Hüffertgymnasium Warburg. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hüffertgymnasium Warburg. Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II. Mathematik"

Transkript

1 Hüffertgymnasium Warburg Schulinterner Lehrplan zum Kernlehrplan für das Gymnasium Sekundarstufe II Mathematik Entwurf:

2 Inhalt 1. Fachgruppe Mathematik am Hüffertgymnasium Entscheidungen zum Unterricht Übersichtsraster Unterrichtsvorhaben Übersicht über die Unterrichtsvorhaben Konkretisierte Unterrichtsvorhaben Einführungsphase Einführungsphase Funktionen und Analysis (A) Einführungsphase Stochastik (S) Einführungsphase Analytische Geometrie und Lineare Algebra (G) Konkretisierte Unterrichtsvorhaben Qualifikationsphase Grundkurs Qualifikationsphase Grundkurs Funktionen und Analysis (A) Teil I Qualifikationsphase Grundkurs Analytische Geometrie und Lineare Algebra (G) Qualifikationsphase Grundkurs Funktionen und Analysis (A) Teil II Qualifikationsphase Grundkurs Stochastik (S) Qualifikationsphase Grundkurs - übergreifende Problemstellungen Konkretisierte Unterrichtsvorhaben Qualifikationsphase Leistungskurs Qualifikationsphase Leistungskurs Funktionen und Analysis (A) Teil I Qualifikationsphase Leistungskurs Analytische Geometrie und Lineare Algebra (G) Qualifikationsphase Leistungskurs Funktionen und Analysis (A) Teil II Qualifikationsphase Leistungskurs Stochastik (S) Qualifikationsphase Leistungskurs - übergreifende Problemstellungen Grundsätze der fachmethodischen und fachdidaktischen Arbeit Überfachliche Grundsätze: Fachliche Grundsätze: Grundsätze der Leistungsbewertung und Leistungsrückmeldung Verbindliche Absprachen: Überprüfung der schriftlichen Leistung Überprüfung der sonstigen Leistung Konkretisierte Kriterien: Lehr- und Lernmittel Qualitätssicherung und Evaluation Studien- und Berufswahl

3 1. Fachgruppe Mathematik am Hüffertgymnasium Das Hüffertgymnasium ist eines von zwei öffentlichen Gymnasien der Stadt Warburg. Es ist ein ländlich gelegenes Gymnasium mit weitem Einzugsgebiet und hat eine entsprechend heterogene Schülerschaft, was den sozialen und ethnischen Hintergrund betrifft. Das Hüffertgymnasium ist in der Sekundarstufe I in der Regel vierzügig und wird als Halbtagsgymnasium geführt. Seit dem Schuljahr 2014/2015 wird aufsteigend ab Klasse 5 in einer Klasse pro Jahrgang inklusiv unterrichtet. In die Einführungsphase der Sekundarstufe II wurden in den letzten Jahren regelmäßig etwa 50 Schülerinnen und Schüler neu aufgenommen und in Mathematik, Deutsch und Englisch auf die parallelen Kurse gleichmäßig verteilt. Zu Beginn der Einführungsphase ist es das Ziel, bei allen Schülerinnen und Schülern gleiche Voraussetzungen zu ermöglichen. Aus diesem Grund wird im ersten Quartal des ersten Halbjahres eine zusätzliche Zeitstunde Mathematik unterrichtet. In der Regel werden in der Einführungsphase sechs parallele Grundkurse eingerichtet, aus denen sich für die Q-Phase zwei Leistungs- und vier Grundkurse entwickeln. Ein Leistungskurs wird dabei meistens mit Schülern des benachbarten Gymnasiums Marianum ergänzt. Der Unterricht findet im 60-Minuten-Takt statt, die Kursblockung sieht in drei Halbjahren für Grundkurse zwei Einzelstunden, für Leistungskurse eine Doppelstunde und zwei Einzelstunden vor. In einem Halbjahr findet der Unterricht für Grundkurse in drei Einzelstunden und für Leistungskurse in eine Doppelstunde und eine Einzelstunde statt. Den im Schulprogramm ausgewiesenen Zielen, Schülerinnen und Schüler ihren Begabungen und Neigungen entsprechend individuell zu fördern und ihnen Orientierung für ihren weiteren Lebensweg zu bieten, fühlt sich die Fachgruppe Mathematik in besonderer Weise verpflichtet: Durch Vertiefungskurse und durch regelmäßige Sprechstunden der Lehrkräfte und dort getroffene Lernvereinbarungen, werden Schülerinnen und Schüler mit Übergangs- und Lernschwierigkeiten intensiv unterstützt. Schülerinnen und Schüler aller Klassen- und Jahrgangsstufen werden zur Teilnahme an den vielfältigen Wettbewerben im Fach Mathematik angehalten und, wo erforderlich, begleitet. Für den Fachunterricht aller Stufen besteht Konsens darüber, dass -wo immer möglichmathematische Fachinhalte mit Lebensweltbezug vermittelt werden. Für die Sekundarstufe I gibt es dazu verbindliche Absprachen mit anderen Fachgruppen, wie z. B. Geographie, Politik und Biologie. Besonders eng ist die Zusammenarbeit mit der Fachgruppe Physik, was deshalb leicht fällt, da sie eine echte Teilmenge der Fachgruppe Mathematik darstellt. In der Sekundarstufe II kann verlässlich darauf aufgebaut werden, dass die Verwendung von Kontexten im Mathematikunterricht bekannt ist. In der Sekundarstufe I wird ein wissenschaftlicher Taschenrechner ab Klasse 7 verwendet, dynamische Geometrie-Software und Tabellenkalkulation werden an geeigneten Stellen im Unterricht genutzt, der Umgang mit ihnen eingeübt. Dazu stehen in der Schule zwei PC- Unterrichtsräume und mehrere Laptops zur Verfügung. In der Sekundarstufe II kann deshalb 3

4 davon ausgegangen werden, dass die Schülerinnen und Schüler mit den grundlegenden Möglichkeiten dieser digitalen Werkzeuge vertraut sind. Der grafikfähige Taschenrechner wird in der Einführungsphase eingeführt. 2. Entscheidungen zum Unterricht Die Darstellung der Unterrichtsvorhaben im schulinternen Lehrplan besitzt den Anspruch, sämtliche im Kernlehrplan angeführten Kompetenzen abzudecken. Dies entspricht der Verpflichtung jeder Lehrkraft, Schülerinnen und Schülern Lerngelegenheiten zu ermöglichen, so dass alle Kompetenzerwartungen des Kernlehrplans von ihnen erfüllt werden können. Die entsprechende Umsetzung erfolgt auf zwei Ebenen: der Übersichts- und der Konkretisierungsebene. Im Übersichtsraster Unterrichtsvorhaben (Kapitel 2.1.1) wird die Verteilung der Unterrichtsvorhaben dargestellt. Sie ist laut Beschluss der Fachkonferenz verbindlich für die Unterrichtsvorhaben I, II und III der Einführungsphase und für die Unterrichtsphasen der Qualifikationsphase. Die zeitliche Abfolge der Unterrichtsvorhaben IV bis VIII der Einführungsphase ist jeweils auf die Vorgaben zur Vergleichsklausur abzustimmen. Das Übersichtsraster dient dazu, den Kolleginnen und Kollegen einen schnellen Überblick über die Zuordnung der Unterrichtsvorhaben zu den einzelnen Jahrgangsstufen sowie den im Kernlehrplan genannten Kompetenzen, Inhaltsfeldern und inhaltlichen Schwerpunkten zu verschaffen. Um Klarheit für die Lehrkräfte herzustellen und die Übersichtlichkeit zu gewährleisten, werden in der Kategorie Kompetenzen an dieser Stelle nur die übergeordneten Kompetenzerwartungen ausgewiesen, während die konkretisierten Kompetenzerwartungen erst auf der Ebene konkretisierter Unterrichtsvorhaben Berücksichtigung finden. Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Um Spielraum für Vertiefungen, individuelle Förderung, besondere Schülerinteressen oder aktuelle Themen zu erhalten, wurden im Rahmen dieses schulinternen Lehrplans ca. 75 Prozent der Bruttounterrichtszeit verplant. Während der Fachkonferenzbeschluss zum Übersichtsraster Unterrichtsvorhaben zur Gewährleistung vergleichbarer Standards sowie zur Absicherung von Kurswechslern und Lehrkraftwechseln für alle Mitglieder der Fachkonferenz Bindekraft entfalten soll, besitzt die Ausweisung konkretisierter Unterrichtsvorhaben (Kapitel 2.1.2) empfehlenden Charakter. Referendarinnen und Referendaren sowie neuen Kolleginnen und Kollegen dienen diese vor allem zur standardbezogenen Orientierung in der neuen Schule, aber auch zur Verdeutlichung von unterrichtsbezogenen fachgruppeninternen Absprachen zu didaktischmethodischen Zugängen, fächerübergreifenden Kooperationen, Lernmitteln und -orten sowie vorgesehenen Leistungsüberprüfungen, die im Einzelnen auch den Kapiteln 2.2 bis 2.4 zu entnehmen sind. Begründete Abweichungen von den vorgeschlagenen Vorgehensweisen bezüglich der konkretisierten Unterrichtsvorhaben sind im Rahmen der pädagogischen Freiheit der Lehrkräfte jederzeit möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle prozess- und inhaltsbezogenen Kompetenzen des Kernlehrplans Berücksichtigung finden. Dies ist durch entsprechende Kommunikation innerhalb der Fachkonferenz zu gewährleisten. 4

5 2.1. Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben I: Einführungsphase Unterrichtsvorhaben II: Thema: Wiederholung grundlegender Inhalte aus der Sekundarstufe 1 zur Sicherstellung einer gemeinsamen Basis (E-A1) Zentrale Kompetenzen: Problemlösen Modellieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Lineare und quadratische Funktionen Termumformungen Gleichungen und Gleichungssysteme Zeitbedarf: 10 Std. Unterrichtsvorhaben III: Thema: Von der durchschnittlichen zur lokalen Änderungsrate, Ableitungsfunktion und Ableitungsregeln (E-A3) Zentrale Kompetenzen: Problemlösen Argumentieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Grundverständnis des Ableitungsbegriffs Differentialrechnung ganzrationaler Funktionen Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A2) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Grundlegende Eigenschaften von Potenz-, Exponential- und Sinusfunktionen Zeitbedarf: 10 Std. Unterrichtsvorhaben IV: Thema: Entwicklung und Anwendung von Kriterien und Verfahren zur Untersuchung von Funktionen (E-A4) Zentrale Kompetenzen: Problemlösen Argumentieren Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Differentialrechnung ganzrationaler Funktionen Zeitbedarf: 18 Std. Zeitbedarf: 9 Std. 5

6 Unterrichtsvorhaben V: Thema: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Einführungsphase Fortsetzung Unterrichtsvorhaben VI: Thema: Testergebnisse richtig interpretieren Umgang mit bedingten Wahrscheinlichkeiten (E-S2) Zentrale Kompetenzen: Modellieren Kommunizieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Mehrstufige Zufallsexperimente Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Bedingte Wahrscheinlichkeiten Zeitbedarf: 8 Std. Unterrichtsvorhaben VII: Thema: Unterwegs in 3D Koordinatisierungen des Raumes (E-G1) Zentrale Kompetenzen: Modellieren Kommunizieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Koordinatisierungen des Raumes Zeitbedarf: 8 Std. Unterrichtsvorhaben VIII: Thema: Vektoren bringen Bewegung in den Raum (E-G2) Zentrale Kompetenzen: Problemlösen Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Vektoren und Vektoroperationen Zeitbedarf: 4 Std. Zeitbedarf: 6 Std. Summe Einführungsphase: 73 Stunden 6

7 Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Thema: Optimierungsprobleme (Q-GK-A1) Zentrale Kompetenzen: Modellieren Problemlösen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Funktionen als mathematische Modelle Zeitbedarf: 9 Std. Unterrichtsvorhaben Q1-II : Thema: Funktionen beschreiben Formen Modellieren von Sachsituationen mit ganzrationalen Funktionen (Q-GK-A2) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Inhaltsfelder: Funktionen und Analysis (A) Lineare Algebra (G) Inhaltliche Schwerpunkte: Funktionen als mathematische Modelle Lineare Gleichungssysteme Zeitbedarf: 15 Std. Unterrichtsvorhaben Q1-III: Thema: Natürlich: Exponentialfunktionen (Q- GK-A3) Zentrale Kompetenzen: Unterrichtsvorhaben Q1-IV: Thema: Beschreibung von Bewegungen und Schattenwurf mit Geraden (Q-GK-G1) Zentrale Kompetenzen: Problemlösen Werkzeuge nutzen Modellieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Fortführung der Differentialrechnung Darstellung und Untersuchung geometrischer Objekte (Geraden) Zeitbedarf: 9 Std. Zeitbedarf: 9 Std. 7

8 Qualifikationsphase (Q1) GRUNDKURS (Fortsetzung) Unterrichtsvorhaben Q1-V: Thema: Lineare Algebra als Schlüssel zur Lösung von geometrischen Problemen (Q- GK-G2) Zentrale Kompetenzen: Unterrichtsvorhaben Q1-VI: Thema: Eine Sache der Logik und der Begriffe: Untersuchung von Lagebeziehungen (Q-GK-G3) Zentrale Kompetenzen: Problemlösen Werkzeuge nutzen Argumentieren Kommunizieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltliche Schwerpunkte: Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Darstellung und Untersuchung geometrischer Objekte (Ebenen) Lineare Gleichungssysteme Lagebeziehungen Zeitbedarf: 9 Std. Unterrichtsvorhaben Q1-VII : Thema: Räume vermessen mit dem Skalarprodukt Polygone und Polyeder untersuchen (Q-GK-G4) Zentrale Kompetenzen: Problemlösen Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Skalarprodukt Zeitbedarf: 9 Std Zeitbedarf: 6 Std. Unterrichtsvorhaben Q1-VIII: Thema: Von der Änderungsrate zum Bestand (Q-GK-A4) Zentrale Kompetenzen: Kommunizieren Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Grundverständnis des Integralbegriffs Zeitbedarf: 9 Std. 8

9 Unterrichtsvorhaben Q1-IX: Thema: Von der Randfunktion zur Integralfunktion (Q-GK-A5) Zentrale Kompetenzen: Qualifikationsphase (Q1) GRUNDKURS (Fortsetzung) Argumentieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Integralrechnung Zeitbedarf: 10 Std. Summe Qualifikationsphase (Q1) GRUNDKURS 85 Stunden Qualifikationsphase (Q2) GRUNDKURS Unterrichtsvorhaben Q2-I: Thema: Modellieren (nicht nur) mit Exponentialfunktionen (Q-GK-A6) Zentrale Kompetenzen: Modellieren Inhaltsfeld: Funktionen und Analysis (A) Inhaltliche Schwerpunkte: Fortführung der Differentialrechnung Integralrechnung Zeitbedarf: 12 Std. Unterrichtsvorhaben Q2-II: Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q-GK-S1) Zentrale Kompetenzen: Modellieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Kenngrößen von Wahrscheinlichkeitsverteilungen Zeitbedarf: 6 Std. 9

10 Unterrichtsvorhaben Q2-III: Thema: Treffer oder nicht? Bernoulliexperimente und Binomialverteilung (Q-GK-S2) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Inhaltsfeld: Stochastik (S) Unterrichtsvorhaben Q2-VI: Thema: Modellieren mit Binomialverteilungen (Q-GK-S3) Zentrale Kompetenzen: Modellieren Argumentieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Inhaltlicher Schwerpunkt: Binomialverteilung Binomialverteilung Zeitbedarf: 9 Std. Zeitbedarf: 9 Std. Unterrichtsvorhaben Q2-V : Thema: Von Übergängen und Prozessen (Q-GK-S4) Zentrale Kompetenzen: Modellieren Argumentieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Stochastische Prozesse Zeitbedarf: 9 Std. Unterrichtsvorhaben Q2-VI Thema: Strategieentwicklung bei Problemsituationen und Beweisaufgaben (Q-GK) Zentrale Kompetenzen: Modellieren Problemlösen Inhaltsfeld: Analytische Geometrie Analysis Stochastik Inhaltlicher Schwerpunkt: Verknüpfung aller Kompetenzen Zeitbedarf: 10 Stunden Summe Qualifikationsphase (Q2) GRUNDKURS 54 Stunden 10

11 Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Thema: Optimierungsprobleme (Q-LK-A1) Zentrale Kompetenzen: Modellieren Problemlösen Inhaltsfeld: Funktionen und Analysis (A) Inhaltliche Schwerpunkte: Funktionen als mathematische Modelle Fortführung der Differentialrechnung Unterrichtsvorhaben Q1-II: Thema: Funktionen beschreiben Formen Modellieren von Sachsituationen mit Funktionen (Q-LK-A2) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Inhaltsfelder: Funktionen und Analysis (A) Lineare Algebra (G) Inhaltliche Schwerpunkte: Zeitbedarf: 20 Std. Funktionen als mathematische Modelle Lineare Gleichungssysteme Zeitbedarf: 20 Std. Unterrichtsvorhaben Q1-III: Thema: Natürlich: Exponentialfunktionen und Logarithmus (Q-LK-A3) Zentrale Kompetenzen: Unterrichtsvorhaben Q1-IV: Thema: Beschreibung von Bewegungen und Schattenwurf mit Geraden (Q-LK-G1) Zentrale Kompetenzen: Problemlösen Werkzeuge nutzen Modellieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Fortführung der Differentialrechnung Darstellung und Untersuchung geometrischer Objekte (Geraden) Zeitbedarf: 20 Std. Zeitbedarf: 10 Std. Qualifikationsphase (Q1) LEISTUNGSKURS Fortsetzung 11

12 Unterrichtsvorhaben Q1-V: Thema: Die Welt vermessen das Skalarprodukt und seine ersten Anwendungen (Q-LK-G2) Zentrale Kompetenzen: Problemlösen Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Skalarprodukt Zeitbedarf: 10Std. Unterrichtsvorhaben Q1-VI: Thema: Ebenen als Lösungsmengen von linearen Gleichungen und ihre Beschreibung durch Parameter (Q-LK-G3) Zentrale Kompetenzen: Argumentieren Kommunizieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Darstellung und Untersuchung geometrischer Objekte (Ebenen) Zeitbedarf: 10 Std. Unterrichtsvorhaben Q1-VII: Thema: Lagebeziehungen und Abstandsprobleme bei geradlinig bewegten Objekten (Q-LK-G4) Zentrale Kompetenzen: Argumentieren Kommunizieren Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltlicher Schwerpunkt: Lagebeziehungen und Abstände (von Geraden) Unterrichtsvorhaben Q2-VIII: Thema: Untersuchungen an Polyedern (Q- LK-G5) Zentrale Kompetenzen: Problemlösen Werkzeuge nutzen Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G) Inhaltliche Schwerpunkte: Lagebeziehung und Abstände (von Ebenen) Lineare Gleichungssysteme Zeitbedarf: 10 Std. Zeitbedarf: 10 Std. 12

13 Qualifikationsphase (Q1) LEISTUNGSKURS Fortsetzung Unterrichtsvorhaben Q1-IX Thema: Von der Änderungsrate zum Bestand (Q-LK-A4) Zentrale Kompetenzen: Unterrichtsvorhaben Q1-X: Thema: Von der Randfunktion zur Integralfunktion (Q-LK-A5) Zentrale Kompetenzen: Kommunizieren Argumentieren Werkzeuge nutzen Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Grundverständnis des Integralbegriffs Zeitbedarf: 10 Std. Inhaltsfeld: Funktionen und Analysis (A) Inhaltlicher Schwerpunkt: Integralrechnung Zeitbedarf: 20 Std. Summe Qualifikationsphase (Q1) Leistungskurs 140 Stunden Qualifikationsphase (Q2) Leistungskurs Unterrichtsvorhaben Q2-I Thema: Modellieren (nicht nur) mit Exponentialfunktionen (Q-LK-A6) Zentrale Kompetenzen: Modellieren Unterrichtsvorhaben Q2-II: Thema: Von stochastischen Modellen, Zufallsgrößen, Wahrscheinlichkeitsverteilungen und ihren Kenngrößen (Q-LK-S1) Zentrale Kompetenzen: Inhaltsfeld: Funktionen und Analysis (A) Modellieren Inhaltliche Schwerpunkte: Fortführung der Differentialrechnung Integralrechnung Zeitbedarf: 20 Std. Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Kenngrößen von Wahrscheinlichkeitsverteilungen Zeitbedarf: 5 Std. 13

14 Qualifikationsphase (Q2) LEISTUNGSKURS Fortsetzung Unterrichtsvorhaben Q2-III: Thema: Treffer oder nicht? Bernoulliexperimente und Binomialverteilungen (Q-LK-S2) Zentrale Kompetenzen: Modellieren Werkzeuge nutzen Inhaltsfeld: Stochastik (S) Unterrichtsvorhaben Q2-IV: Thema: Untersuchung charakteristischer Größen von Binomialverteilungen (Q-LK-S3) Zentrale Kompetenzen: Problemlösen Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Inhaltlicher Schwerpunkt: Binomialverteilung Binomialverteilung Zeitbedarf: 5 Std Zeitbedarf: 10 Std. Unterrichtsvorhaben Q2-V: Thema: Ist die Glocke normal? (Q-LK-S4) Zentrale Kompetenzen: Modellieren Problemlösen Werkzeuge nutzen Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Normalverteilung Zeitbedarf: 10 Std. Unterrichtsvorhaben Q2-VI: Thema: Signifikant und relevant? Testen von Hypothesen (Q-LK-S5) Zentrale Kompetenzen: Modellieren Kommunizieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Testen von Hypothesen Zeitbedarf: 10 Std. Qualifikationsphase (Q2) LEISTUNGSKURS Fortsetzung 14

15 Unterrichtsvorhaben Q2-VII: Thema: Von Übergängen und Prozessen (Q- LK-S6) Zentrale Kompetenzen: Modellieren Argumentieren Inhaltsfeld: Stochastik (S) Inhaltlicher Schwerpunkt: Stochastische Prozesse Zeitbedarf: 10 Std. Unterrichtsvorhaben Q2-VIII Thema: Strategieentwicklung bei Problemsituationen und Beweisaufgaben (Q-LK) Zentrale Kompetenzen: Modellieren Problemlösen Inhaltsfeld: Analytische Geometrie Analysis Stochastik Inhaltlicher Schwerpunkt: Verknüpfung aller Kompetenzen Zeitbedarf: 10 Stunden Summe Qualifikationsphase (Q2) LEISTUNGSKURS 80 Stunden 2.2. Übersicht über die Unterrichtsvorhaben E-Phase Unterrichtsvorhaben Thema Stundenzahl I E-A1 10 II E-A2 10 III E-A3 18 IV E-A4 9 V E-S1 8 VI E-S2 8 VII E-G1 4 VIII E-G2 6 Summe: 73 15

16 Q1 Grundkurse Unterrichtsvorhaben Thema Stundenzahl I Q-GK-A1 9 II Q-GK-A2 15 III Q-GK-A3 9 IV Q-GK-G1 9 V Q-GK-G2 9 VI Q-GK-G3 6 VII Q-GK-G4 9 VIII Q-GK-A4 9 IX Q-GK-A5 10 Summe: 85 Q2 Grundkurse Unterrichtsvorhaben Thema Stundenzahl I Q-GK-A6 12 II Q-GK-S1 6 III Q-GK-S2 9 IV Q-GK-S3 9 V Q-GK-S4 9 VI Q-GK-G6 10 Summe: 55 16

17 Q1 Leistungskurse Unterrichtsvorhaben Thema Stundenzahl I Q-LK-A1 20 II Q-LK-A2 20 III Q-LK-A3 20 IV Q-LK-G1 10 V Q-LK-G2 10 VI Q-LK-G3 10 VII Q-LK-G4 10 VIII Q-LK-G5 10 IX Q-LK-A4 10 X Q-LK-A5 20 Summe: 140 Q2 Leistungskurse Unterrichtsvorhaben Thema Stundenzahl I Q-LK-A6 20 II Q-LK-S1 5 III Q-LK-S2 10 IV Q-LK-S3 5 V Q-LK-S4 10 VI Q-LK-S5 10 VII Q-LK-S6 10 VIII Q-LK-G6 10 Summe: 80 17

18 2.3. Konkretisierte Unterrichtsvorhaben Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Wiederholung grundlegender Inhalte aus der Sek 1 zur Sicherstellung einer gemeinsamen Basis (E-A1) Zu entwickelnde Kompetenzen Vorhabenbezogene Absprachen und Empfehlungen Inhaltsbezogene Kompetenzen: beschreiben und berechnen die Eigenschaften von linearen Funktionen (Geradengleichung, Steigung, Schnittpunkte) beschreiben und berechnen die Eigenschaften von quadratischen Funktionen (Funktionsgleichung, Scheitelpunkte, Nullstellen, Transformationen) nutzen algebraische Gesetze zum Umformen von Termen nutzen algebraische Gesetze zum Lösen von Gleichungen und Gleichungssystemen Prozessbezogene Kompetenzen (Schwerpunkte): Problemlösen analysieren und strukturieren die Problemsituation (Erkunden) erkennen Muster und Beziehungen (Erkunden) setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein Modellieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) 18 Algebraische Rechentechniken werden wiederholt und geübt. Hilfreich kann es sein, dabei die Kompetenzen der Mitschülerinnen und Mitschüler (z. B. durch Kurzvorträge) zu nutzen. Ein besonderes Augenmerk muss in diesem Unterrichtsvorhaben auf die Einführung in die elementaren Bedienkompetenzen der verwendeten Software und des GTR gerichtet werden.

19 Werkzeuge nutzen nutzen grafikfähige Taschenrechner verwenden verschiedene digitale Werkzeuge zum Darstellen von Funktionen grafisch und als Wertetabelle zielgerichteten Variieren der Parameter von Funktionen 19

20 Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A2) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten sowie quadratischen und kubischen Wurzelfunktionen beschreiben Wachstumsprozesse mithilfe linearer Funktionen und Exponentialfunktionen wenden einfache Transformationen (Streckung, Verschiebung) auf Funktionen (Sinusfunktion, quadratische Funktionen, Potenzfunktionen, Exponentialfunktionen) an und deuten die zugehörigen Parameter Prozessbezogene Kompetenzen (Schwerpunkte): Modellieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung(Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) Vorhabenbezogene Absprachen und Empfehlungen Algebraische Rechentechniken werden grundsätzlich parallel vermittelt und geübt. Hilfreich kann es sein, dabei die Kompetenzen der Mitschülerinnen und Mitschüler (z. B. durch Kurzvorträge) zu nutzen. Als Kontext für die Beschäftigung mit Wachstumsprozessen können zunächst Ansparmodelle (insbesondere lineare und exponentielle) betrachtet und mithilfe einer Tabellenkalkulation verglichen werden. Für kontinuierliche Prozesse und den Übergang zu Exponentialfunktionen werden verschiedene Kontexte (z. B. Bakterienwachstum, Abkühlung) untersucht. Der entdeckende Einstieg in Transformationen kann etwa über das Beispiel Sonnenscheindauer aus den GTR-Materialien erfolgen, also zunächst über die Sinusfunktion. Anknüpfend an die Erfahrungen aus der SI werden dann quadratische Funktionen (Scheitelpunktform) und Parabeln unter dem Transformationsaspekt betrachtet. Systematisches Erkunden mithilfe des GTR eröffnet den Zugang zu Potenzfunktionen. Werkzeuge nutzen nutzen Tabellenkalkulation, Funktionenplotter und grafikfähige Taschenrechner verwenden verschiedene digitale Werkzeuge zum Darstellen von Funktionen grafisch und als Wertetabelle zielgerichteten Variieren der Parameter von Funktionen 20

21 Thema: Von der durchschnittlichen zur lokalen Änderungsrate, Ableitungsfunktion und Ableitungsregeln (E-A3) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: berechnen durchschnittliche und lokale Änderungsraten und interpretieren sie im Kontext erläutern qualitativ auf der Grundlage eines propädeutischen Grenzwertbegriffs an Beispielen den Übergang von der durchschnittlichen zur lokalen Änderungsrate deuten die Tangente als Grenzlage einer Folge von Sekanten deuten die Ableitung an einer Stelle als lokale Änderungsrate/ Tangentensteigung beschreiben und interpretieren Änderungsraten funktional (Ableitungsfunktion) leiten Funktionen graphisch ab begründen Eigenschaften von Funktionsgraphen (Monotonie, Extrempunkte) mit Hilfe der Graphen der Ableitungsfunktionen nutzen die Ableitungsregel für Potenzfunktionen mit natürlichen Exponenten wenden die Summen- und Faktorregel auf ganzrationale Funktionen an Prozessbezogene Kompetenzen (Schwerpunkte): Problemlösen analysieren und strukturieren die Problemsituation (Erkunden) erkennen Muster und Beziehungen (Erkunden) wählen geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung aus (Lösen) Vorhabenbezogene Absprachen und Empfehlungen Der Begriff der lokalen Änderungsrate wird im Sinne eines spiraligen Curriculums qualitativ und heuristisch verwendet. Als Kontext für den Übergang von der durchschnittlichen zur lokalen Änderungsrate wird die vermeintliche Diskrepanz zwischen der Durchschnittsgeschwindigkeit bei einer längeren Fahrt und der durch ein Messgerät ermittelten Momentangeschwindigkeit genutzt. Neben zeitabhängigen Vorgängen soll auch ein geometrischer Kontext betrachtet werden. Im Zusammenhang mit dem graphischen Ableiten und dem Begründen der Eigenschaften eines Funktionsgraphen sollen die Schülerinnen und Schüler in besonderer Weise zum Vermuten, Begründen und Präzisieren ihrer Aussagen angehalten werden. Hier ist auch der Ort, den Begriff des Extrempunktes (lokal vs. global) zu präzisieren und dabei auch Sonderfälle, wie eine konstante Funktion, zu betrachten, während eine Untersuchung der Änderung von Änderungen erst zu einem späteren Zeitpunkt des Unterrichts (Q1) vorgesehen ist. Es wird die Frage aufgeworfen, ob mehr als numerische und qualitative Untersuchungen in der Differentialrechnung möglich sind. Für eine quadratische Funktion wird der Grenzübergang (z.b. h-methode ) exemplarisch durchgeführt. Um die Ableitungsregel für höhere Potenzen zu vermuten, nutzen die Schüler den GTR und die Möglichkeit, Werte der Ableitungsfunktionen näherungsweise zu tabellieren und zu plotten. Eine Beweisidee kann optional erarbeitet werden. Der Unterricht erweitert besonders Kompetenzen aus dem Bereich des Vermutens. 21

22 Argumentieren (Vermuten) stellen Vermutungen auf unterstützen Vermutungen beispielgebunden präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur nutzen mathematische Regeln bzw. Sätze und sachlogische Argumente für Begründungen (Begründen) überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können (Beurteilen) Werkzeuge nutzen verwenden verschiedene digitale Werkzeuge zum Darstellen von Funktionen grafisch und als Wertetabelle grafischen Messen von Steigungen... Lösen von Gleichungen zielgerichteten Variieren der Parameter von Funktionen nutzen mathematische Hilfsmittel und digitale Werkzeuge zum Erkunden und Recherchieren, Berechnen und Darstellen Kontexte spielen in diesem Unterrichtsvorhaben eine untergeordnete Rolle. Quadratische Funktionen können aber stets als Weg-Zeit-Funktion bei Fall- und Wurf- und anderen gleichförmig beschleunigten Bewegungen gedeutet werden. Ganzrationale Funktionen vom Grad 3 werden Gegenstand einer qualitativen Erkundung mit dem GTR, wobei Parameter gezielt variiert werden. Bei der Klassifizierung der Formen können die Begriffe aus Unterrichtsvorhaben II (Thema E-A2) eingesetzt werden. Zusätzlich werden die Symmetrie zum Ursprung und das Globalverhalten untersucht. Die Vorteile einer Darstellung mithilfe von Linearfaktoren und die Bedeutung der Vielfachheit einer Nullstelle werden hier thematisiert. Durch gleichzeitiges Visualisieren der Ableitungsfunktion erklären Lernende die Eigenschaften von ganzrationalen Funktionen 3. Grades durch die Eigenschaften der ihnen vertrauten quadratischen Funktionen. Zugleich entdecken sie die Zusammenhänge zwischen charakteristischen Punkten, woran in Unterrichtsvorhaben VI (Thema E-A4) angeknüpft wird. 22

23 Thema: Entwicklung und Anwendung von Kriterien und Verfahren zur Untersuchung von Funktionen (E-A4) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: leiten Funktionen graphisch ab nennen die Kosinusfunktion als Ableitung der Sinusfunktion begründen Eigenschaften von Funktionsgraphen (Monotonie, Extrempunkte) mit Hilfe der Graphen der Ableitungsfunktionen nutzen die Ableitungsregel für Potenzfunktionen mit natürlichem Exponenten wenden die Summen- und Faktorregel auf ganzrationale Funktionen an lösen Polynomgleichungen, die sich durch einfaches Ausklammern oder Substituieren auf lineare und quadratische Gleichungen zurückführen lassen, ohne digitale Hilfsmittel verwenden das notwendige Kriterium und das Vorzeichenwechselkriterium zur Bestimmung von Extrempunkten unterscheiden lokale und globale Extrema im Definitionsbereich verwenden am Graphen oder Term einer Funktion ablesbare Eigenschaften als Argumente beim Lösen von inner- und außermathematischen Problemen Prozessbezogene Kompetenzen (Schwerpunkte): Problemlösen erkennen Muster und Beziehungen (Erkunden) nutzen heuristische Strategien und Prinzipien (hier: Zurückführen auf Bekanntes) (Lösen) wählen geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung aus (Lösen) Vorhabenbezogene Absprachen und Empfehlungen Ein kurzes Wiederaufgreifen des graphischen Ableitens am Beispiel der Sinusfunktion führt zur Entdeckung, dass die Kosinusfunktion deren Ableitung ist. Für ganzrationale Funktionen werden die Zusammenhänge zwischen den Extrempunkten der Ausgangsfunktion und ihrer Ableitung durch die Betrachtung von Monotonieintervallen und der vier möglichen Vorzeichenwechsel an den Nullstellen der Ableitung untersucht. Die Schülerinnen und Schüler üben damit, vorstellungsbezogen zu argumentieren. Die Untersuchungen auf Symmetrien und Globalverhalten werden fortgesetzt. Bezüglich der Lösung von Gleichungen im Zusammenhang mit der Nullstellenbestimmung wird durch geeignete Aufgaben Gelegenheit zum Üben von Lösungsverfahren ohne Verwendung des GTR gegeben. Der logische Unterschied zwischen notwendigen und hinreichenden Kriterien kann durch Multiple-Choice-Aufgaben vertieft werden, die rund um die Thematik der Funktionsuntersuchung von Polynomfunktionen Begründungsanlässe und die Möglichkeit der Einübung zentraler Begriffe bieten. Neben den Fällen, in denen das Vorzeichenwechselkriterium angewendet wird, werden die Lernenden auch mit Situationen konfrontiert, in denen sie mit den Eigenschaften des Graphen oder Terms argumentieren. So erzwingt z. B. Achsensymmetrie die Existenz eines Extrempunktes auf der Symmetrieachse. Beim Lösen von inner- und außermathematischen Problemen können auch Tangentengleichungen bestimmt werden. 23

24 Argumentieren präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur (Vermuten) nutzen mathematische Regeln bzw. Sätze und sachlogische Argumente für Begründungen (Begründen) berücksichtigen vermehrt logische Strukturen (notwendige / hinreichende Bedingung, Folgerungen [ ]) (Begründen) erkennen fehlerhafte Argumentationsketten und korrigieren sie (Beurteilen) 24

25 Einführungsphase Stochastik (S) Thema: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: deuten Alltagssituationen als Zufallsexperimente simulieren Zufallsexperimente verwenden Urnenmodelle zur Beschreibung von Zufallsprozessen stellen Wahrscheinlichkeitsverteilungen auf und führen Erwartungswertbetrachtungen durch beschreiben mehrstufige Zufallsexperimente und ermitteln Wahrscheinlichkeiten mit Hilfe der Pfadregeln Prozessbezogene Kompetenzen (Schwerpunkte): Modellieren treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor (Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) Vorhabenbezogene Absprachen und Empfehlungen Beim Einstieg ist eine Beschränkung auf Beispiele aus dem Bereich Glücksspiele zu vermeiden. Einen geeigneten Kontext bietet die Methode der Zufallsantworten bei sensitiven Umfragen. Zur Modellierung von Wirklichkeit werden durchgängig Simulationen auch unter Verwendung von digitalen Werkzeugen (GTR, Tabellenkalkulation) geplant und durchgeführt (Zufallsgenerator). Das Urnenmodell wird auch verwendet, um grundlegende Zählprinzipien wie das Ziehen mit/ohne Zurücklegen mit/ohne Berücksichtigung der Reihenfolge zu thematisieren. Die zentralen Begriffe Wahrscheinlichkeitsverteilung und Erwartungswert werden im Kontext von Glücksspielen erarbeitet und können durch zunehmende Komplexität der Spielsituationen vertieft werden. Digitale Werkzeuge werden zur Visualisierung von Wahrscheinlichkeitsverteilungen (Histogramme) und zur Entlastung von händischem Rechnen verwendet. Werkzeuge nutzen verwenden verschiedene digitale Werkzeuge zum Generieren von Zufallszahlen Variieren der Parameter von Wahrscheinlichkeitsverteilungen Erstellen der Histogramme von Wahrscheinlichkeitsverteilungen Berechnen der Kennzahlen von Wahrscheinlichkeitsverteilungen 25

26 Thema: Testergebnisse richtig interpretieren Umgang mit bedingten Wahrscheinlichkeiten (E-S2) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: modellieren Sachverhalte mit Hilfe von Baumdiagrammen und Vieroder Mehrfeldertafeln bestimmen bedingte Wahrscheinlichkeiten prüfen Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit bearbeiten Problemstellungen im Kontext bedingter Wahrscheinlichkeiten. Prozessbezogene Kompetenzen (Schwerpunkte): Modellieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren) Vorhabenbezogene Absprachen und Empfehlungen Als Einstiegskontext zur Erarbeitung des fachlichen Inhaltes könnte das HIV-Testverfahren dienen, eine Möglichkeit zur Vertiefung böte dann die Betrachtung eines Diagnosetests zu einer häufiger auftretenden Erkrankung (z. B. Grippe). Um die Übertragbarkeit des Verfahrens zu sichern, sollen insgesamt mindestens zwei Beispiele aus unterschiedlichen Kontexten betrachtet werden. Zur Förderung des Verständnisses der Wahrscheinlichkeitsaussagen werden parallel Darstellungen mit absoluten Häufigkeiten verwendet. sollen zwischen verschiedenen Darstellungsformen (Baumdiagramm, Mehrfeldertafel) wechseln können und diese zur Berechnung bedingter Wahrscheinlichkeiten beim Vertauschen von Merkmal und Bedingung und zum Rückschluss auf unbekannte Astwahrscheinlichkeiten nutzen können. Bei der Erfassung stochastischer Zusammenhänge ist die Unterscheidung von Wahrscheinlichkeiten des Typs P(A B) von bedingten Wahrscheinlichkeiten auch sprachlich von besonderer Bedeutung. Kommunizieren erfassen, strukturieren und formalisieren Informationen aus zunehmend komplexen mathematikhaltigen Texten [ ] (Rezipieren) wechseln flexibel zwischen mathematischen Darstellungsformen (Produzieren) 26

27 Einführungsphase Analytische Geometrie und Lineare Algebra (G) Thema: Unterwegs in 3D Koordinatisierungen des Raumes (E-G1) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: wählen geeignete kartesische Koordinatisierungen für die Bearbeitung eines geometrischen Sachverhalts in der Ebene und im Raum stellen geometrische Objekte in einem räumlichen kartesischen Koordinatensystem dar Prozessbezogene Kompetenzen (Schwerpunkte): Modellieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) Vorhabenbezogene Absprachen und Empfehlungen Ausgangspunkt ist eine Vergewisserung (z. B. in Form einer Mindmap) hinsichtlich der den Schülerinnen und Schülern bereits bekannten Koordinatisierungen (GPS, geographische Koordinaten, kartesische Koordinaten, Robotersteuerung). An geeigneten, nicht zu komplexen geometrischen Modellen (z. B. unvollständigen Holzquadern) lernen die Schülerinnen und Schüler, zwischen (verschiedenen) Schrägbildern einerseits und der Kombination aus Grund-, Auf- und Seitenriss andererseits zu wechseln, um ihr räumliches Vorstellungsvermögen zu entwickeln. Kommunizieren (Produzieren) wählen begründet eine geeignete Darstellungsform aus wechseln flexibel zwischen mathematischen Darstellungsformen 27

28 Thema: Vektoren bringen Bewegung in den Raum (E-G2) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: deuten Vektoren (in Koordinatendarstellung) als Verschiebungen und kennzeichnen Punkte im Raum durch Ortsvektoren stellen gerichtete Größen (z. B. Geschwindigkeit, Kraft) durch Vektoren dar berechnen Längen von Vektoren und Abstände zwischen Punkten mit Hilfe des Satzes von Pythagoras addieren Vektoren, multiplizieren Vektoren mit einem Skalar und untersuchen Vektoren auf Kollinearität weisen Eigenschaften von besonderen Dreiecken und Vierecken mithilfe von Vektoren nach Vorhabenbezogene Absprachen und Empfehlungen Durch Operieren mit Verschiebungspfeilen werden einfache geometrische Problemstellungen gelöst: Beschreibung von Diagonalen (insbesondere zur Charakterisierung von Viereckstypen), Auffinden von Mittelpunkten (ggf. auch Schwerpunkten), Untersuchung auf Parallelität. Prozessbezogene Kompetenzen (Schwerpunkte): Problemlösen entwickeln Ideen für mögliche Lösungswege (Lösen) setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein (Lösen) wählen geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung aus (Lösen) 28

29 2.4. Konkretisierte Unterrichtsvorhaben Qualifikationsphase Grundkurs Qualifikationsphase Grundkurs Funktionen und Analysis (A) Teil I Thema: Optimierungsprobleme Q1-I (Q-GK-A1) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: führen Extremalprobleme durch Kombination mit Nebenbedingungen auf Funktionen einer Variablen zurück und lösen diese verwenden notwendige Kriterien und Vorzeichenwechselkriterien [ ] zur Bestimmung von Extrem- und Wendepunkten Prozessbezogene Kompetenzen: Modellieren treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor.(strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren) beurteilen die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung (Validieren) Vorhabenbezogene Absprachen und Empfehlungen Leitfrage: Wie lassen sich Sachprobleme mithilfe von Funktionsgleichungen beschreiben und analysieren? Das Aufstellen der Funktionsgleichungen fördert Problemlösestrategien. An Problemen, die auf quadratische Zielfunktionen führen, sollten auch unterschiedliche Lösungswege aufgezeigt und verglichen werden. Hier bietet es sich außerdem an, Lösungsverfahren auch ohne digitale Hilfsmittel einzuüben. An mindestens einem Problem entdecken die Schülerinnen und Schüler die Notwendigkeit, Randextrema zu betrachten (z. B. Glasscheibe oder verschiedene Varianten des Hühnerhofs ). Ein Verpackungsproblem (z.b. Dose oder Milchtüte) wird unter dem Aspekt der Modellvalidierung/Modellkritik untersucht. Abschließend empfiehlt es sich, ein Problem zu behandeln, das die Schülerinnen und Schüler nur durch systematisches Probieren oder anhand des Funktionsgraphen (GTR) lösen können. 29

30 Problemlösen finden und stellen Fragen zu einer gegebenen Problemsituation (Erkunden) wählen heuristische Hilfsmittel (z. B. Skizze, informative Figur, Tabelle ) aus, um die Situation zu erfassen (Erkunden) nutzen heuristische Strategien und Prinzipien (z. B. systematisches Probieren, Darstellungswechsel, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme, Verallgemeinern ) (Lösen) setzen ausgewählte Routineverfahren auch hilfsmittelfrei zur Lösung ein (Lösen) berücksichtigen einschränkende Bedingungen (Lösen) führen einen Lösungsplan zielgerichtet aus (Lösen) vergleichen verschiedene Lösungswege bezüglich Unterschieden und Gemeinsamkeiten (Reflektieren) Stellen extremaler Steigung eines Funktionsgraphen werden im Rahmen geeigneter Kontexte (z. B. Neuverschuldung und Schulden oder Besucherströme in einen Freizeitpark und erforderlicher Personaleinsatz) thematisiert und dabei der zweiten Ableitung eine anschauliche Bedeutung als Zu- und Abnahmerate der Änderungsrate der Funktion verliehen. Die Bestimmung der extremalen Steigung erfolgt zunächst über das Vorzeichenwechselkriterium (an den Nullstellen der zweiten Ableitung). 30

31 Thema: Funktionen beschreiben Formen - Modellieren von Sachsituationen mit ganzrationalen Funktionen Q1-II (Q-GK-A2) Zu entwickelnde Kompetenzen Vorhabenbezogene Absprachen und Empfehlungen Inhaltsbezogene Kompetenzen: bestimmen Parameter einer Funktion mithilfe von Bedingungen, die sich aus dem Kontext ergeben ( Steckbriefaufgaben ) beschreiben das Krümmungsverhalten des Graphen einer Funktion mit Hilfe der 2. Ableitung verwenden notwendige Kriterien und Vorzeichenwechselkriterien sowie weitere hinreichende Kriterien zur Bestimmung von Extrem- und Wendepunkten beschreiben den Gauß-Algorithmus als Lösungsverfahren für lineare Gleichungssysteme wenden den Gauß-Algorithmus ohne digitale Werkzeuge auf Gleichungssysteme mit maximal drei Unbekannten an, die mit geringem Rechenaufwand lösbar sind Prozessbezogene Kompetenzen: Modellieren Leitfrage: Wie lassen sich Sachprobleme mithilfe von Funktionsgleichungen beschreiben und analysieren? Anknüpfend an die Einführungsphase (vgl. Thema E-A1) werden an einem Beispiel in einem geeigneten Kontext (z. B. Fotos von Brücken, Gebäuden, Flugbahnen) die Parameter der Scheitelpunktform einer quadratischen Funktion angepasst. Anschließend werden aus gegebenen Punkten Gleichungssysteme für die Parameter der Normalform aufgestellt. Die Beschreibung von Links- und Rechtskurven über die Zu- und Abnahme der Steigung führt zu einer geometrischen Deutung der zweiten Ableitung einer Funktion als Krümmung des Graphen und zur Betrachtung von Wendepunkten. Als Kontext hierzu können z. B. Trassierungsprobleme gewählt werden. erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) treffen Annahmen und nehmen begründet Vereinfachungen einer Die simultane Betrachtung beider Ableitungen führt zur Entdeckung eines weiteren hinreichenden Kriteriums für Extrempunkte. Anhand einer 31

32 realen Situation vor (Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) beziehen die erarbeitete Lösung wieder auf die Sachsituation (Validieren) beurteilen die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung (Validieren) verbessern aufgestellte Modelle mit Blick auf die Fragestellung (Validieren) reflektieren die Abhängigkeit einer Lösung von den getroffenen Annahmen (Validieren) Werkzeuge nutzen Funktion mit Sattelpunkt wird die Grenze dieses hinreichenden Kriteriums entdeckt. Vor- und Nachteile der beiden hinreichenden Kriterien werden abschließend von den Lernenden bewertet. Architektonische Formen können zum Anlass genommen werden, die Funktionsklassen zur Modellierung auf ganzrationale Funktionen 3. oder 4. Grades zu erweitern und über gegebene Punkte, Symmetrieüberlegungen und Bedingungen an die Ableitung Gleichungen zur Bestimmung der Parameter aufzustellen. Schülerinnen und Schüler erhalten Gelegenheit, über Grundannahmen der Modellierung (Grad der Funktion, Symmetrie, Lage im Koordinatensystem, Ausschnitt) selbst zu entscheiden, deren Angemessenheit zu reflektieren und ggf. Veränderungen vorzunehmen. verwenden verschiedene digitale Werkzeuge zum Lösen von Gleichungen und Gleichungssystemen zielgerichteten Variieren der Parameter von Funktionen nutzen mathematische Hilfsmittel und digitale Werkzeuge zum Erkunden [ ], Berechnen und Darstellen 32

33 Thema: Natürlich: Exponentialfunktionen Q1-III (Q-GK-A3) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: beschreiben die Eigenschaften von Exponentialfunktionen und die besondere Eigenschaft der natürlichen Exponentialfunktion untersuchen Wachstums- und Zerfallsvorgänge mithilfe funktionaler Ansätze interpretieren Parameter von Funktionen im Anwendungszusammenhang bilden die Ableitungen weiterer Funktionen: - natürliche Exponentialfunktion Prozessbezogene Kompetenzen: Problemlösen Vorhabenbezogene Absprachen und Empfehlungen Zu Beginn des Unterrichtsvorhabens sollte eine Wiederholung der bereits in der Einführungsphase erworbenen Kompetenzen (Wachstum und Zerfall) durchgeführt werden. Im Anschluss werden die Eigenschaften einer allgemeinen Exponentialfunktion zusammengestellt. Der GTR unterstützt dabei die Klärung der Bedeutung der verschiedenen Parameter und die Veränderungen durch Transformationen. Die Frage nach der Ableitung an einer Stelle führt zu einer wiederholenden Betrachtung des Übergangs von der durchschnittlichen zur momentanen Änderungsrate. Umgekehrt suchen die Lernenden zu einem gegebenen Ableitungswert die zugehörige Stelle. erkennen und formulieren einfache und komplexe mathematische Probleme (Erkunden) entwickeln Ideen für mögliche Lösungswege (Lösen) nutzen heuristische Strategien und Prinzipien (z. B. systematisches Probieren, Darstellungswechsel, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme) (Lösen) führen einen Lösungsplan zielgerichtet aus (Lösen) variieren Fragestellungen auf dem Hintergrund einer Lösung (Reflektieren). Dazu könnten sie in der Grafik ihres GTR experimentieren, indem sie Tangenten an verschiedenen Stellen an die Funktion legen. Mit diesem Ansatz kann in einem DGS auch der Graph der Ableitungsfunktion als Ortskurve veranschaulicht werden. Abschließend wird noch die Basis variiert. Dabei ergibt sich quasi automatisch die Frage, für welche Basis Funktion und Ableitungsfunktion übereinstimmen. 33

34 Werkzeuge nutzen Verwenden verschiedene digitale Werkzeuge zum zielgerichteten Variieren der Parameter von Funktionen grafischen Messen von Steigungen entscheiden situationsangemessen über den Einsatz mathematischer Hilfsmittel und digitaler Werkzeuge und wählen diese gezielt aus nutzen [ ] digitale Werkzeuge zum Erkunden und Recherchieren, Berechnen und Darstellen 34

35 Qualifikationsphase Grundkurs Analytische Geometrie und Lineare Algebra (G) Thema: Beschreibung von Bewegungen und Schattenwurf mit Geraden Q1-IV (Q-GK-G1) Zu entwickelnde Kompetenzen Inhaltsbezogene Kompetenzen: stellen Geraden und Strecken in Parameterform dar interpretieren den Parameter von Geradengleichungen im Sachkontext Prozessbezogene Kompetenzen: Modellieren erfassen und strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung (Strukturieren) treffen Annahmen und nehmen begründet Vereinfachungen einer realen Situation vor (Strukturieren) übersetzen zunehmend komplexe Sachsituationen in mathematische Modelle (Mathematisieren) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten eine Lösung innerhalb des mathematischen Modells (Mathematisieren) beurteilen die Angemessenheit aufgestellter (ggf. konkurrierender) Modelle für die Fragestellung (Validieren) verbessern aufgestellte Modelle mit Blick auf die Fragestellung (Validieren) Vorhabenbezogene Absprachen und Empfehlungen Lineare Bewegungen werden z. B. im Kontext von Flugbahnen durch Startpunkt, Zeitparameter und Geschwindigkeitsvektor beschrieben und dargestellt. Dabei sollten Modellierungsfragen (reale Geschwindigkeiten) einbezogen werden. Ergänzend zum dynamischen Zugang wird die rein geometrische Frage aufgeworfen, wie eine Gerade durch zwei Punkte zu beschreiben ist. Hierbei wird herausgearbeitet, dass zwischen unterschiedlichen Parametrisierungen einer Geraden gewechselt werden kann. Punktproben sowie die Berechnung von Schnittpunkten mit den Grundebenen sollen auch hilfsmittelfrei durchgeführt werden. Die Darstellung in räumlichen Koordinatensystemen sollte hinreichend geübt werden. 35

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Schulinternes Curriculum - Mathematik - Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben

Mehr

Schulinterner Lehrplan Mathematik Stufe EF

Schulinterner Lehrplan Mathematik Stufe EF Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen

Mehr

1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium

1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium 1 Die Fachgruppe Mathematik am Dietrich-Bonhoeffer-Gymnasium In der Einführungsphase werden mehrere parallele Grundkurse eingerichtet, aus denen sich für die Qualifikationsphase Leistungs- und Grundkurse

Mehr

Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen

Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen Einführungsphase: Funktionen und Analysis Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Vorhabenbezogene Absprache Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext

Mehr

Schulinternes Curriculum für die Einführungsphase. M a t h e m a t i k. Gymnasium am Neandertal - Erkrath

Schulinternes Curriculum für die Einführungsphase. M a t h e m a t i k. Gymnasium am Neandertal - Erkrath Schulinternes Curriculum für die Einführungsphase M a t h e m a t i k Gymnasium am Neandertal - Erkrath Inhalt 1. Die Fachgruppe Mathematik am Gymnasium am Neandertal 3 2. Entscheidungen zum Unterricht

Mehr

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben IV:

Mehr

Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren.

Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren. Thema 1: Funktionen und Analysis Grundlegende Eigenschaften von Potenzund Sinusfunktionen (17 UE) 1 Funktionen (1 UE) 2 Lineare und quadratische Funktionen (3 UE) 3 Potenzfunktionen (1 UE) 4 Ganzrationale

Mehr

Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik

Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Zeitraum 6 UE Kapitel 1 Wiederholung zu linearen und quadratischen Funktionen 1.1 Fit im Umgang

Mehr

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase) Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: (A) Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben

Mehr

Stoffverteilungsplan Mathematik Einführungsphase (gemäß Kernlehrplan gültig ab EF 2014/15)

Stoffverteilungsplan Mathematik Einführungsphase (gemäß Kernlehrplan gültig ab EF 2014/15) Das zugrundeliegende Buch ist der. [Zeitangaben in 60-Minuten-Stunden] Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Schülerbuch 978-3-06-041672-1 Lehrerfassung des Schülerbuchs 978-3-06-041673-8

Mehr

Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe EF. Unterrichtsvorhaben Unterthemen Bemerkungen

Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe EF. Unterrichtsvorhaben Unterthemen Bemerkungen Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe EF Unterrichtsvorhaben Unterthemen Bemerkungen Funktionsbegriff Lineare und quadratische Potenzfunktionen Ganzrationale Symmetrie

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Stoffverteilungsplan Mathematik auf der Grundlage des Kernlehrplans Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen

Mehr

Schulinterner LEHRPLAN MATHEMATIK für die Einführungsphase

Schulinterner LEHRPLAN MATHEMATIK für die Einführungsphase Inhaltsfeld Funktionen und Analysis Stochastik Lineare Algebra / Analytische Geometrie UNTERRICHTSVORHABEN THEMENÜBERBLICK EINFÜHRUNGSPHASE Themen Beschreibung der Eigenschaften von Funktionen und deren

Mehr

Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe. Mathematik

Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe. Mathematik Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe Mathematik 1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben I: Einführungsphase

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren In der Jahrgangsstufe 10 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Einführungsphase und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick auf den Einsatz bzw.

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Einführungsphase

Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Einführungsphase Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen Mathematik SII Einführungsphase Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung

Mehr

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Ein besonderes Augenmerk soll in diesem Unterrichtsvorhaben auf die

Mehr

Einführungsphase Funktionen und Analysis (A)

Einführungsphase Funktionen und Analysis (A) Einführungsphase Funktionen und Analysis (A) Ravensberger Gymnasium Fachschaft Mathematik Werrestraße 10 32049 Herford Tel.: 05221-1893690 Fax: 05221-1893694 Thema: Grundlegende Eigenschaften von Potenz-

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks 2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,

Mehr

Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe

Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe Schulinternes Curriculum Mathematik Einführungsphase Gymnasium Letmathe Einführungsphase Stand: März 2015 Inhaltsfeld: Funktionen und Analysis (A) (Zeitbedarf: 1 UE entspricht 67,5 Minuten) Funktionen

Mehr

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden Vorhaben I Vorhaben II Vorhaben III Vorhaben IV Vorhaben V Vorhaben VI Vorhaben VII Den Zufall im Griff - Modellierung von Zufallsprozessen

Mehr

Mathematik. Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Mathematik. Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Stand: April 2015 (überarbeitete Fassung BRAN, NIES, LEUC) 1 1 Übersichtsraster Unterrichtsvorhaben

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Kernlehrplan Mathematik: Einführungsphase

Kernlehrplan Mathematik: Einführungsphase Eine umfassende mathematische Grundbildung im Mathematikunterricht kann erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden. Entsprechend dieser

Mehr

Schulinternes Curriculum Mathematik SII Einführungsphase. Übersicht über die Unterrichtsvorhaben

Schulinternes Curriculum Mathematik SII Einführungsphase. Übersicht über die Unterrichtsvorhaben Schulinternes Curriculum Mathematik SII Einführungsphase Übersicht über die Unterrichtsvorhaben E-Phase Unterrichtsvorhaben Thema Stundenzahl I E-A1 15 II E-A2 12 III E-A3 12 IV E-S1 9 V E-S2 9 VI E-A4

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase

3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase 3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase Einführungsphase Unterrichtsvorhaben I: Thema: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Zentrale Kompetenzen: Modellieren

Mehr

Schulinternes Curriculum Mathematik Einführungsphase

Schulinternes Curriculum Mathematik Einführungsphase Schulinternes Curriculum Mathematik Einführungsphase Inhaltsverzeichnis Abfolge der Unterrichtsvorhaben... 2 Unterrichtsvorhaben und... 3 Kompetenzerwartungen in den prozessbezogenen Kompetenzbereichen...

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase

Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Modellieren

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

schulinterner Kernlehrplan Mathematik Einführungsphase:

schulinterner Kernlehrplan Mathematik Einführungsphase: schulinterner Kernlehrplan Mathematik Einführungsphase: Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen (E-S1) Modellieren Werkzeuge nutzen Inhaltsfeld: Stochastik (S) Mehrstufige

Mehr

Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans Städtisches Gymnasium Porta Westfalica

Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans Städtisches Gymnasium Porta Westfalica Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans 1 Die Fachgruppe Mathematik am In der Regel werden in der fünf parallele Grundkurse eingerichtet, aus denen sich für die Q-Phase

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII GESAMTSCHULE EISERFELD Schulinternes Curriculum Mathematik SII Einführungsphase Stand Juni 2014 Übersichtsraster Unterrichtsvorhaben Thema 1 EF A1 Beschreibung der Eigenschaften von Funktionen und deren

Mehr

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation) 1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,

Mehr

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Schulinterner Lehrplan Mathematik in der ab dem Schuljahr 2014/15 Eingeführtes Schulbuch: Mathematik Gymnasiale

Mehr

Einführungsphase Funktionen und Analysis (A)

Einführungsphase Funktionen und Analysis (A) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen

Mehr

Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch

Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch Bei der Erstellung des Stoffverteilungsplans wurde auf den Entwurf vom Klett Verlag zurückgegriffen. Hierbei wurde das Lehrbuch Lambacher Schweizer Mathematik zugrunde gelegt. Klettbuch 978-3-12-735431-2

Mehr

Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1) Zu entwickelnde Kompetenzen Std Vorhabenbezogene Absprachen und Empfehlungen

Mehr

Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW ( )

Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW ( ) Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW (978-3-507-87980-5) 2014 Bildungshaus Schulbuchverlage Westermann Schroedel Diesterweg Schöningh Winklers GmbH, Braunschweig Inhaltliche

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Version 2014/2015

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Version 2014/2015 Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Version 2014/2015 EF Funktionen und Analysis Zeit Inhaltsbezogene Aspekte/Kompetenzen Lambacher Schweizer EF Prozessbezogene Kompetenzen

Mehr

Gymnasium Kreuzau. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Gymnasium Kreuzau. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Gymnasium Kreuzau Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt 2.1 Unterrichtsvorhaben...5 2.1.1 Übersichtsraster Unterrichtsvorhaben...7 Seite 2 1 Die Fachgruppe

Mehr

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF Der zeitliche Umfang der Unterrichtseinheiten ist eine Orientierung. In der ZAP werden immer zwei Themengebiete geprüft, aller Voraussicht nach sind diese im Wechsel: Analysis - Vektorrechung oder Analysis

Mehr

Schulinterner Lehrplan für die gymnasiale Oberstufe. Mathematik. Teil 2 Einführungsphase und Vertiefungskurs (S. 7 19)

Schulinterner Lehrplan für die gymnasiale Oberstufe. Mathematik. Teil 2 Einführungsphase und Vertiefungskurs (S. 7 19) Schulinterner Lehrplan für die gymnasiale Oberstufe Mathematik Teil 2 Einführungsphase und Vertiefungskurs (S. 7 19) 7 Schulinternes Curriculum der Einführungsphase - Gymnasium Heepen [Stand: 07.04.2014]

Mehr

Mathematik Schulinterner Lehrplan Einführungsphase (EF)

Mathematik Schulinterner Lehrplan Einführungsphase (EF) Mathematik Schulinterner Lehrplan (EF) Unterrichtsvorhaben I: Den Zufall im Griff Modellierung von Zufallsprozessen 2 UE 2 UE Stochastik Mehrstufige Zufallsexperimente Sachverhalte mithilfe von Baumdiagrammen

Mehr

Schulinterner Lehrplan des St.-Antonius-Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe Mathematik

Schulinterner Lehrplan des St.-Antonius-Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Schulinterner Lehrplan des St.-Antonius-Gymnasiums zum Kernlehrplan für die gymnasiale Oberstufe Mathematik SILP St.-Antonius-Gymnasium, 31.08.15 1 Inhalt Seite 1 Die Fachgruppe Mathematik am St.-Antonius-Gymnasium...

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit

Mehr

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Riese-Gymnasium / an der Riese-Gesamtschule 3 2 Entscheidungen

Mehr

Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe.

Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe. Schulinterner Lehrplan des Albertus-Magnus-Gymnasiums Bensberg für die Einführungsphase (EF) zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Albertus-Magnus-

Mehr

Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II :

Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Optimierungsprobleme,

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell

Mehr

Schulinternes Curriculum am SG Mathematik GK Q1 für die Themen in der Analysis im 1. Halbjahr, verabschiedet von der Fachkonferenz am

Schulinternes Curriculum am SG Mathematik GK Q1 für die Themen in der Analysis im 1. Halbjahr, verabschiedet von der Fachkonferenz am Schulinternes Curriculum am SG Mathematik GK Q1 für die Themen in der Analysis im 1. Halbjahr, verabschiedet von der Fachkonferenz am 16.12.14 Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I:

Mehr

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs Stand 04.11.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 6 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.

Mehr

Schulinternes Curriculum

Schulinternes Curriculum Schulinternes Curriculum der Sekundarstufe II der Fachschaft Mathematik Stand Juni 2015 Inhalt 1 Die Fachgruppe Mathematik des Städtischen Gymnasiums Bergkamen... 3 2 Entscheidungen zum Unterricht... 5

Mehr

Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II:

Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen,

Mehr

Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 1. Unterrichtsvorhaben 1.1 Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben I: Einführungsphase

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 1 Inhalt Seite 1 Die Fachgruppe Mathematik am Luise-von-Duesberg- Gymnasium 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan Mathematik basierend auf dem Kernlehrplan für die Sekundarstufe II Gymnasium / Gesamtschule in Nordrhein-Westfalen

Schulinterner Lehrplan Mathematik basierend auf dem Kernlehrplan für die Sekundarstufe II Gymnasium / Gesamtschule in Nordrhein-Westfalen Schulinterner Lehrplan Mathematik basierend auf dem Kernlehrplan für die Sekundarstufe II Gymnasium / Gesamtschule in Nordrhein-Westfalen [Stand: Mai 2015] Inhaltsverzeichnis 1. Entscheidungen zum Unterricht...

Mehr

Schulinterner Lehrplan für das Fach. Mathematik. Sekundarstufe II. der Stadt Halver für die Sekundarstufen I und II

Schulinterner Lehrplan für das Fach. Mathematik. Sekundarstufe II. der Stadt Halver für die Sekundarstufen I und II Schulinterner Lehrplan für das Fach Mathematik Sekundarstufe II ANNE-FRANK-GYMNASIUM der Stadt Halver für die Sekundarstufen I und II Halver, den 17. Februar 2015 Inhalt Seite 1 Vorwort 3 2 Entscheidungen

Mehr

Schulinternes Curriculum Mathematik zum Kernlehrplan für die gymnasiale

Schulinternes Curriculum Mathematik zum Kernlehrplan für die gymnasiale Gutenberg Gymnasium Bergheim Schulinternes Curriculum Mathematik zum Kernlehrplan für die gymnasiale Oberstufe Jahrgangsstufe EF (Einführungsstufe Klasse 10) Inhaltsverzeichnis 1. Rahmenbedingungen...

Mehr

Schulinternes Curriculum für das Fach Mathematik. Sek II

Schulinternes Curriculum für das Fach Mathematik. Sek II Mataré-Gymnasium.Europaschule Meerbusch Schulinternes Curriculum für das Fach Mathematik Sek II Inhalt I. Kompetenzorientierte Unterrichtsvorhaben 2 1. Die Fachgruppe Mathematik am Mataré-Gymnasium 2 2.

Mehr

Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan

Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan 2.1.1 Übersichtsraster Unterrichtsvorhaben Übersicht über die Unterrichtsvorhaben E-Phase Unterrichtsvorhaben Thema Stundenzahl Den

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen. Chemie

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen. Chemie Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe am Städtischen Gymnasium Bergkamen Chemie Inhalt Seite 1 Die Fachgruppe Chemie... 3 2.1 Unterrichtsvorhaben... 5 2.1.1 Übersichtsraster

Mehr

Schulinterner Lehrplan Mathematik GK Q1

Schulinterner Lehrplan Mathematik GK Q1 Schulinterner Lehrplan Mathematik GK Q1 Da es sich um die erstmalige praktische Umsetzung der neuen Kernlehrpläne handelt, gelten die folgenden Angaben nur unter Vorbehalt. Die Reihenfolge der einzelnen

Mehr

Schulinterner Lehrplan am Pascal-Gymnasium Münster zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan am Pascal-Gymnasium Münster zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan am Pascal-Gymnasium Münster zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Pascal-Gymnasium 3 2 Entscheidungen zum Unterricht

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik. des. Ernst-Barlach-Gymnasiums. in Castrop-Rauxel

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik. des. Ernst-Barlach-Gymnasiums. in Castrop-Rauxel Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik des Ernst-Barlach-Gymnasiums in Castrop-Rauxel Inhalt Seite 1 Die Fachgruppe Mathematik am Ernst-Barlach- Gymnasium 3 2 Entscheidungen

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Deutzer Gymnasium Schaurtestraße 3 2 Entscheidungen zum Unterricht 5 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan am Johannes-Kepler-Gymnasium Ibbenbüren zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan am Johannes-Kepler-Gymnasium Ibbenbüren zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan am Johannes-Kepler-Gymnasium Ibbenbüren zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Kepler-Gymnasium... 3 2 Entscheidungen

Mehr

Schulinterner Lehrplan Mathematik: Q1 und Q2

Schulinterner Lehrplan Mathematik: Q1 und Q2 Schulinterner Lehrplan Mathematik: Q1 und Q2 Übersichtsraster Unterrichtsvorhaben Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II : Thema: Optimierungsprobleme (Q-GK-A1)

Mehr

Schulinterner Lehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Rahmenbedingungen der fachlichen Arbeit im Fach Mathematik am Heinrich-Mann-GymnasiumFehler! Textmarke nicht definiert. 2 Entscheidungen

Mehr

Mathematik Sekundarstufe II - Themenübersicht

Mathematik Sekundarstufe II - Themenübersicht Mathematik Sekundarstufe II - Themenübersicht Unterrichtsvorhaben EF-I: Einführungsphase Unterrichtsvorhaben EF-II: Grundlegende Eigenschaften von Potenzfunktionen, ganzrationalen Funktionen und Sinusfunktionen

Mehr

Willy-Brandt-Gymnasium Oer-Erkenschwick. Schulinterner Lehrplan Mathematik SII

Willy-Brandt-Gymnasium Oer-Erkenschwick. Schulinterner Lehrplan Mathematik SII Willy-Brandt-Gymnasium Oer-Erkenschwick Schulinterner Lehrplan Mathematik SII Inhalt Seite 1 Die Fachgruppe Mathematik am Willy-Brand- Gymnasium / 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std.

Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std. Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std. Inhaltsbegogene Kompetenten: beschreiben die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten

Mehr

Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik

Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik Schulinterner Lehrplan Mathematik Heinrich- Böll-Gymnasium Troisdorf Stand: Februar 2015 Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik Schulinterner Lehrplan Mathematik Heinrich-

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase am Apostelgymnasium Mathematik Inhalt 1 Die Fachgruppe Mathematik am Apostelgymnasium... 2 Entscheidungen zum Unterricht... 2.1 Unterrichtsvorhaben...4

Mehr

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10)

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10) Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Mathematik. Schulinterner Lehrplan

Mathematik. Schulinterner Lehrplan Mathematik Schulinterner Lehrplan Inhalt 1 Die Fachgruppe Mathematik 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben 4 2.1.1 Übersichtsraster Unterrichtsvorhaben 5 2.1.2 Konkretisierte Unterrichtsvorhaben

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Qualifikationsphase GRUNDKURS QI 2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks Buch: Elemente der Mathematik, Qualifikationsphase NRW Grundkurs, Braunschweig 2015, Westermann Schroedel

Mehr

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell

Mehr

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs Stand: 19.08.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 7 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.

Mehr

Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase

Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase Übersichtsraster Unterrichtsvorhaben Unterrichtsvorhaben 0: Einführungsphase Unterrichtsvorhaben I: Check-up

Mehr

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen)

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen) Jahrgangsstufe 11 1. Koordinatengeometrie Geraden und Geradengleichungen ( Steigungswinkel, Parallelität, Orthogonale, Schnittpunkt zweier Geraden) Parabeln und quadratische Funktionen Lagebeziehungen

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch 978-3-12-735431-2

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch 978-3-12-735431-2 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Lehrbuch: Lambacher Schweizer, Grundkurs Die hier vereinbarte Reihenfolge der Unterrichtsvorhaben ist verbindlich. Bei besonderen inhaltlichen Schwerpunktsetzungen in den offiziellen Abiturvorgaben kann

Mehr

SCHULINTERNER LEHRPLAN MATHEMATIK

SCHULINTERNER LEHRPLAN MATHEMATIK SCHULINTERNER LEHRPLAN MATHEMATIK TEIL III Seite 1 von 80 UNTERRICHTSVORHABEN Inhaltsfeld Funktionen und Analysis THEMENÜBERBLICK EINFÜHRUNGSPHASE Themen Beschreibung der Eigenschaften von Funktionen und

Mehr

Schulinternes Curriculum Sek. II für das Fach Mathematik

Schulinternes Curriculum Sek. II für das Fach Mathematik L I S E - M E I T N E R - G Y M N A S I U M L E V E R K U S E N Lise-Meitner-Gymnasium -Sekundarstufen I u. II Stadt Leverkusen Am Stadtpark 50 51373 Leverkusen Schulinternes Curriculum Sek. II für das

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Max-Planck-Gymnasium... 2 Entscheidungen zum Unterricht... 2.1 Unterrichtsvorhaben...4

Mehr

Gymnasium Leopoldinum Detmold. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. Mathematik

Gymnasium Leopoldinum Detmold. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Einführungsphase. Mathematik Gymnasium Leopoldinum Detmold Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Einführungsphase Mathematik Inhalt Seite 1 Die Fachgruppe Mathematik am Gymnasium Leopoldinum 3 2 Entscheidungen

Mehr

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche

Mehr

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für das Abendgymnasium und Kolleg in Nordrhein-Westfalen. Mathematik 19.8.

Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für das Abendgymnasium und Kolleg in Nordrhein-Westfalen. Mathematik 19.8. Beispiel für einen schulinternen Lehrplan zum Kernlehrplan für das Abendgymnasium und Kolleg in Nordrhein-Westfalen Mathematik 19.8.2015 Beispiel für einen schulinternen Lehrplan Inhalt 1 Die Fachgruppe

Mehr

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 1 Inhalt 1 Die Fachgruppe Mathematik am Gymnasium Norf 2 Entscheidungen zum Unterricht 2.1 Unterrichtsvorhaben 2.1.1 Übersichtsraster

Mehr

Schulinternes Curriculum Mathematik für die Einführungsphase der gymnasialen Oberstufe an der Hans-Ehrenberg-Schule Stand 14.08.

Schulinternes Curriculum Mathematik für die Einführungsphase der gymnasialen Oberstufe an der Hans-Ehrenberg-Schule Stand 14.08. Schulinternes Curriculum Mathematik für die Einführungsphase der gymnasialen Oberstufe an der Hans-Ehrenberg-Schule Stand 14.08.2014 Die Darstellung der Unterrichtsvorhaben im schulinternen Curriculum

Mehr

Schulinterner Lehrplan für das König-Wilhelm-Gymnasium. Mathematik

Schulinterner Lehrplan für das König-Wilhelm-Gymnasium. Mathematik Schulinterner Lehrplan für das König-Wilhelm-Gymnasium Mathematik Inhalt Seite 1a Die Fachgruppe Mathematik am König-Wilhelm- Gymnasium-Gymnasium 3 2 Entscheidungen zum Unterricht 4 2.1 Unterrichtsvorhaben

Mehr

Schulinterner Lehrplan zum Kernlehrplan. Mathematik. Sekundarstufe II

Schulinterner Lehrplan zum Kernlehrplan. Mathematik. Sekundarstufe II Schulinterner Lehrplan zum Kernlehrplan Mathematik Sekundarstufe II Stand: 21. August 2015 1 Inhalt Seite 1 Die Fachgruppe Mathematik an der Gustav- Heinemann-Gesamtschule, Alsdorf 3 2 Entscheidungen zum

Mehr

Mathematik. Schulinterner Lehrplan für die gymnasiale Oberstufe. Stand: 10. August 2015

Mathematik. Schulinterner Lehrplan für die gymnasiale Oberstufe. Stand: 10. August 2015 Schulinterner Lehrplan für die gymnasiale Oberstufe Mathematik Stand: 10. August 2015 (nach einmaligem Durchlaufen in der EF und Einarbeiten der sich aus der Evaluation dieses Durchlaufs ergebenden Änderungen

Mehr