Studientag zur Algorithmischen Mathematik

Größe: px
Ab Seite anzeigen:

Download "Studientag zur Algorithmischen Mathematik"

Transkript

1 Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012

2 Outline Line Search Ein generisches Verfahren Abstiegsrichtungen Zur Konvergenz und zur Praxis

3 Fragestellungen Existenz und Charakterisierung von Lösungen Existenz durch geeignete Voraussetzungen sicherstellen. Wir werden lokale Extremwerte charakterisieren. Notwendige und hinreichende Bedingungen. Algorithmen zur Bestimmung von Lösungen

4 Fragestellungen Existenz und Charakterisierung von Lösungen Existenz durch geeignete Voraussetzungen sicherstellen. Wir werden lokale Extremwerte charakterisieren. Notwendige und hinreichende Bedingungen. Algorithmen zur Bestimmung von Lösungen Suchrichtungen

5 Fragestellungen Existenz und Charakterisierung von Lösungen Existenz durch geeignete Voraussetzungen sicherstellen. Wir werden lokale Extremwerte charakterisieren. Notwendige und hinreichende Bedingungen. Algorithmen zur Bestimmung von Lösungen Suchrichtungen Schrittweiten

6 Fragestellungen Existenz und Charakterisierung von Lösungen Existenz durch geeignete Voraussetzungen sicherstellen. Wir werden lokale Extremwerte charakterisieren. Notwendige und hinreichende Bedingungen. Algorithmen zur Bestimmung von Lösungen Suchrichtungen Schrittweiten Konvergenzaussagen

7 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen.

8 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen. Die Aufgabenstellung, in eine Suchrichtung zu minimieren, ist nun ein eindimensionales Problem.

9 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen. Die Aufgabenstellung, in eine Suchrichtung zu minimieren, ist nun ein eindimensionales Problem. Da wir auch hier im Allgemeinen nur lokale Minima finden können, idealisieren wir die Aufgabenstellung.

10 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen. Die Aufgabenstellung, in eine Suchrichtung zu minimieren, ist nun ein eindimensionales Problem. Da wir auch hier im Allgemeinen nur lokale Minima finden können, idealisieren wir die Aufgabenstellung. Definition f : [a, b] R heißt strikt unimodal auf [a, b], wenn f genau ein lokales Minimum in [a, b] hat,

11 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen. Die Aufgabenstellung, in eine Suchrichtung zu minimieren, ist nun ein eindimensionales Problem. Da wir auch hier im Allgemeinen nur lokale Minima finden können, idealisieren wir die Aufgabenstellung. Definition f : [a, b] R heißt strikt unimodal auf [a, b], wenn f genau ein lokales Minimum in [a, b] hat, strikt konvex, wenn x, y [a, b] λ ]0, 1[: f (λx + (1 λ)y) < λf (x) + (1 λ)f (y)

12 Unimodale Funktionen Wenn wir eine Abstiegsrichtung bestimmt haben, müssen wir uns überlegen, wie weit wir in diese Richtung gehen wollen. Die Aufgabenstellung, in eine Suchrichtung zu minimieren, ist nun ein eindimensionales Problem. Da wir auch hier im Allgemeinen nur lokale Minima finden können, idealisieren wir die Aufgabenstellung. Definition f : [a, b] R heißt strikt unimodal auf [a, b], wenn f genau ein lokales Minimum in [a, b] hat, strikt konvex, wenn x, y [a, b] λ ]0, 1[: f (λx + (1 λ)y) < λf (x) + (1 λ)f (y) Strikt konvex strikt unimodal.

13 Line search Proposition f strikt unimodal λ ]0, 1[ : f (λx + (1 λ)y) < max{f (x), f (y)}.

14 Line search Proposition f strikt unimodal λ ]0, 1[ : f (λx + (1 λ)y) < max{f (x), f (y)}. a x n+1 xn b

15 Line search Proposition f strikt unimodal λ ]0, 1[ : f (λx + (1 λ)y) < max{f (x), f (y)}. a x n+1 xn b Falls f (x n+1 ) < f (x n ): neues Suchintervall ist [a, x n ]. Falls f (x n+k ) > f (x n ): neues Suchintervall ist [x n+k, b].

16 Line search Proposition f strikt unimodal λ ]0, 1[ : f (λx + (1 λ)y) < max{f (x), f (y)}. a x n+1 xn b Falls f (x n+1 ) < f (x n ): neues Suchintervall ist [a, x n ]. Falls f (x n+k ) > f (x n ): neues Suchintervall ist [x n+k, b]. Platziere neue Punkte möglichst effizient.

17 Line search Platziere neue Punkte möglichst effizient.

18 Line search Platziere neue Punkte möglichst effizient. a x n+1 x n b } {{ } l 1 } {{ } l 2 } {{ } l 1

19 Line search Platziere neue Punkte möglichst effizient. a x n+1 x n b } {{ } l 1 } {{ } l 2 } {{ } l 1 1. Platziere x n und x n+1 symmetrisch.

20 Line search Platziere neue Punkte möglichst effizient. a x n+1 x n b } {{ } l 1 } {{ } l 2 } {{ } l 1 1. Platziere x n und x n+1 symmetrisch. 2. Je weiter innen x n und x n+1 platziert werden, desto größer der Fortschritt jetzt.

21 Line search Platziere neue Punkte möglichst effizient. a x n+1 x n b } {{ } l 1 } {{ } l 2 } {{ } l 1 1. Platziere x n und x n+1 symmetrisch. 2. Je weiter innen x n und x n+1 platziert werden, desto größer der Fortschritt jetzt. 3. Je weiter innen x n und x n+1 platziert werden, desto kleiner der Fortschritt im nächsten Schritt.

22 Line search Platziere neue Punkte möglichst effizient. a x n+1 x n b } {{ } l 1 } {{ } l 2 } {{ } l 1 1. Platziere x n und x n+1 symmetrisch. 2. Je weiter innen x n und x n+1 platziert werden, desto größer der Fortschritt jetzt. 3. Je weiter innen x n und x n+1 platziert werden, desto kleiner der Fortschritt im nächsten Schritt. Beiden Fällen am Besten gerecht: Platzierung im Goldenen Schnitt. l 1 = l 1 + l 2 = l 2 l 1 2

23 Generisches Optimierungsverfahren Starte in x 0 S

24 Generisches Optimierungsverfahren Starte in x 0 S k := 1

25 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε:

26 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε: Wähle Abstiegsrichtung d k mit f (x k 1 )d k < 0

27 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε: Wähle Abstiegsrichtung d k mit f (x k 1 )d k < 0 Wähle Schrittweite t k

28 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε: Wähle Abstiegsrichtung d k mit f (x k 1 )d k < 0 Wähle Schrittweite t k x k := x k 1 + t k d k

29 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε: Wähle Abstiegsrichtung d k mit f (x k 1 )d k < 0 Wähle Schrittweite t k x k := x k 1 + t k d k k := k + 1

30 Generisches Optimierungsverfahren Starte in x 0 S k := 1 Solange f (x k 1 ) > ε: Wähle Abstiegsrichtung d k mit f (x k 1 )d k < 0 Wähle Schrittweite t k x k := x k 1 + t k d k k := k + 1

31 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n.

32 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient.

33 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient. Gradientenverfahren: Suche in Richtung des steilsten Abstiegs f (x k 1 ).

34 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient. Gradientenverfahren: Suche in Richtung des steilsten Abstiegs f (x k 1 ). Man beobachtet Zickzackverhalten.

35 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient. Gradientenverfahren: Suche in Richtung des steilsten Abstiegs f (x k 1 ). Man beobachtet Zickzackverhalten. Newtonrichtung: Nach Taylor ist f (x k 1 + v) f (x k 1 ) + f (x k 1 ) v v 2 f (x k 1 )v.

36 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient. Gradientenverfahren: Suche in Richtung des steilsten Abstiegs f (x k 1 ). Man beobachtet Zickzackverhalten. Newtonrichtung: Nach Taylor ist f (x k 1 + v) f (x k 1 ) + f (x k 1 ) v v 2 f (x k 1 )v. Den stationären Punkt dieser quadratischen Funktion finden wir in x k 1 2 f (x k 1 ) 1 f (x k 1 ).

37 Prominente Abstiegsrichtungen Koordinatensuche: Suche Richtung x i zyklisch für i = 1,..., n. Leicht zu implementieren, in der Regel nicht sehr effizient. Gradientenverfahren: Suche in Richtung des steilsten Abstiegs f (x k 1 ). Man beobachtet Zickzackverhalten. Newtonrichtung: Nach Taylor ist f (x k 1 + v) f (x k 1 ) + f (x k 1 ) v v 2 f (x k 1 )v. Den stationären Punkt dieser quadratischen Funktion finden wir in x k 1 2 f (x k 1 ) 1 f (x k 1 ).Deswegen bezeichnen wir als Newtonrichtung. 2 f (x k 1 ) 1 f (x k 1 )

38 Zur Konvergenz und zur Praxis Wir haben gezeigt, dass bei Koordinatensuche und Gradientenverfahren jede konvergente Teilfolge gegen einen stationären Punkt konvergiert.

39 Zur Konvergenz und zur Praxis Wir haben gezeigt, dass bei Koordinatensuche und Gradientenverfahren jede konvergente Teilfolge gegen einen stationären Punkt konvergiert. In der Praxis wird man den line search nicht exakt durchführen, oder einen stationären Punkt suchen, sondern eine hinreichend gute Verbesserung anstreben.

40 Zur Konvergenz und zur Praxis Wir haben gezeigt, dass bei Koordinatensuche und Gradientenverfahren jede konvergente Teilfolge gegen einen stationären Punkt konvergiert. In der Praxis wird man den line search nicht exakt durchführen, oder einen stationären Punkt suchen, sondern eine hinreichend gute Verbesserung anstreben. Wir haben das Newtonverfahren als Suchverfahren in Newtonrichtung mit Schrittweite 1 definiert.

41 Zur Konvergenz und zur Praxis Wir haben gezeigt, dass bei Koordinatensuche und Gradientenverfahren jede konvergente Teilfolge gegen einen stationären Punkt konvergiert. In der Praxis wird man den line search nicht exakt durchführen, oder einen stationären Punkt suchen, sondern eine hinreichend gute Verbesserung anstreben. Wir haben das Newtonverfahren als Suchverfahren in Newtonrichtung mit Schrittweite 1 definiert. In der Praxis wird man hier auch eine Schrittweitensteuerung einbauen.

42 Konjugierte Gradienten In der Praxis sind konjugierte Gradientenverfahren sehr erfolgreich.

43 Konjugierte Gradienten In der Praxis sind konjugierte Gradientenverfahren sehr erfolgreich. Ich finde das nicht direkt ersichtlich.

44 Konjugierte Gradienten In der Praxis sind konjugierte Gradientenverfahren sehr erfolgreich. Ich finde das nicht direkt ersichtlich. Eine weitere wichtige Beobachtung im Hinblick auf große Probleme ist die folgende. Sind die s größten Eigenwerte von Q deutlich voneinander separiert und häufen sich die übrigen n s Eigenwerte an einer Stelle, z. B. bei 0, so erreicht das CG-Verfahren eine gute Näherung für den optimalen Zielfunktionswert des Problems nach s + 1 Iterationen...Diese Aussagen sind qualitativ auch auf lokale Lösungen einer nichtquadratischen Funktion f, in denen die Optimalitätsbedingungen zweiter Ordnung erfüllt sind, übertragbar, da f in einer Umgebung eines solchen Punktes durch eine gleichmäßig konvexe, quadratische Funktion angenähert werden kann. Zitat aus Reemtsen: Einführung in die nicht-lineare Optimierung.

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Freie Nichtlineare Optimierung Orakel, lineares/quadratisches Modell Optimalitätsbedingungen Das Newton-Verfahren Line-Search-Verfahren Inhaltsübersicht für heute: Freie Nichtlineare

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Problem lokaler Minima

Problem lokaler Minima Optimierung Optimierung Häufige Aufgabe bei Parameterschätzung: Minimierung der negativen log-likelihood-funktion F(a) oder der Summe der quadratischen Abweichungen S(a) und Berechnung der Unsicherheit

Mehr

Einführung in die nichtlineare Optimierung

Einführung in die nichtlineare Optimierung Einführung in die nichtlineare Optimierung Prof. Dr. Walter Alt Semester: SS 2010 1 Vorwort Dieses Dokument wurde als Skript für die auf der Titelseite genannte Vorlesung erstellt und wird jetzt im Rahmen

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 11.12.2008 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Einführung Verfahren für

Mehr

Einführung in die Optimierung

Einführung in die Optimierung Einführung in die Optimierung Prof. Dr. Bastian von Harrach Universität Stuttgart, Fachbereich Mathematik - IMNG Lehrstuhl für Optimierung und inverse Probleme Wintersemester 2014/15 http://www.mathematik.uni-stuttgart.de/oip

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

Optimierung und inverse Probleme

Optimierung und inverse Probleme Optimierung und inverse Probleme Prof. Dr. Bastian von Harrach Goethe-Universität Frankfurt am Main Institut für Mathematik Wintersemester 2016/17 http://numerical.solutions Vorläufige Version, wird während

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017

TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017 TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Nichtlineare Optimierung

Nichtlineare Optimierung Nichtlineare Optimierung Roland Griesse Numerische Mathematik Chemnitzer Skiseminar Gerlosberg, 07. 14. März 2009 Gliederung Konvexe Optimierung 1 Konvexe Optimierung Bedeutung Beispiele Charakterisierung

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

Skript zur Vorlesung. Optimierung. gelesen von. Prof. Dr. S. Volkwein

Skript zur Vorlesung. Optimierung. gelesen von. Prof. Dr. S. Volkwein Skript zur Vorlesung Optimierung gelesen von Prof. Dr. S. Volkwein Konstanz, Sommersemester 2011 Inhaltsverzeichnis 1 Einleitung 3 2 Optimalitätskriterien 4 2.1 Allgemeiner Fall.........................................

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

Numerische Optimierung

Numerische Optimierung Numerische Optimierung 6 In den ersten fünf Kapiteln dieses Skriptes haben wir Grundaufgaben der biomedizinischen Bildgebung eingeführt, im Sinne von Variationsmethoden modelliert und ihre Analyse in geeigneten

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 =

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik. a 0 = 0 = Lösungsskizzen zu den Klausuraufgaben zum Kurs 4 Algorithmische Mathematik 4KSL3 6 Punkte Aufgabe. Die Folge (a n ) n N natürlicher Zahlen a n sei rekursiv definiert durch a 0 = 0, a n = a n + n falls

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)

KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen) Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs Algorithmische Mathematik KSL09 Aufgabe. Zeigen oder widerlegen Sie: Es existiert ein Graph mit Valenzsequenz (8,,,,,,,,,). Geben Sie im Falle der Existenz

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

2 Statische Optimierung: Unbeschränkter Fall

2 Statische Optimierung: Unbeschränkter Fall 2 Statische Optimierung: Unbeschränkter Fall 2. Optimalitätsbedingungen Bevor in den Abschnitten 2.2 2.6 die numerischen Verfahren zur Lösung statischer Optimierungsprobleme ohne Beschränkungen behandelt

Mehr

BWL-Crash-Kurs Mathematik

BWL-Crash-Kurs Mathematik Ingolf Terveer BWL-Crash-Kurs Mathematik UVK Verlagsgesellschaft mbh Vorwort 9 1 Aufgaben der Linearen Wirtschaftsalgebra 13 Aufgaben 17 2 Lineare Gleichungssysteme 19 2.1 Lineare Gleichungssysteme in

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Lineare und nichtlineare Optimierung

Lineare und nichtlineare Optimierung Lineare und nichtlineare Optimierung AXEL DREVES Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München Werner-Heisenberg-Weg 39 85577 Neubiberg/München

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Oliver Matte Max Lein Zentralübung Mathematik für Physiker 2 Analysis ) Wintersemester 200/20 Lösungsblatt 5 2..200) 32. Häufungspunkte Sei a

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige

Mehr

5.10. Mehrdimensionale Extrema und Sattelpunkte

5.10. Mehrdimensionale Extrema und Sattelpunkte 5.1. Mehrdimensionale Extrema und Sattelpunkte Zur Erinnerung: Eine Funktion f von einer Teilmenge A des R n nach R hat im Punkt a ein (strenges) globales Maximum, falls f( x ) f( a ) (bzw. f( x ) < f(

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung für zur Lösung der Monge-Ampère-Gleichung Yasemin Hafizogullari Institut für Geometrie und Praktische Mathematik RWTH Aachen Vortrag zum Seminar im Wintersemester 2009/2010 Ein Transportproblem für? für

Mehr

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6

Inhaltsverzeichnis. 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 1 Einleitung 1 Struktur und Einsatz von Optimierungsmethoden 2 Einsatz der Optimierung in der Steuerungs- und Regelungstechnik 6 Teil I Statische Optimierung 2 Allgemeine Problemstellung der statischen

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Teil I. Unrestringierte Probleme

Teil I. Unrestringierte Probleme Teil I Unrestringierte Probleme 2 Geg.: f :R n R, f C 1 (R n ;R) Ziel: suche Minimierer von f 3 Kapitel 1 Abstiegsverfahren 1.1 Allgemeine Abstiegsverfahren Definition 1.1: Sei x R n. d R n heißt Abstiegsrichtung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}

Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )} Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

4.4 Lokale Extrema und die Hessesche Form

4.4 Lokale Extrema und die Hessesche Form 74 Kapitel 4 Differentialrechnung in mehreren Variablen 44 Lokale Extrema und die Hessesche Form Sei jetzt wieder U R n offen und f:u R eine Funktion Unter einem lokalen Extremum der Funktion f verstehen

Mehr

Mathematik I Prüfung Frühlingssemester 2014

Mathematik I Prüfung Frühlingssemester 2014 Mathematik I Prüfung Frühlingssemester 2014 Prof. Dr. Enrico De Giorgi 23. Juni 2014 Mathematik II: Prüfung Frühlingssemester 2014 1 Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen für offene

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Musterlösung zu Blatt 1

Musterlösung zu Blatt 1 Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26.

Nebenfach Mathematik im Informatik-Studium. Martin Gugat FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Nebenfach Mathematik im Informatik-Studium Martin Gugat martin.gugat@fau.de FAU: Friedrich-Alexander-Universität Erlangen-Nürnberg 26. Oktober 2016 Motivation Die rigorose Analyse von Algorithmen erfordert

Mehr

Optimierung. Vorlesung 13

Optimierung. Vorlesung 13 Optimierung Vorlesung 13 Letze Woche Branch&Bound Suchbaum Nach Möglichkeit nicht komplett durchsuchen Abschätzungen nach oben und unten Suchheuristiken Randomisierte Lokale Suche Simulated Annealing Metropolis

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.4 Anwendungen (Teil 2): Extremwerte www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr.

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

8 Iterationsverfahren zur Lösung von Gleichungssystemen

8 Iterationsverfahren zur Lösung von Gleichungssystemen Numerische Mathematik 378 8 Iterationsverfahren zur Lösung von Gleichungssystemen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr