Kastenhöhe 1 [150; 155[ 1 2 [155; 10[ [10; 15[ 2 4 [15; 170[ 5 5 [170; 175[ 1 Histogramm, bei konstanter Klassenbreite Größe in cm Histogramm, bei nicht konstanter Klassenbreite Größe in cm

13 MATHEMATIK MTA Lageparameter Lageparameter sind Werte, die die Häufigkeitsverteilung beschreiben. Hier sollen Modus, Median, Quantile und arithmetisches Mittel beschrieben werden Modus. Modus M o der Merkmalswert, der am häufigsten beobachtet wurde. Eignung: Jede Skala Bei klassifizierten (quantitativen) Häufigkeitsverteilungen: Modusklasse [x u m, x o m[ die Klasse mit der größten Klassenhäufigkeit h m bzw Klassendichte d m Graphische Ermittlung des Modus: Anzahl der Schüler h m h h m 1 m+1 Konstante Klassenbreite: x m u M o x m o M 0 = x u h m h m 1 m + (h m h m 1 ) + (h m h m+1 ) (xo m x u m) Nichtkonstante Klassenbreite: M o = x u m + d m d m 1 (d m d m 1 ) + (d m d m+1 ) (xo m x u m) Größe in cm

14 Modus M 0 diskrete Verteilung h i x i Klassifizierte Verteilung, konstante Klassenbreite M 0 = x u m + h i h m h m 1 (h m h m 1 ) + (h m h m+1 ) (xo m x u m) x i Klassifizierte Verteilung, nicht konstante Klassenbreite M 0 = x u m + d m d m 1 (d m d m 1 ) + (d m d m+1 ) (xo m x u m) d i x i

15 4.2. Median. MATHEMATIK MTA Median M e der Merkmalswert, der unter Berücksichtigung der Häufigkeiten in der Mitte steht. = Zentralwert. Eignung: Skala muß mindestens ordinalskaliert sein. Beispiele aus der Klassenstatistik: Merkmal Größe: stellen Sie sich der Größe nach hin. Die Größe, des in der Mitte Stehenden Schülers ist der Median. Merkmal Schlafbedürfnis: stellen Sie sich der Reihe nach hin, zuerst die mit wenig Schlafbed., dann die mit mittel und dann die mit viel. Der Median ist wieder der zum mittleren Schüler gehörige Merkmalswert. Median bei klassifizierten Häufigkeitsverteilungen: Der Median halbiert die Fläche des Häufigkeiten-Histogramms Median bei einer klassifizierten Verteilung: Medianklasse: hier [x u m, x o m[= [15, 170[ M e = x u m + n H 2 m 1 ( ) x o H m H m x u m m 1 = x u m + n 2 H m 1 h m ( ) x o m x u m

16 Diskrete Verteilung Median M e Fall: n ungerade H i i x i h i H i x i Fall: n gerade H i i x i h i H i

17 Median bei einer Klassifizierten Verteilung mit konstanter Klassenbreite Häufigkeit hi 8 Summenhäufigkeit H i Häufigkeit hi 8 Summenhäufigkeit H i

18 18 PROF. DR. CHRISTINA BIRKENHAKE 4.. Quantile. Median M e ist gleich dem 50%-Quantil, die Hälfte der Merkmalswerte mit Vielfachheiten liegen davor und die anderen Hälfte danach. Analog definiert man: 25%-Quantil = 1-tes Quartil=x 25% 75%-Quantil = -tes Quartil= x 75% 10%-Quantil = x 10% 90%-Quantil = x 90% 4.4. Arithmetisches Mittel. nichtklassifizierte Häufigkeitsverteilung: x = 1 n (x 1h x ν h ν ) klassifizierte Häufigkeitsverteilung: x = 1 n (x 1h x νh ν ) mit Klassenmitten x i = xu i +xo i 2

19 Quantile Anzahl der Schüler Summenhäufigkeit H i % n=0,9 n 75% n=0.75n 8 n/2=,5 25% n=0,25n % Quantil M e 90% Quantil 75% Quantil Größe in cm

20 20 PROF. DR. CHRISTINA BIRKENHAKE 5. Streuungsmaße Während die Lageparameter markante Merkmalswerte einer Verteilung angeben, beschreiben die Lageparameter den groben Verlauf der Verteilung. Hier sollen Spannweite, Varianz, Standardabweichung und der Variationskoeffizient behandelt werden Spannweite. Definition 5.1. Die Spannweite R ist die Differenz aus größtem und Kleinstem beobachteten Merkmalswert. Voraussetzung: metrische Skala, mindestens intervallskaliert Spannweite R = größter Merkmalswert kleinster Merkmalswert { x max x min falls nicht klassifiziert R = x o max x u min falls klassifiziert 5.2. Varianz und Standardabweichung. Voraussetzung: metrische Skala, mindestens intervallskaliert Die Grundidee ist, die Verteilung mit der Standard-Normalverteilung zu vergleichen. Gelättet sieht die Normalverteilung wie die Gaußsche Glockenkurve aus: y x Die Varianz σ 2 ist ein Maß für die Abweichung vom arithmetischen Mittel. Im Bild der Glockenkurve ist das Maximum am arithmetischen Mittel x und der Abstand der Wendepunkte vom Maximum ist die Standardabweichung σ. Varianz: σ 2 = 1 ν (x i x) 2 h i = 1 ν x 2 i h i x 2 n n Standardabweichung: i=1 σ = σ 2 i=1

21 Normalverteilung x

22 Standardabweichung Χ σ Χ Χ+σ 95 Prozent Χ±2 σ Χ+2 σ

23 5.. Variationskoeffizient. Voraussetzung: Verhältnisskala Der Variationskoeffizient mißt die relative Steuung. Variationskoefizient: MATHEMATIK MTA 12 2 V K = σ x 100% Der Variationskoeffizient ist nicht anschaulich interpretierbar.

24 Größe von Geschwistern (in cm) Nr. Familie Schwester Bruder Erstellen Sie ein Steudiagramm:. Korrelation und Regression a) Zu welcher Familie gehört der größte Junge / das kleinste Mädchen? b) Wie groß ist die Schwester des größen Jungen/ der Bruder des kleinsten Mädchens? c) Trage Sie die Gerade x = y ein, Was bedeutet wenn ein Punkt ober- bzw. unterhalb dieser Gerade liegt?

25 d) Vervollständigen Sie die folgende Tabelle: Summe 1 Summe n Nr. Schwester Bruder (x i ) (y i ) x i y i x 2 i y 2 i e) Berechnen Sie die Standardabweichungen σ x und σ y sowie σ x ± x, σ y ± ȳ und σ xy := 1 n i x iy i xȳ.

26 f) Fertigen Sie für beide Merkmale: Größe Schwester(x) bzw. Größe Bruder (y) Histogramme an. Schwestern Χ σ Χ Χ+σ x Brüder Υ σ x Υ Υ+σ

27 g) Berechnen Sie die Regerssionsgeraden nach den Formeln: 1 n i B y = x iy i xȳ i x2 i = σ xy x2 σx 2 1 n A y := x 1 ( n i x iy i ) 1 n i x2 i ȳ i x2 i = ȳ B y x x2 1 n h) Berechnen Sie den Korrelationskoeffizienten r nach den Formeln: r = σ xy σ x σ y Interpretation der Regressionsgeraden: Die Regressionsgerade G y beschreibt die Abhängigkeit des Merkmals Y vom Merkmal X. Zu jedem Merkmalswert x i kann ein durchschnittlicher zugehöriger Merkmalswert y(x i ) = B y x i + A y berechnet werden. Analog mit G X. Interpretation des Korrelationskoeffizienten r: Der Korrelationskoeffizient mißt die Stärke des linearen Zusammenhangs der Merkmale X und Y. Es gilt: 1 r 1 Vorzeichen von r r > 0: Wird x groß, so wird auch y tendenziell groß. Der Zusammenhang der Merkmale ist positiv! r = +1: Die Datenpunkte liegen auf einer Geraden mit positiver Steigung. r = 0: Die Datenpunkte zeigen keinen linearen Zusammenhang. r < 0: Wird x groß, so wird y tendenziell kleiner. Der Zusammenhang der Merkmale ist negativ! r = 1: Die Datenpunkte liegen auf einer Geraden mit negativer Steigung. Stärke des Zusammenhangs r nahe Null: Der Zusammenhang der Merkmale ist klein, die Regressionsgeraden sind nahezu senkrecht zueindander. r nahe Eins: Der Zusammenhang der Merkmale ist groß. Die Regressionsgeraden fallen nahezu zusammen. Die Merkmale liegen fast auf der Regressionsgeraden.

28 7. Aufgaben Aufgabe 1: Gebe von folgenden Merkmalen die Skala an: Gehaltsgruppe Einkommen Autofarbe Kundenzufriedenheit Berufsbezeichnung Dienstgrad Mietpreis Klausurergebnis Cholesterinspiegel Wartezeiten von Patienten einer Arztpraxis am Uhrzeit des Behandlungsbeginns der Patienten dieser Praxis am Schultypen Anzahl von Kindern in Schulklassen Rauchgewohnheiten Schulnoten Benzinverbrauch von PKW s Körpertemperatur eines Patienten Lebensdauer Alter Geburtsdatum

29 Aufgabe 2: Im Schulungszentrum eines Medizinischen Labors wurde in Parallelkursen das Alter der Teilnehmer ermittelt. Folgende Häufigkeitstabellen haben sich dabei ergeben: Kurs I: Kurs II: Kurs III: Alter absolute Häufigkeit h i Alter absolute Häufigkeit h i Alter absolute Häufigkeit h i 9 12 (1) Bestimme in den drei Fällen die Anzahl der Teilnehmer n. (2) Erstelle in den drei Fällen die Häufigkeitstabellen. () In welchem Kurs ist die Anzahl der 2-jährigen am größten? (4) Was ist der prozentuale Anteil der 22-jährigen in jedem Kurs? Aufgabe : In einem medizinischen Forschungsinsitut mit 180 Beschäftigten findet man die folgende Altersstruktur: 5 bis 20 Jahre 59 über 20 bis 0 Jahre 1 über 0 bis 40 Jahre 9 über 40 bis 50 Jahre 4 über 50 bis 0 Jahre Erstelle die Häufigkeitstabelle. Aufgabe 4: Welche graphischen Darstellungen eignen sich für die Merkmale unserer Klassenstatistik? Geschlecht Blutgruppe Geburtsjahr Alter

30 Größe Schlafbedürfnis WBC HGB PLT

31 Aufgabe 5: h i i ]x u i, x o i ] h i H i 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] x i 5 ]4, 5] ]5, ] Aufgabe : hi i ]x u i, x o i ] h i H i 0 i x 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] 5 ]4, 5] ]5, ] Aufgabe 7: hi i ]x u i, x o i ] h i H i 0 i x 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] 5 ]4, 5] ]5, ]

32 Aufgabe 8: hi i ]x u i, x o i ] h i H i 0 i x 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] 5 ]4, 5] ]5, ] Aufgabe 9: hi i ]x u i, x o i ] h i H i 0 i x 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] 5 ]4, 5] ]5, ] Aufgabe 10: hi i ]x u i, x o i ] h i H i 0 i x 1 ]0, 1] 2 ]1, 2] ]2, ] 4 ], 4] 5 ]4, 5] ]5, ]

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage

Günther Bourier. Beschreibende Statistik. Praxisorientierte Einführung - Mit. Aufgaben und Lösungen. 12., überarbeitete und aktualisierte Auflage i Günther Bourier Beschreibende Statistik Praxisorientierte Einführung - Mit Aufgaben und Lösungen 12., überarbeitete und aktualisierte Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort V 1 Einführung

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Deskriptive Statistik Auswertung durch Informationsreduktion

Deskriptive Statistik Auswertung durch Informationsreduktion Deskriptive Statistik Auswertung durch Informationsreduktion Gliederung Ø Grundbegriffe der Datenerhebung Total-/Stichprobenerhebung, qualitatives/quantitatives Merkmal Einteilung der Daten (Skalierung,

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

Statistik Skalen (Gurtner 2004)

Statistik Skalen (Gurtner 2004) Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung

1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung. Statistik und Wahrscheinlichkeitsrechnung 1 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 2 Stochastik deskriptive Statistik und Wahrscheinlichkeitsrechnung Stochastik Wahrscheinlichkeitsrechnung

Mehr

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik

Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik INSTITUT FÜR STOCHASTIK WS 2007/08 UNIVERSITÄT KARLSRUHE Blatt 1 Dr. B. Klar Übungen zur Vorlesung Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik Musterlösungen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Beispiel 4 (Einige weitere Aufgaben)

Beispiel 4 (Einige weitere Aufgaben) 1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Statistik. Ronald Balestra CH St. Peter

Statistik. Ronald Balestra CH St. Peter Statistik Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 17. Januar 2010 Inhaltsverzeichnis 1 Statistik 1 1.1 Beschreibende Statistik....................... 1 1.2 Charakterisierung von Häufigkeitsverteilungen...........

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Statistische Formeln und Tabellen

Statistische Formeln und Tabellen WiSt-Taschenbücher Statistische und Tabellen Kompakt für Wirtschaftswissenschaftler von Prof. Dr. Josef Bleymüller, Prof. Dr. Rafael Weißbach 13., überarbeitete Auflage Verlag Franz Vahlen München 015

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Deskriptive Statistik. Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Deskriptive Statistik Erstes Kapitel Die Feingliederung des ersten Kapitels, welches sich mit einigen

Mehr

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter

Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Deskriptive Statistik Kapitel VI - Lage- und Streuungsparameter Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter, hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Ziele 2. Lageparameter 3.

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

1. Tutorial. Online-Tutorium-Statistik von T.B.

1. Tutorial. Online-Tutorium-Statistik von T.B. Online-Tutorium-Statistik von T.B. 1 Grundbegriffe I Gegenstand einer statistischen Untersuchung sind bestimmte Objekte (z.b. Personen, Unternehmen) bei denen man sich für gewisse Eigenschaften (z.b. Geschlecht,

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Mag. Dipl.Ing. Dr. Pantelis Christodoulides & Mag. Dr. Karin Waldherr SS 2011 Christodoulides / Waldherr Einführung in Quantitative Methoden- 2.VO 1/62 Summenzeichen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen

Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Graphische Darstellung von Häufigkeitsverteilungen Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2017 Organisatorisches Anmeldung in Basis: 19. 23.06.2017 Skript und Übungsaufgaben unter: http://www.iam.uni-bonn.de/users/rezny/statistikpraktikum

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 14. Oktober 2006 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: Kreuze die jeweils richtige Antwort an (maximal 6 Punkte) 1.1. Bei einer rechtsschiefen

Mehr

Statistik für Technische Assistenten in der Medizin

Statistik für Technische Assistenten in der Medizin Statistik für Technische Assistenten in der Medizin Wolfgang Sans Lehrstuhl für Mathematik VIII University of Würzburg Einführung Statistik begegnet uns überall (fast) jeden Tag! Beispiele: Statistik?

Mehr

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A

Prüfung aus Statistik 1 für SoziologInnen- Gruppe A Prüfung aus Statistik 1 für SoziologInnen- Gruppe A 26. Juni 2012 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden 1) Wissenstest (maximal 20 Punkte) Lösungen Kreuzen ( ) Sie die jeweils richtige Antwort

Mehr

Kreisdiagramm, Tortendiagramm

Kreisdiagramm, Tortendiagramm Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte

Mehr

Kapitel VII - Konzentration von Merkmalswerten

Kapitel VII - Konzentration von Merkmalswerten Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel VII - Konzentration von Merkmalswerten Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße

Klausur: Statistik. Jürgen Meisel. Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung. 1.) Mittelwerte und Streumaße Klausur: Statistik Jürgen Meisel Zugelassene Hilfsmittel: Taschenrechner; Formelsammlung Bearbeitungszeit: 60 Minuten 1.) Mittelwerte und Streumaße In einer Vorlesung auf der Universität sitzen 30 Studenten

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Deskriptive Statistik Aufgaben und Lösungen

Deskriptive Statistik Aufgaben und Lösungen Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................

Mehr

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013)

Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 2013) Lösungsvorschläge zur Klausur Beschreibende Statistik und Wirtschaftsstatistik (Sommersemester 203) Aufgabe (9 Punkte) Ein metrisches Merkmal X sei in einer Grundgesamtheit vom Umfang n = 200 diskret klassiert.

Mehr

Der Mittelwert (arithmetisches Mittel)

Der Mittelwert (arithmetisches Mittel) Der Mittelwert (arithmetisches Mittel) x = 1 n n x i bekanntestes Lagemaß instabil gegen extreme Werte geeignet für intervallskalierte Daten Deskriptive Statistik WiSe 2015/2016 Helmut Küchenhoff (Institut

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005

STATISIK. LV Nr.: 0021 WS 2005/06 11.Oktober 2005 STATISIK LV Nr.: 0021 WS 2005/06 11.Oktober 2005 1 Literatur Bleymüller, Gehlert, Gülicher: Statistik für Wirtschaftswissenschaftler, Verlag Vahlen Hartung: Statistik. Lehr- und Handbuch der angewandten

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

2 Häufigkeitsverteilungen

2 Häufigkeitsverteilungen 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation An n Einheiten ω 1,,ω n sei das Merkmal X beobachtet worden x 1 = X(ω 1 ),,x n = X(ω n ) Also

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie () WiSe /3 Univariate und bivariate Verfahren Univariate

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen GRUPPE B Prüfung aus Statistik 1 für SoziologInnen 16. Oktober 2015 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden Name in Blockbuchstaben: Matrikelnummer: 1) Wissenstest (maximal 20 Punkte) Kreuzen ( )

Mehr