TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3"

Transkript

1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie

2 Gliederung Reliabilität 1. Überblick 2. Berechnung mit SPSS 3. Konsequenzen für die einzelfallstatistische Auswertung

3 Reliabilität - Überblick

4 Reliabilität - Überblick Grad der Zuverlässigkeit - Koeffizienten Paralleltestreliabilität Halbierungsreliabilität (split half) Interne Konsistenz (Cronbachs Alpha) Konsequenzen für einzelfallstatistische Auswertung Standardmessfehler Retestreliabilität Standardmessfehler der Differenz Konfidenzintervall Reliable Change Index

5 Reliabilität - Überblick Welcher Koeffizient ist für FPI-R geeignet? Cronbachs Alpha Homogenitätsmaß Maß der internen Konsistenz auf Skalenebene nicht auf gesamten Test bezogen d.h. keine Reliabilität für FPI-R, aber z.b. für Skala Soziale Orientierung

6 Reliabilitätsberechnung mit SPSS

7 Berechnung mit SPSS Beispiel Skala Lebenszufriedenheit Analysieren Skalierung Reliabilitätsanalyse

8 Berechnung mit SPSS Beispiel Skala Lebenszufriedenheit

9 Berechnung mit SPSS Beispiel Skala Lebenszufriedenheit Reliabilität der Skala α =.769 deskriptive Statistik der Skala

10 Reliabilitätsberechnung mit SPSS Faktoren, die Reliabilität beeinflussen

11 Einfluss auf Reliabilität Trennschärfe Indikator für Homogenität eines Tests Je höher Trennschärfe, desto höher Reliabilität Testwertverteilung Streuung Je höher Varianz, desto höher Reliabilität Schwierigkeitsindex kann Varianz beeinflussen

12 Einfluss auf Reliabilität Beispiel Skala Lebenszufriedenheit Wie verändert sich Cronbachs Alpha, wenn man ein bestimmtes Item weglässt?

13 Einfluss auf Reliabilität Nutzt die Tabelle zur Itemselektion. Beispiel Skala Lebenszufriedenheit Sucht die Items der Skala Lebenszufriedenheit, die ihr wegen der Trennschärfe oder dem Schwierigkeitsindex eliminieren würdet. Würde Cronbachs Alpha durch deren Weglassen verbessert werden? Wie würdet ihr nach der Betrachtung der Reliabilität wegen einer Selektion entscheiden?

14 Einfluss auf Reliabilität Reliabilität der Skala α =.769 Beispiel Skala Lebenszufriedenheit Selektiertes Item Cronbachs Alpha, wenn Item weggelassen 3 α =. 783

15 Einfluss auf Reliabilität Berechnet alle interne Konsistenzen der einzelnen Skalen! Schaut auch die Skalen erneut wegen einer eventuellen Itemselektion an! Welche Items erhöhen die Reliabilität, wenn sie weggelassen werden?

16 Einfluss auf Reliabilität Skala Lebenszufriedenheit α =.769 Soziale Orientierung α =.514 Leistungsorientierung α =.656 Gehemmtheit α =.746 Erregbarkeit α =.804 Aggressivität α =.726 Cronbachs Alpha, wenn Item weggelassen Item 3 α =. 783; Item 131 α =.772 keine Verbesserung von α

17 Einfluss auf Reliabilität Skala Cronbachs Alpha, wenn Item weggelassen Beanspruchung α =.814 Körperliche Beschwerden α =.676 Gesundheitssorgen α =.509 Offenheit α =.571 Extraversion α =.774 Emotionalität α =.758

18 Konsequenzen für die einzelfallstatistische Auswertung

19 Reliabilität Wofür stehen die Zahlen? Je kleiner die Reliabilität, desto größer sind die Messfehler Je größer die Messfehler, desto stärker muss korrigiert werden Schätzung des Messfehlers erforderlich

20 Reliabilität Wofür das alles? Zur Beantwortung folgender Frage: Herr Y hat auf der Skala Lebenszufriedenheit ein Stanine von 3. In welchem Bereich liegt sein wahrer Wert mit 95%-iger Wahrscheinlichkeit?

21 Konsequenzen für die einzelfallstatistische Auswertung Standardmessfehler s e

22 Standardmessfehler s e Standardabweichung der Messfehlervariablen Streuung der beobachteten Messwerte um wahren Wert Je kleiner s e, desto weniger Messfehler s e = SD * [1-Reliabilität (α)]

23 Standardmessfehler s e auf Stanine-Wert-Ebene Beispiel Skala Lebenszufriedenheit Nicht vergessen! Stanine: MW=5, SD=2 s e = SD * [1-Reliabilität (α)] s e = 2 * [1-0,769] s e = 0,96

24 Konsequenzen für die einzelfallstatistische Auswertung Konfidenzintervall CI mit SPSS

25 Konfidenzintervall CI Vertrauensintervall um beobachteten Messwert bilden Darin liegt der wahre Wert mit einer bestimmten Irrtumswahrscheinlichkeit

26 Konfidenzintervall (CI) am Mittelwert Analysieren Deskriptive Statistiken Explorative Datenanalyse Statistik Beispiel Skala Lebenszufriedenheit Mit 95%-iger Sicherheit liegt der wahre Mittelwert zwischen 6,28 und 6,97.

27 Konfidenzintervall (CI) am Mittelwert Beispiel Skala Lebenszufriedenheit Wie verändert sich das Konfidenzintervall, wenn die Irrtumswahrscheinlichkeit verändert wird? Schaut euch dazu das Konfidenzintervall mit 68% und 99%-iger Wahrscheinlichkeit an.

28 Konfidenzintervall (CI) am Mittelwert 68%-ige Wahrscheinlichkeit Beispiel Skala Lebenszufriedenheit 99%-ige Wahrscheinlichkeit

29 Konsequenzen für die einzelfallstatistische Auswertung Konfidenzintervall anhand Standardmessfehler s e

30 Konfidenzintervall (CI) Beispiel der Skala Lebenszufriedenheit Berechnung durch Standardmessfehler s e z α/2 = ± 1 * SD 68% z α/2 = ± 1.96 * SD 95% z α/2 = ± 2.58 * SD 99% Irrtumswahrscheinlichkeit halbiert, da zweiseitige Testung CI = 1,96 * s e CI = 1,96 * 0,96 Kaufmännisch runden CI = 1,88 ~ 2 CI = ± 2

31 Konfidenzintervall (CI) Ausgangsfrage: Herr Y hat auf der Skala Lebenszufriedenheit ein Stanine von 3. In welchem Bereich liegt sein wahrer Wert mit 95%-iger Wahrscheinlichkeit? Konfidenzintervall Skala Lebenszufriedenheit: CI = ± 2 Beobachteter Wert ± Konfidenzintervall 3 ± 2 1 bis 5 Antwort: Mit 95% Wahrscheinlichkeit liegt sein wahrer Wert zwischen Stanine 1 bis Stanine 5

32 Standardmessfehler s e & Konfidenzintervall (CI) Berechnet alle Standardmessfehler der Stanine- Werte und Konfidenzintervalle der Skalen mit einer 95%-igen Wahrscheinlichkeit. Erstellt eine Tabelle. Unterscheiden sich die Skalen in ihren Konfidenzintervallen?

33 Standardmessfehler s e & Konfidenzintervall (CI) s e CI Lebenszufriedenheit s e = 0,96 CI = 1,88 CI = ± 2 Soziale Orientierung Leistungsorientierung Gehemmtheit Erregbarkeit Aggressivität Beanspruchung Körperliche Beschwerden Gesundheitssorgen Offenheit Extraversion Emotionalität

34 Konsequenzen für die einzelfallstatistische Auswertung Vergleich zweier Messwerte

35 Vergleich zweier Messwerte Ausgangsfrage: Haben sich die Messwerte von Herrn Y nach Testwiederholung statistisch signifikant verändert? Standardmessfehler der Differenz s e (diff) = SD * [2* (1-Reliabilität α)]

36 Konsequenzen für die einzelfallstatistische Auswertung Vergleich zweier Messwerte Standardmessfehler der Differenz s e (diff)

37 Standardmessfehler der Differenz s e (diff) auf Stanine-Wert-Ebene Beispiel Skala Lebenszufriedenheit Stanine: MW=5, SD=2 s e (diff) = SD * [2* (1-Reliabilität α)] s e = 2 * [2*(1-0,769)] s e = 2 * 0,462 s e = 1,36

38 Konsequenzen für die einzelfallstatistische Auswertung Vergleich zweier Messwerte Reliable Change Index

39 Reliable Change Index (RCI) Berechnung durch Standardmessfehler der Differenz s e (diff) am Beispiel der Skala Lebenszufriedenheit z α/2 = ± 1 * SD 68% z α/2 = ± 1.96 * SD 95% z α/2 = ± 2.58 * SD 99% Irrtumswahrscheinlichkeit halbiert, da zweiseitige Testung RCI = 1,96 * s e (diff) RCI = 1,96 * 1,36 Kaufmännisch runden RCI = 2,67 ~ 3 RCI = ± 3

40 Vergleich von Messwerten Ausgangsfrage: Haben sich die Messwerte von Herrn Y nach Testwiederholung statistisch signifikant verändert? RCI als kritische Differenz, die überschritten werden muss, um von statistischer Bedeutsamkeit sprechen zu können Stanine-Wert (1.Messung) = 9 Stanine-Wert (2. Messung) = 3 Differenz 9-3 = 6 Differenz = 6 > RCI = 3 RCI überschritten und somit unterscheiden sich die Messwerte der zwei Zeitpunkte signifikant voneinander

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung 3.2 Grundlagen der Testtheorie 3.2.6 Methoden der Reliabilitätsbestimmung 6.1 Was ist Reliabilität? 6.2 Retest-Reliabilität 6.3 Paralleltest-Reliabilität 6.4 Splithalf-(Testhalbierungs-)Reliabilität 6.5

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Einführung in Datensatz Stichprobenbeschreibung

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Januar 2009 HS MD-SDL(FH) Prof. Dr. GH Franke Kapitel 5 Vertiefung: Reliabilität Kapitel 5 Vertiefung: Reliabilität 5.1 Definition Die Reliabilität eines Tests beschreibt

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Normierung Schritte der Normierung

Mehr

Beispielberechnung Vertrauensintervall

Beispielberechnung Vertrauensintervall Beispielberechnung Vertrauensintervall Auszug Kursunterlagen MAS ZFH in Berufs-, Studien- und Laufbahnberatung Prof. Dr. Marc Schreiber, Dezember 2016 Beispielberechnung Vertrauensintervall Statistische

Mehr

Beispielberechnung Vertrauensintervalle

Beispielberechnung Vertrauensintervalle Beispielberechnung Vertrauensintervalle Auszug Kursunterlagen MAS Berufs-, Studien- und Laufbahnberatung Juni 2015 Prof. Dr. Marc Schreiber Beispielberechnung Vertrauensintervalle Vorbereitung - Statistische

Mehr

Verfahren zur Skalierung. A. Die "klassische" Vorgehensweise - nach der Logik der klassischen Testtheorie

Verfahren zur Skalierung. A. Die klassische Vorgehensweise - nach der Logik der klassischen Testtheorie Verfahren zur Skalierung A. Die "klassische" Vorgehensweise - nach der Logik der klassischen Testtheorie 1. Daten: z. Bsp. Rating-Skalen, sogenannte "Likert" - Skalen 2. Ziele 1. Eine Skalierung von Items

Mehr

= = =0,2=20% 25 Plätze Zufallsübereinstimmung: 0.80 x x 0.20 = %

= = =0,2=20% 25 Plätze Zufallsübereinstimmung: 0.80 x x 0.20 = % allgemein Klassifizierung nach Persönlichkeitseigenschaften Messung von Persönlichkeitseigenschaften Zuordnung von Objekten zu Zahlen, so dass die Beziehungen zwischen den Zahlen den Beziehungen zwischen

Mehr

Bestimmung der Zuverlässigkeit / Reliabilität einer additiven Itemskala. Cronbach s. 1 (k 1)r

Bestimmung der Zuverlässigkeit / Reliabilität einer additiven Itemskala. Cronbach s. 1 (k 1)r Dr. Wolfgang Langer - Methoden V: Explorative Faktorenanalyse SoSe 1999-1 Bestimmung der Zuverlässigkeit / Reliabilität einer additiven Itemskala Für die Schätzung der Zuverlässigkeit einer additiven Itemskala,

Mehr

Das Freiburger Persönlichkeitsinventar FPI-R. Dr. Tobias Constantin Haupt

Das Freiburger Persönlichkeitsinventar FPI-R. Dr. Tobias Constantin Haupt Das Freiburger Persönlichkeitsinventar FPI-R FPI-R - Gliederung 1. Konstruktion 2. Testaufbau Skalen Durchführung 3. Gütekriterien Objektivität Reliabilität Validität 4. Auswertung Normierung 5. Anwendung

Mehr

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduktion. Interpretation des SPSS-Output s Explorative Faktorenanalyse als Instrument der Dimensionsreduktion Beispiel: Welche Dimensionen charakterisieren die Beurteilung des sozialen Klimas in der Nachbarschaft? Variablen: q27a bis q27g im Datensatz

Mehr

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung. Interpretation des SPSS-Output s

Faktorenanalysen mit SPSS. Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung. Interpretation des SPSS-Output s Explorative Faktorenanalyse als Instrument der Dimensionsreduzierung Beispiel: Welche Dimensionen charakterisieren die Beurteilung des sozialen Klimas in der Nachbarschaft? Variablen: q27a bis q27g im

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit Reliabilität in der klassischen (psychometrischen) Testtheorie Statistisches Modell Realisierung mit der SPSS-Prozedur Reliability Klassische Testtheorie:

Mehr

Reliabilitäts- und Itemanalyse

Reliabilitäts- und Itemanalyse Reliabilitäts- und Itemanalyse In vielen Wissenschaftsdisziplinen stellt die möglichst exakte Messung von hypothetischen Prozessen oder Merkmalen sogenannter theoretischer Konstrukte ein wesentliches Problem

Mehr

Kontrolle und Aufbereitung der Daten. Peter Wilhelm Herbstsemester 2014

Kontrolle und Aufbereitung der Daten. Peter Wilhelm Herbstsemester 2014 Kontrolle und Aufbereitung der Daten Peter Wilhelm Herbstsemester 2014 Übersicht 1.) Kontrolle und Aufbereitung der Daten Fehlerkontrolle Umgang mit Missing 2.) Berechnung von Skalen- und Summenscores

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Einführung in die Test- und Fragebogenkonstruktion

Einführung in die Test- und Fragebogenkonstruktion Markus Bühner 1 Einführung in die Test- und Fragebogenkonstruktion 2., aktualisierte und erweiterte Auflage PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

Eine Skala ist also Messinstrument, im einfachsten Fall besteht diese aus einem Item

Eine Skala ist also Messinstrument, im einfachsten Fall besteht diese aus einem Item KONSTRUKTION UND ANALYSE VON SKALEN Ziel Skalen und Tests Systematisierung von Tests Itemarten Skalenarten im Detail Die Likert Skala Skala: Eine Skala ist ein Instrument zur Messung von (theoretischen)

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Eigene MC-Fragen Testgütekriterien (X aus 5) 2. Das Ausmaß der Auswertungsobjektivität lässt sich in welcher statistischen Kennzahl angeben?

Eigene MC-Fragen Testgütekriterien (X aus 5) 2. Das Ausmaß der Auswertungsobjektivität lässt sich in welcher statistischen Kennzahl angeben? Eigene MC-Fragen Testgütekriterien (X aus 5) 1. Wenn verschieden Testanwender bei Testpersonen mit demselben Testwert zu denselben Schlussfolgerungen kommen, entspricht dies dem Gütekriterium a) Durchführungsobjektivität

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Macht des statistischen Tests (power)

Macht des statistischen Tests (power) Macht des statistischen Tests (power) Realer Treatment ja Ergebnis der Studie H 0 verworfen statistisch signifikant O.K. Macht H 0 beibehalten statistisch nicht signifikant -Fehler Effekt nein -Fehler

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Einführung in die Test- und Fragebogenkonstruktion

Einführung in die Test- und Fragebogenkonstruktion Markus Bühner Einführung in die Test- und Fragebogenkonstruktion 3., aktualisierte und erweiterte Auflage ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Klassische Testtheorie (KTT) Klassische Testtheorie (KTT) Klassische Testtheorie (KTT)

Klassische Testtheorie (KTT) Klassische Testtheorie (KTT) Klassische Testtheorie (KTT) Klassische Testtheorie (KTT) Die KTT stellt eine Sammlung von Methoden dar, die seit Beginn des vorigen Jahrhunderts zur exakten und ökonomischen Erfassung interindividueller Unterschiede entwickelt wurden.

Mehr

FH Magdeburg-Stendal, Studiengang Rehabilitationspsychologie Seminar Testen und Entscheiden Dozentin Susanne Jäger Referentin Angela Franke, 1. Sem.

FH Magdeburg-Stendal, Studiengang Rehabilitationspsychologie Seminar Testen und Entscheiden Dozentin Susanne Jäger Referentin Angela Franke, 1. Sem. FH Magdeburg-Stendal, Studiengang Rehabilitationspsychologie Seminar Testen und Entscheiden Dozentin Susanne Jäger Referentin Angela Franke, 1. Sem. Master 09.12.2009 1. Überblicksartige Beschreibung Patientenfragebogen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Tutorium Testtheorie. Termin 3. Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität. Charlotte Gagern

Tutorium Testtheorie. Termin 3. Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität. Charlotte Gagern Tutorium Testtheorie Termin 3 Charlotte Gagern charlotte.gagern@gmx.de Inhalt: WH: Hauptgütekriterien- Reliabilität & Validität 1 Hauptgütekriterien Objektivität Reliabilität Validität 2 Hauptgütekriterien-Reliabilität

Mehr

Darstellung sämtlicher Mittelwerte, aufgeteilt nach Fragebogen und prä- und post-messung

Darstellung sämtlicher Mittelwerte, aufgeteilt nach Fragebogen und prä- und post-messung Inhaltsverzeichnis: Testmethoden State-Trait-Ärgerausdrucksinventar (STAXI), Ergebnisse Darstellung sämtlicher Mittelwerte, aufgeteilt nach Fragebogen und prä- und post-messung Prä- und post-werte beim

Mehr

Reliabilität. Kapitel 4. Einführung in die Test- und Fragebogenkonstruktion, Pearson Education 2003, Markus Bühner, 1

Reliabilität. Kapitel 4. Einführung in die Test- und Fragebogenkonstruktion, Pearson Education 2003, Markus Bühner, 1 Reliabilität Kapitel 4 Einführung in die Test- und Fragebogenkonstruktion, Pearson Education 2003, Markus Bühner, 1 Reliabilität Reliabilität gibt den Anteil der Varianz der wahren Werte an der Varianz

Mehr

Was ist eine Testtheorie?

Was ist eine Testtheorie? Was ist eine Testtheorie? Eine Testtheorie bezeichnet eine Gesamtheit von Methoden zur Behandlung der Fragestellungen, welche sich bei der Testkonstruktion und -auswertung ergeben. Dieser Begriff ist nicht

Mehr

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

2. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 . Lösung weitere Übungsaufgaben Statistik II WiSe 016/017 1. Aufgabe: Bei der Produktion eines Werkstückes wurde die Bearbeitungszeit untersucht. Für die als normalverteilt angesehene zufällige Bearbeitungszeit

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Nummer Alter Semesterzahl FBL01 Allgemeinbefinden FBL02 Emotionale Reaktivitaet FBL03 Herz-Kreislauf FBL04 Magen-Darm FBL05 Kopf-Hals-Reizsyndrom

Nummer Alter Semesterzahl FBL01 Allgemeinbefinden FBL02 Emotionale Reaktivitaet FBL03 Herz-Kreislauf FBL04 Magen-Darm FBL05 Kopf-Hals-Reizsyndrom Nummer Alter Semesterzahl FBL01 Allgemeinbefinden FBL02 Emotionale Reaktivitaet FBL03 Herz-Kreislauf FBL04 Magen-Darm FBL05 Kopf-Hals-Reizsyndrom FBL06 Anspannung FBL07 Sensorik FBL08 Schmerz FBL09 Motorik

Mehr

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan):

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan): Beispiel für eine Itemanalyse mit der SPSS-Prozedur Reliabilitätsanalyse (RELIABILITY) Daten: POKIII_AG1_V06.SAV (POK III, AG 1) Die Skala Körperbewusstsein von Löwe und Clement (1996) 1 besteht aus zwei

Mehr

11. Sitzung Auswertungsstrategien; Darstellung von Forschungsergebnissen

11. Sitzung Auswertungsstrategien; Darstellung von Forschungsergebnissen 11. Sitzung Auswertungsstrategien; Darstellung von Forschungsergebnissen 1 Gliederung der Vorlesung 1. Probleme der Auswertung bei quantitativem Vorgehen 2. Probleme der Auswertung bei qualitativem Vorgehen

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Vorlesung Testtheorien. Dr. Tobias Constantin Haupt, MBA Sommersemester 2007

Vorlesung Testtheorien. Dr. Tobias Constantin Haupt, MBA Sommersemester 2007 Vorlesung Testtheorien Dr. Tobias Constantin Haupt, MBA Sommersemester 2007 Inhaltsfolie # 2 KTT Axiome 4. Axiom Die Höhe des Messfehlers E ist unabhängig vom Ausprägungsgrad der wahren Werte T anderer

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Testtheorie und Testkonstruktion. Wintersemester 2006/ 2007 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

Testtheorie und Testkonstruktion. Wintersemester 2006/ 2007 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke Testtheorie und Testkonstruktion Wintersemester 2006/ 2007 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke Gliederung 1. Einführung 1. Begriffsbestimmungen 2. Geschichte 3. Voraussetzungen

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke PERSÖNLICHE VORBEMERKUNGEN Die Testtheorie hat sich zu einer nur noch für

Mehr

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler

VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt 06 1. Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat).

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

GHF SoSe 2011 HS MD-SDL

GHF SoSe 2011 HS MD-SDL GHF SoSe 2011 HS MD-SDL 6/28/2011 1 Bitte recherchieren Sie die verschiedenen Bestimmungsstücke des Validitätskonzepts Bitte überlegen Sie sich Strategien zur Prüfung dieser verschiedenen Bestimmungsstücke

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

RETESTRELIABILITÄT. Teststabilität. Korrelation wiederholter Testdurchführungen. Persönlichkeitstests. Stabilität des Zielmerkmals.

RETESTRELIABILITÄT. Teststabilität. Korrelation wiederholter Testdurchführungen. Persönlichkeitstests. Stabilität des Zielmerkmals. Basiert auf RETESTRELIABILITÄT Wird auch genannt Teststabilität Geeignet für Korrelation wiederholter Testdurchführungen Abhängig von beeinflusst Stabilität des Zielmerkmals Persönlichkeitstests Speedtests

Mehr

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6

FF Düsseldorf WS 2007/08 Prof. Dr. Horst Peters. Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 Vorlesung Quantitative Methoden 1B im Studiengang Business Administration (Bachelor) Seite 1 von 6 (Konfidenzintervalle, Gauß scher Mittelwerttest) 1. Bei einem bestimmten Großraumflugzeug sei die Auslastung

Mehr

Testtheorie und Gütekriterien von Messinstrumenten. Objektivität Reliabilität Validität

Testtheorie und Gütekriterien von Messinstrumenten. Objektivität Reliabilität Validität Testtheorie und Gütekriterien von Messinstrumenten Objektivität Reliabilität Validität Genauigkeit von Messungen Jede Messung zielt darauf ab, möglichst exakte und fehlerfreie Messwerte zu erheben. Dennoch

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

4.1 Grundlagen der psychologischen Diagnostik. Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.1 Grundlagen der psychologischen Diagnostik. Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.1 Grundlagen der psychologischen Diagnostik Wintersemester 2008/ 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Bioäquivalenz Felix Weiland :55 1 von 7

Bioäquivalenz Felix Weiland :55 1 von 7 Bioäquivalenz Felix Weiland 30.07.03 10:55 1 von 7 Zulassungskriterien für Arzneimittel: 1. nachgewiesene Wirksamkeit 2. nachgewiesene Unbedenklichkeit 3. ordnungsgemäße pharm. Qualität 1. ALLGEMEINE KRITERIEN

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

3.2 Grundlagen der Testtheorie Einleitung

3.2 Grundlagen der Testtheorie Einleitung 3.2 Grundlagen der Testtheorie 3.2.1 Einleitung Hochschule Magdeburg-Stendal Rehabilitationspsychologie B.Sc. Prof. Dr. Gabriele Helga Franke Oktober 2010 Schlaglichter Definition eines Tests nach Lienert

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung

Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung K. Molt Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 3. Juni 2007 K. Molt (Fachgeb. IAC) 3. Juni 2007 1 / 41

Mehr

Bewältigungsstrategien von Patienten vor und nach Nierentransplantation

Bewältigungsstrategien von Patienten vor und nach Nierentransplantation Bewältigungsstrategien von Patienten vor und nach Nierentransplantation Einsatz des Essener Fragebogens zur Krankheitsverarbeitung (EFK) Melanie Jagla¹, Jens Reimer 2, Thomas Philipp 3 & Gabriele Helga

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Psychometrische Kriterien der deutschsprachigen Version des Cardiff Wound Impact Schedule / CWIS

Psychometrische Kriterien der deutschsprachigen Version des Cardiff Wound Impact Schedule / CWIS Psychometrische Kriterien der deutschsprachigen Version des Cardiff Wound Impact Schedule / CWIS Eva-Maria Panfil 12, Christine Halbig 2, Herbert Mayer 3 1 Institut für Angewandte Pflegewissenschaft IPW-FHS,

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Rekodierung invertierter Items

Rekodierung invertierter Items 16.Testkonstruktion Items analysieren (imrahmen der KTT) Pretest Aussortieren / Umschreiben von unverständlichen, uneindeutigen oder inakzeptablen Items empirische Prüfung Kennwerte: Itemschwierigkeit

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Forschungsmethoden VORLESUNG SS 2017

Forschungsmethoden VORLESUNG SS 2017 Forschungsmethoden VORLESUNG SS 2017 SOPHIE LUKES Überblick Letzte Woche: - Stichprobenziehung und Stichprobeneffekte Heute: -Gütekriterien I Rückblick Population und Stichprobe verschiedene Arten der

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1

SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1 SPSS-Beispiel zu Kapitel 6: Methoden der Reliabilitätsbestimmung 1 Karin Schermelleh-Engel & Christina S. Werner Inhaltsverzeichnis 1 Empirischer Datensatz... 1 2 Interne Konsistenz... 2 3 Split-Half-Reliabilität...

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr