Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig."

Transkript

1

2 2.2 Logische Gesetze 19 auch, was für Sätze logisch wahr sein sollen. Technisch gesehen besteht zwar zwischen einem Schluss und einem Satz selbst dann ein deutlicher Unterschied, wenn der Satz Wenn...dann -Form hat. Es gibt aber zur Gültigkeit bei Schlüssen ein Gegenstück auf der Ebene der Sätze: die logische Wahrheit. Logische Wahrheit Definition logisch wahr : Ein Satz ist genau dann logisch wahr, wenn jede Ersetzung der Inhaltswörter in ihm wieder einen wahren Satz ergibt, solange man nur die Strukturwörter so lässt, wie sie sind. Ein Beispiel für einen logisch wahren Satz entsteht, indem man beim Schluss Nr.2 die Prämissen durch und aneinander koppelt und mit Wenn... dann mit der Konklusion verbindet (so erzeugt man übrigens aus jedem gültigen Schluss leicht einen logisch wahren Satz): Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig. Es könnte aber auch noch logisch wahre Sätze von ganz anderer Form geben. Darauf bereitet der nächste Abschnitt vor. Übung: Ist der folgende Schluss a) gültig; b) beweiskräftig; c) weder gültig noch beweiskräftig? Männer sind grundsätzlich weit weniger intelligent als Frauen; wenn Männer grundsätzlich weit weniger intelligent sind als Frauen, dann sollten sie auch weniger Rechte haben als Frauen; also sollten Männer weniger Rechte haben als Frauen. 2.2 Logische Gesetze Logische Gesetze sind fundamentale Sätze, die zu allen Zeiten von vielen damit Beschäftigten für so plausibel gehalten worden sind, dass sie in vielen technisch ausgearbeiteten Logiken an irgendeiner ganz tiefen Stelle eingebaut sind. Es hat jedoch auch bei praktisch jeder Aussage, für die jemand den Status eines logischen Gesetzes vorgeschlagen hat, ernst zu nehmende Denker gegeben, die diesen Vorschlag angezweifelt haben, und dies manchmal erfolgreich. Es könnte deshalb jedes Mal, wenn im Folgenden der Einfachheit halber der Ausdruck logisches Gesetz vorkommt, streng genommen vorgebliches logisches Gesetz stehen. Es soll auch nicht darum gehen, alle prominenten Kandidaten für logische Gesetze vorzustellen, sondern lediglich zwei, die schon im Zusammenhang mit Kap. 3 und 4 besonders wichtig sind: 1. Der Satz vom Nichtwiderspruch 2. Der Satz vom ausgeschlossenen Dritten. Den Satz vom Nichtwiderspruch formuliert und diskutiert erstmals Aristoteles in einer der später unter dem Titel Metaphysik veröffentlichten Vorlesungen (104, Buch IV (Γ), Kap. 3, 1005b19 23): Der Satz vom Nichtwiderspruch Es kann... dasselbe demselben und in derselben Beziehung (und dazu mögen noch die anderen näheren Bestimmungen hinzugefügt sein, mit denen wir logischen Einwürfen ausweichen) unmöglich zugleich zukommen und nicht zukommen.

3 20 2. Logik und logische Gesetze Subjekt und Prädikat Aristoteles erklärt einen Beweis für den Nichtwiderspruchssatz aus einem sehr guten Grund für unmöglich: Er müsste dann ja als Konklusion aus gewissen Prämissen folgen. Aber er ist einfach zu fundamental, um noch von weiteren Prämissen abhängen zu dürfen. Man kann nur versuchen, sich vorzustellen, in was für eine seltsame Situation sich jemand bringt, der diesen Satz ernsthaft leugnet, und versuchen, ihn damit zu plausibilisieren. Dass sich Aristoteles mit der Rechtfertigung solche Mühe geben muss, liegt daran, dass vor ihm schon Heraklit ein ernst zu nehmender Gegner an den Nichtwiderspruchssatz offenbar nicht geglaubt hat (vgl. a.a.o. 1005b25). Später erklärt Hegel Widersprüche für etwas, das in der Welt vorkommt (vgl. 134, Anmerkung 3 zu Punkt C in Teil I, Buch 2, Abschn.1, Kap. 2). Vielleicht hat er aber einen ganz anderen Begriff von Widerspruch, als der, welcher im Zusammenhang mit dem Nichtwiderspruchssatz relevant ist (vgl. dazu z.b. 135, S.12 über den Widerspruch im Wachstum einer Rose). Inzwischen gibt es technisch auf hohem Niveau ausgearbeitete formale Logiken, die zeigen sollen, dass man auf den Nichtwiderspruchssatz auch verzichten kann. Sie sollen in Kap. 8 kurz zur Sprache kommen. Will man dennoch an den Nichtwiderspruchssatz glauben und ihn in einer Logik verankern, so ist das erste Problem das folgende: Aristoteles hat nur Subjekt-Prädikat-Aussagen betrachtet, weil er dachte, dass jede einfache Aussage letztlich eine Subjekt-Prädikat-Aussage ist. Subjekt ist dabei das, was der Aussage zugrundeliegt, indem darüber gesprochen wird ähnlich wie das Satzsubjekt inder Grammatik. Mit dem Ich o.ä. hat das Wort Subjekt in der Logik nichts zu tun. Prädikat ist das dem Subjekt Zugesprochene. Man kann dies das ti kata tinos -Prinzip nennen ( etwas über etwas ). Denn Aristoteles formuliert diese Überzeugung mit den Worten, jede Aussage sei ein Aussagen von etwas über etwas ( tinos kata tinos, 58, 6, 17a25f). Eine umfassende Logik sollte diese Beschränkung überwinden. Zum Glück ist es leicht, zu diesem Zweck eine allgemeinere Fassung des Nichtwiderspruchssatzes zu formulieren: Folgendes ist nicht der Fall: Etwas Bestimmtes ist der Fall, und dasselbe ist nicht der Fall. Lassen wir A für einen beliebigen Satz stehen, und kürzen wir die Wendung es ist nicht der Fall, dass durch nicht: ab, so können wir, noch durchsichtiger, als das Schema des Nichtwiderspruchssatzes festhalten: nicht: [A und (nicht: A)]. Konsistenzprinzip und Negationsprinzip Will man den Nichtwiderspruchssatz in eine Logik einbauen, so sollte etwas diesem Schema Ähnliches darin die Eigenschaft eines Gesetzes haben. Wenn es auch schwer ist, ohne weitere Voraussetzungen zu sagen, warum man an den Nichtwiderspruchssatz glauben sollte, so lässt sich doch dafür argumentieren, warum man ihn auf jeden Fall bejahen sollte, wenn man zwei andere Annahmen macht. Die erste Annahme kann man das Konsistenzprinzip nennen. Es lautet:

4 2.2 Logische Gesetze 21 Konsistenzprinzip Keine Aussage wird sowohl wahr als auch falsch. Was auch immer überhaupt einen Wahrheitswert haben kann, kann höchstens einen Wahrheitswert auf einmal haben. Als Wahrheitswerte kommen wenigstens bis Kap. 8 nur wahr und falsch in Frage. Auch falsch ist ein Wahrheitswert, und die Behauptung, eine Aussage habe einen Wahrheitswert, ist nicht dasselbe wie die Behauptung, sie sei wahr. Wer etwas gegen Widersprüche hat, wird das Konsistenzprinzip plausibel finden. Die zweite Annahme soll eine Verwendungsregel für das Wörtchen nicht vor Sätzen sein (das α ist ein Platzhalter für einen Satz): Wahrheitswerte Prinzip NEG (Negationsprinzip) 1Genau dann, wenn α wahr ist, ist nicht: α nicht wahr. 2Genau dann, wenn α nicht wahr ist, ist nicht: α wahr. 3Genau dann, wenn α nicht wahr ist, ist α falsch. Die Wendung genau dann, wenn benutzt man für ein wenn..., dann in beiden denkbaren Richtungen. Sie ist so wichtig, dass sie mit dem Kürzel gdw abgekürzt wird. Man kann eine genau dann, wenn -Aussage immer sowohl von rechts nach links als auch von links nach rechts lesen. So besteht NEG 1eigentlich aus den folgenden zwei Sätzen: gdw Wenn α wahr ist, dann ist nicht: α nicht wahr. Wenn nicht: α nicht wahr ist, dann ist α wahr. Setzt man das Prinzip NEG voraus, soist man auch auf den Nichtwiderspruchssatz festgelegt. Das genaue Argument ist in Anhang 2aufgeführt. Will man also das Konsistenzprinzip halten, und akzeptiert man die vorgeschlagene Negationsregel, so kauft man auch den Nichtwiderspruchssatz mit. Allerdings mag gerade dies ein Grund sein, die Negationsregel NEG nicht zu akzeptieren, wie Kap. 8zeigen wird. Was man den Satz vom ausgeschlossenen Dritten nennt, findet sich nur wenige Kapitel hinter der Diskussion des Nichtwiderspruchssatzes, nämlich im7.kapitel von Buch IV(Γ)von Aristoteles Metaphysik ((=104) 1011 b23 25): Der Satz vom ausgeschlossenen Dritten Ebensowenig aber kann zwischen den beiden Gliedern des Widerspruchs etwas geben, sondern man muss notwendig Eines [= ein Prädikat] von Einem [= einem Subjekt] entweder bejahen oder verneinen. (Übersetzung: Bonitz / Seidl, Ergänzung: N.St.) Ein Widerspruch ist hier ein kontradiktorischer Gegensatz, also ein Gegensatz, wie er zwischen Die Erde ist eine Scheibe ( A ) und Es ist nicht der Fall, dass die Erde eine Scheibe ist ( nicht: A ) besteht. Man wird also als Zusammenfassung (unter Abschwächung des kann nicht in ist nicht ) die folgenden Schemata hinschreiben:

5 22 2. Logik und logische Gesetze Entweder Aoder [nicht: A] Aoder [nicht: A]. bzw. Inklusives und exklusives oder Bivalenzprinzip Normalerweise unterscheiden sich entweder... oder und bloßes oder in einem wichtigen Punkt, denn man unterscheidet inklusive und exklusive oder -Verbindung: das inklusive oder (Alternation, auch: Adjunktion): Die Oder- Verbindung ist wahr, wenn mindestens einer der beiden damit verbundenen Sätze wahr ist, evtl. aber auch beide; gesprochen oder. das exklusive oder (Disjunktion): Die Oder-Verbindung ist wahr, wenn einer der beiden damit verbundenen Sätze wahr ist, aber nicht, wenn beide es sind; gesprochen: entweder... oder. Manchmal findet man in der Literatur die Worte Alternation und Disjunktion genau umgekehrt gebraucht, was meiner Meinung nach dem lateinischen Wortursprung nicht gut entspricht. Man muss also immer genau hinschauen, was gemeint sein kann (im Zweifelsfall entscheiden die Formeln). Was den Satz vom ausgeschlossenen Dritten angeht, so ist jedenfalls leicht zu sehen: Es ist ganz gleich, ob man ihn mit inklusivem oder exklusivem oder formuliert, da ja A und nicht: A ohnehin nicht zusammen wahr sein können. Zunächst sieht der Satz vom ausgeschlossenen Dritten so plausibel aus, dass er fast trivial erscheinen mag. Außerdem gibt es ein gutes Argument, warum man, wenn man den Nichtwiderspruchssatz bejaht, auch den Satz vom ausgeschlossenen Dritten bejahen sollte. Es ist ebenfalls in Anhang 2 aufgeführt. Ebenso wie der Satz vom Nichtwiderspruch eng mit einem Prinzip über die Wahrheit und Falschheit von Aussagen, nämlich dem Konsistenzprinzip, zusammenhängt, gibt es ein weiteres Prinzip über die Wahrheit und Falschheit von Aussagen, das eng mit dem Satz vom ausgeschlossenen Dritten zusammenhängt: Das Bivalenzprinzip Jede Aussage hat einen der Wahrheitswerte wahr bzw. falsch ; keine Aussage bleibt wahrheitswertlos. Endgültige Formulierung Der enge Zusammenhang zwischen Bivalenzprinzip und Satz vom ausgeschlossenen Dritten liegt in ähnlicher Weise auf der Hand wie der zwischen Konsistenzprinzip und Nichtwiderspruchssatz. Trotz des engen Zusammenhangs ist jedoch zu beachten: Der Satz vom ausgeschlossenen Dritten und das Bivalenzprinzip sind nicht dasselbe. Und auch das Konsistenzprinzip und der Satz vom Nichtwiderspruch sind nicht dasselbe. Man findet allerdings in der Literatur verschiedene Erklärungen dafür, inwiefern sie nicht dasselbe sind. Unumstritten ist: Das Bivalenzprinzip und das Konsistenzprinzip enthalten explizit die Ausdrücke wahr und falsch ; der Satz vom ausgeschlossenen Dritten und der Nichtwiderspruchssatz enthalten diese Ausdrücke nicht explizit. Das ist ein klarer Unterschied. Ebenso klar ist, dass essich bei Bivalenzprinzip und Konsistenzprinzip um Aussagen über Aussagen handelt. Denn dasjenige, wovon man sagt, es sei wahr oder falsch, sind Aussagen. Statt Aussage könnte auch Satz oder

6 2.2 Logische Gesetze 23 Urteil stehen; eine Differenzierung kann bis Kap. 4.2 warten. Man nennt solche Aussagen über Aussagen metasprachliche Aussagen (eine genauere Klärung dieses Ausdrucks erfolgt in Kap. 5.2). Kompliziert wird die Sache dadurch, dass der unumstrittene Unterschied die Vermutung nahe legt, der Satz vom ausgeschlossenen Dritten und der Nichtwiderspruchssatz seien demgegenüber nicht Aussagen über Aussagen, sondern einfache Aussagen über die Welt. Manchmal wird das in der Literatur so vertreten. Dies scheint mir aber nicht richtig zu sein. Denn es ist zwischen dem Schema des Nichtwiderspruchssatzes bzw. dem Schema des Satzes vom ausgeschlossenen Dritten und den beiden Sätzen selbst zu unterscheiden: nicht: (A und [nicht: A]) ist überhaupt kein Satz, sondern nur ein Schema, denn A ist nur ein Platzhalter ohne konkreten Inhalt. Deshalb kann nicht: (Aund [nicht: A] gar keinen Wahrheitswert haben. Dasselbe gilt für das Schema A oder (nicht: A). Konkrete Instanzen dieser Schemata wie Es ist nicht der Fall, dass Hans groß ist und dass Hans nicht groß ist oder Hans ist groß oder Hans ist nicht groß sind zwar logisch wahr; aber sie sind nicht allgemein genug, um als logische Gesetze gelten zu können. Dafür sind sie viel zu speziell. Beim Nichtwiderspruchssatz und beim Satz vom ausgeschlossenen Dritten sollte es sich aber um logische Gesetze handeln. Die vorangegangene Überlegung führt dazu, den Nichtwiderspruchssatz und den Satz vom ausgeschlossenen Dritten wie folgt zu formulieren: 1. Nichtwiderspruchssatz: Jede Aussage der Form nicht: (A und [nicht: A]) ist logisch wahr. 2. Satz vom ausgeschlossenen Dritten: Jede Aussage der Form Aoder [nicht: A] ist logisch wahr. Damit stellt sich aber heraus: Auch der Nichtwiderspruchssatz und der Satz vom ausgeschlossenen Dritten sind Aussagen über Aussagen. In ihnen ist sogar von logischer Wahrheit die Rede und damit indirekt auch wieder von Wahrheit, denn in der Definition des Ausdrucks logisch wahr (vgl. Kap. 2.1) kommt das Wort wahr vor. Schon Aristoteles hat einen engen Zusammenhang zwischen Bivalenzprinzip und Satz vom ausgeschlossenen Dritten gesehen. So bringt sofort der nächste Satz nach der Formulierung des Satzes vom ausgeschlossenen Dritten zu dessen Begründung die traditionelle Definition der Wahrheit als einer Eigenschaft von Aussagen (a.a.o b 26 28): Wahrheit Zu sagen nämlich, das Seiende sei nicht oder das Nicht-Seiende sei, ist falsch; dagegen zu sagen, das Seiende sei und das Nicht-Seiende sei nicht, ist wahr. Eine kurze Formel dafür ist dadurch berühmt geworden, dass Thomas von Aquin sie im 13. Jahrhundert in lateinischer Übersetzung in seinem Werk De veritate ( Über die Wahrheit, 122) zitiert hat als veritas est adaequatio rei et intellectûs : Wahrheit ist Übereinstimmung von Sache und Verstand. Etwas moderner kann man diesen Gedanken umformulieren zu: Wahrheit ist Übereinstimmung (Korrespondenz) der Wirklichkeit mit dem in einer Aussage geäußerten Gedanken. Man spricht deshalb von Adäquations- oder Korrespondenztheorie der Wahrheit. Vertritt man diesen

Kandidaten für logische Gesetze (nicht unbedingt erfolgreich)

Kandidaten für logische Gesetze (nicht unbedingt erfolgreich) Kandidaten für logische Gesetze (nicht unbedingt erfolgreich) 1 2 1 Leibniz Substitutionssatz Der Träger des Namens A und der Träger des Namens B sind identisch, wenn man an beliebiger Stelle einer Aussage

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Erläuterung zum Satz vom ausgeschlossenen Widerspruch

Erläuterung zum Satz vom ausgeschlossenen Widerspruch TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles, Metaphysik Der Satz vom ausgeschlossenen Widerspruch (Buch 4/Γ; Woche 4: 8. 9.11.2010) I. Der

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt.

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt. 1 Vorlesung: Denken und Sprechen. Einführung in die Sprachphilosophie handout zum Verteilen am 9.12.03 (bei der sechsten Vorlesung) Inhalt: die in der 5. Vorlesung verwendeten Transparente mit Ergänzungen

Mehr

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation 2.1.3 Interpretation von aussagenlogischen Formeln 1) Intensionale Interpretation Definition 11: Eine intensionale Interpretation einer aussagenlogischen Formel besteht aus der Zuordnung von Aussagen zu

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

7 Gültigkeit und logische Form von Argumenten

7 Gültigkeit und logische Form von Argumenten 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte

Mehr

Paradoxien der Replikation

Paradoxien der Replikation Joachim Stiller Paradoxien der Replikation Alle Rechte vorbehalten Paradoxien Die Paradoxien (Wiki) Hier einmal Auszüge aus dem Wiki-Artikel zum Begriff Paradoxon Ein Paradox(on) (auch Paradoxie, Plural

Mehr

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann

Einführung in die formale Logik. Prof. Dr. Andreas Hüttemann Einführung in die formale Logik Prof. Dr. Andreas Hüttemann Textgrundlage: Paul Hoyningen-Huene: Formale Logik, Stuttgart 1998 1. Einführung 1.1 Logische Folgerung und logische Form 1.1.1 Logische Folgerung

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 19 Dies ist der Foliensatz zur Vorlesung

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

1 Argument und Logik

1 Argument und Logik Seminar: 1/5 1 Argument und Logik Aussagesatz (1): Ein Aussagesatz ist ein Satz im Indikativ, der entweder wahr oder falsch ist. Problem der Indexikalität: Sätze im Indikaitv, die indexikalische Ausdrücke

Mehr

Epistemische Logik Einführung

Epistemische Logik Einführung Epistemische Logik Einführung Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2010 Was ist epistemische Logik? Epistemische Logik ist die Logik von Wissen und Glauben, so wie klassische Logik

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Der Gedankengang Das Buch beginnt im ersten Kapitel mit der Diskussion der im Untertitel behaupteten Unterscheidung rechter und linker

Der Gedankengang Das Buch beginnt im ersten Kapitel mit der Diskussion der im Untertitel behaupteten Unterscheidung rechter und linker Der Gedankengang Das Buch beginnt im ersten Kapitel mit der Diskussion der im Untertitel behaupteten Unterscheidung rechter und linker Beschreibungsformen und gipfelt in der Formel, dass wir links reden

Mehr

5.2 Logische Gültigkeit, Folgerung, Äquivalenz

5.2 Logische Gültigkeit, Folgerung, Äquivalenz 5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa

Mehr

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Zweite und dritte Sitzung

Zweite und dritte Sitzung Zweite und dritte Sitzung Mengenlehre und Prinzipien logischer Analyse Menge Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens

Mehr

Einführung in die moderne Logik

Einführung in die moderne Logik Sitzung 1 1 Einführung in die moderne Logik Einführungskurs Mainz Wintersemester 2011/12 Ralf Busse Sitzung 1 1.1 Beginn: Was heißt Einführung in die moderne Logik? Titel der Veranstaltung: Einführung

Mehr

Die Anfänge der Logik

Die Anfänge der Logik Die Anfänge der Logik Die Entwicklung des logischen Denkens vor Aristoteles Holger Arnold Universität Potsdam, Institut für Informatik arnold@cs.uni-potsdam.de Grundfragen Was ist Logik? Logik untersucht

Mehr

Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat?

Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat? Einleitung Dr. M. Vogel Vorlesung Grundprobleme der Philosophie des Geistes Wie können wir entscheiden ob eine Person oder ein Wesen einen Geist hat? Malvin Gattinger Vor einem Antwortversuch will ich

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Teil 7: Argumentieren und Begründen 1 Grundregel: Spezifisch argumentieren Wissenschaftliches Arbeiten Nie mehr zeigen, als nötig oder gefragt ist. Sonst wird das Argument angreifbar und umständlich. Schwammige

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Zur Semantik der Junktorenlogik

Zur Semantik der Junktorenlogik Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................

Mehr

Formale Logik. 1. Sitzung. Allgemeines vorab. Allgemeines vorab. Terminplan

Formale Logik. 1. Sitzung. Allgemeines vorab. Allgemeines vorab. Terminplan Allgemeines vorab Formale Logik 1. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Wie es abläuft Vorlesung Übungszettel Tutorien Es gibt ca. in der Mitte und am Ende des Semesters je eine Klausur

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Ästhetik ist die Theorie der ästhetischen Erfahrung, der ästhetischen Gegenstände und der ästhetischen Eigenschaften.

Ästhetik ist die Theorie der ästhetischen Erfahrung, der ästhetischen Gegenstände und der ästhetischen Eigenschaften. 16 I. Was ist philosophische Ästhetik? instrumente. Die Erkenntnis ästhetischer Qualitäten ist nur eine unter vielen möglichen Anwendungen dieses Instruments. In diesem Sinn ist die Charakterisierung von

Mehr

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck. 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Was ist ein Gedanke?

Was ist ein Gedanke? Lieferung 8 Hilfsgerüst zum Thema: Was ist ein Gedanke? Thomas: Es bleibt zu fragen, was der Gedanke selbst [ipsum intellectum] ist. 1 intellectus, -us: Vernunft, Wahrnehmungskraft usw. intellectum, -i:

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.

Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen. 2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen

Mehr

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,

Mehr

Musterlösung zu Blatt 11, Aufgabe 3

Musterlösung zu Blatt 11, Aufgabe 3 Musterlösung zu Blatt 11, Aufgabe 3 I Aufgabenstellung Wir nennen eine Teilmenge A R abgeschlossen, wenn der Grenzwert einer konvergenten Folge in A stets wieder in A liegt. Beweisen Sie: a) Für eine beliebige

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Paul Watzlawick II. Gestörte Kommunikation

Paul Watzlawick II. Gestörte Kommunikation Prof. Dr. Wilfried Breyvogel Sommersemester 05 Montag 12.00-14.00 Uhr R11 T00 D05 Vorlesung vom 18.07.2005 Paul Watzlawick II. Gestörte Kommunikation 1. Die Unmöglichkeit, nicht zu kommunizieren, oder:

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Argumentationstheorie 3. Sitzung

Argumentationstheorie 3. Sitzung Argument Argumentationstheorie 3. Sitzung Prof. Dr. Ansgar Beckermann Wintersemester 2004/5 Kurz Ein Argument ist eine Folge von, in der eine Aussage (die Konklusion) in dem Sinne auf andere (die Prämissen)

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen

Mehr

Epistemische Logik Epistemische Prädikate

Epistemische Logik Epistemische Prädikate Epistemische Logik Epistemische Prädikate Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2011 Zukommen und Zuordnen Aussagen und Sätze: 1. Anna mag Ben. 2. Ben wird von Anna gemocht. 3. Anna

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

DIALOGE ÜBER NATÜRLICHE RELIGION

DIALOGE ÜBER NATÜRLICHE RELIGION DAVID HUME DIALOGE ÜBER NATÜRLICHE RELIGION NEUNTER TEIL, SEITEN 73-78 DER A PRIORI BEWEIS DER EXISTENZ GOTTES UND SEINER UNENDLICHEN ATTRIBUTE S. 73-74 Demea : Die Schwächen des a posteriori Beweises

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick Philosophische Semantik SS 2009 Manuel Bremer Vorlesung 1 Einleitung und Überblick Was alles ist philosophische Semantik? 1. Verständnismöglichkeiten von philosophische Semantik 2. Die Frage nach der Bedeutung

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER WOZU PRÄDIKATENLOGIK (PL)? Aussagenlogik (AL) betrachtet Sätze / Argumente immer nur bezüglich ihrer aussagenlogischen Struktur. Ein Satz wie (1) Jaime mag

Mehr

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln 14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache AL in dem Maße zur Beurteilung der logischen

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Das Pumping Lemma der regulären Sprachen

Das Pumping Lemma der regulären Sprachen Das Pumping Lemma der regulären Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Das Pumping Lemma Das Pumping Lemma der regulären Sprachen macht eine Aussage der Art wenn eine Sprache L regulär

Mehr

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Anselm von Canterbury

Anselm von Canterbury Anselm von Canterbury *1034 in Aosta/Piemont Ab 1060 Novize, dann Mönch der Benediktinerabtei Bec ab 1078: Abt des Klosters von Bec 1093: Erzbischof von Canterbury *1109 in Canterbury 1076 Monologion (

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

KAPITEL I EINLEITUNG

KAPITEL I EINLEITUNG KAPITEL I EINLEITUNG A. Hintergrunds Eines des wichtigsten Kommunikationsmittel ist die Sprache. Sprache ist ein System von Lauten, von Wörtern und von Regeln für die Bildung von Sätzen, das man benutzt,

Mehr

4 Reelle und komplexe Zahlenfolgen

4 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.2 203//29 2:06:38 hk Exp hk $ 4 Reelle und komplexe Zahlenfolgen 4. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Folgenkonvergenz und die Grenzwerte von Folgen eingeführt.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Unser Wissen von der Existenz Gottes in der Alltagssprache

Unser Wissen von der Existenz Gottes in der Alltagssprache Lieferung 2 Hilfsgerüst zum Thema: Unser Wissen von der Existenz Gottes in der Alltagssprache 1. Rechtfertigung didaktischer Entscheidungen Denkwege Zu Thomas von Aquin schreibt Reinhard Löw: «Zunächst

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

1. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

1. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 1 Musterlösung zu Mathematik für Informatiker I, WS 2003/04 MICHAEL NÜSKEN, KATHRIN TOFALL & SUSANNE URBAN Aufgabe 11 (Aussagenlogik und natürliche Sprache) (9 Punkte) (1) Prüfe, ob folgenden Aussagen

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann ( )

er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann ( ) er schläft fast Entwurf einer Semantik zur Reformulierung eines vagen alltagsprachlichen Ausdrucks Philipp Hofmann (1001243) 2003-05-12 Problemstellung In diesem Text geht es darum die Semantik einer Logik

Mehr

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden 1 Nr.2-21.04.2016 Logik in der Schule Bildungsplan 2004 (Zitat:) Begründen Elementare Regeln und Gesetze der Logik kennen und anwenden Begründungstypen und Beweismethoden der Mathematik kennen, gezielt

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache AL

12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache AL 12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache L Eine zweite Methode Das Wahrheitsbaumverfahren Dieses Verfahren beruht auf der Methode des indirekten Beweises. Wahrheitsbäume

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 3 Was Hänschen nicht lernt, lernt Hans nimmermehr Volksmund Was Hänschen nicht lernt, lernt Hans nimmermehr hat heute keine

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 25. Januar 2017 Gödels Unvollständigkeitssatz Unvollständigkeit von Axiomensystemen:

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL 2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen Dr. Theo Lettmann Paderborn, den 21. November 2003 Abgabe 1. Dezember 2003 Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 6 Musterlösungen AUFGAB 38 : s seien folgende Prädikate gegeben: Person()

Mehr

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati René Descartes Meditationen Erste Untersuchung INHALTSVERZEICHNIS 1 EINLEITUNG 3 1.1 PROBLEMSTELLUNG 3 1.2 ZIELSETZUNG

Mehr

Frege und sein Reich der Gedanken

Frege und sein Reich der Gedanken Frege und sein Reich der Gedanken Fabian Hundertmark Matrikel-Nummer: 1769284 10. Februar 2008 1 Was werde ich tun? In seinem Text Der Gedanke - Eine logische Untersuchung argumentiert Gottlob Frege für

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

Paradoxien der falschen Meinung in Platons "Theätet"

Paradoxien der falschen Meinung in Platons Theätet Geisteswissenschaft Anonym Paradoxien der falschen Meinung in Platons "Theätet" Essay Paradoxien der falschen Meinung in Platons Theätet Einleitung (S.1) (I) Wissen und Nichtwissen (S.1) (II) Sein und

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

4. Sitzung Kant, Kritik der Urteilskraft

4. Sitzung Kant, Kritik der Urteilskraft 4. Sitzung Kant, Kritik der Urteilskraft Verteilung der Wiki-Einträge und Protokolle Begriffsnetz zum Thema Form und Materie Zusätzliche Stellen bei Aristoteles (Metaphysik, 7. Buch) Wesenheit wird, wenn

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums:

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Prof. Dr. Alfred Toth Der semiotische Schöpfungsprozesses 1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Darin wird folgendes berichtet: Zeile 1: Das Wort, d.h. das Zeichen, ist primordial

Mehr

Folien zur Vorlesung Perspektivität und Objektivität von Prof. Martin Seel. Sitzung vom 1. November 2004

Folien zur Vorlesung Perspektivität und Objektivität von Prof. Martin Seel. Sitzung vom 1. November 2004 Folien zur Vorlesung Perspektivität und Objektivität von Prof. Martin Seel Sitzung vom 1. November 2004 1 Kant, Kritik der reinen Vernunft, B 74: Unsre Erkenntnis entspringt aus zwei Grundquellen des Gemüts,

Mehr