Frohe Feiertage und ein erfolgreiches Neues Jahr!

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Frohe Feiertage und ein erfolgreiches Neues Jahr!"

Transkript

1 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Wintersemester 2009/10 Arithmetik Übungen 9 Von allen, die bis jetzt nach Wahrheit forschten, haben die Mathematiker allein eine Anzahl Beweise finden können, woraus folgt, daß ihr Gegenstand der allerleichteste gewesen sein müsse. (Rene Descartes) Aufgabe 1 (6 Punkte) a) Sei n N. Zeigen Sie: 2 (n 2 n). b) Seien a, b N. Zeigen Sie: 7 (a + 5b) 7 (50a + 5b). Aufgabe 2 (18 Punkte) Seien a, b, c Z, m N. Beweisen oder widerlegen Sie: a) a b mod m a c b c mod m b) a c b c mod m a b mod m c) a b mod m a b c mod m d) 2 2 a b mod m a b mod m e) 2 a b 2 mod m a b mod m f) m a a 0 mod m Aufgabe 3 (5 Punkte) Zwei Cowboys treiben gemeinsam ihre x Kühe in die Stadt und verkaufen sie zu je x Dollar. Für den Erlös erwerben sie eine ungerade Anzahl von Schafen zu je 12 Dollar, und der Rest reicht gerade noch für ein Lamm. Dem Cowboy, der beim Teilen das Lamm erhält, schenkt der andere zum Ausgleich seine Mundharmonika. Was kostet die Mundharmonika?

2 Aufgabe 4 (45 Punkte) Die ISBN 1 (International Standard Book Number, Internationale Standard Buch Nummer) dient dazu, auf einfache Art einen Buchtitel weltweit zu identifizieren. Da in einigen Ländern die bisherigen Nummernkontigente der 10stelligen ISBN (ISBN 10) nicht mehr ausreichten, wurde das gesamte System zum auf 13stellige ISBN (ISBN 13) umgestellt. Die ISBN 10 kann problemlos als Bestandteil in den EAN (European Article Number, Europäische Artikel Nummer) durch Vorsetzen von 978 oder 979 eingegliedert werden. Genau dieser Vorsatz ist es auch, der ab aus allen ISBN 10 eine ISBN 13 macht. Allerdings wird die Prüfziffer (letzte Ziffer der ISBN) bei der ISBN 13 dann auch nach dem Verfahren des EAN berechnet. Jede ISBN 10 hat die Form abcdefghi-p, wobei p die Prüfziffer ist. Man erhält die Prüfziffer p als kleinste, nichtnegative Lösung der Kongruenz: 10a + 9b + 8c + 7d + 6e + 5f + 4g + 3h + 2i + p 0 (mod 11). Ist p = 10, so schreibt man X als Prüfziffer. Jede ISBN 13 hat die Form abcdefghijkl-p, wobei p die Prüfziffer ist. Man erhält die Prüfziffer p als kleinste, nichtnegative Lösung der Kongruenz: a + 3b + c + 3d + e + 3f + g + 3h + i + 3j + k + 3l + p 0 (mod 10). a) Verifizieren Sie für das Buch Müller-Philipp, S.; Gorski, H.-J.: Leitfaden Arithmetik. 3. Auflage. Braunschweig, Wiesbaden: Vieweg, ISBN-10: mit ISBN 10 die Gültigkeit seiner Prüfziffer. b) Zeigen Sie, dass man die Prüfziffer des ISBN 10-Codes als kleinste nichtnegative Lösung folgender Kongruenz erhält: p a + 2b + 3c + 4d + 5e + 6f + 7g + 8h + 9i (mod 11). c) Zeigen Sie, dass der ISBN 10-Code Zahlendreher (d.h. das Vertauschen zweier benachbarter verschiedener Ziffern) erkennt, weil dann ein ungültiges ISBN-Codewort entsteht. d) Zeigen Sie, dass der ISBN 10-Code die falsche Eingabe einer Ziffer erkennt, jedoch zwei Fehler nicht notwendig erkennt. e) Verifizieren Sie nun für folgendes Buch mit ISBN 13 die Gültigkeit seiner Prüfziffer: HELLMICH/ KIPER: Einführung in die Grundschuldidaktik. Weinheim und Basel Siehe:

3 ISBN-13: f) Welche neue Prüfziffer müsste das Buch, das Sie unter a) betrachtet haben, ab 2007 bekommen, wenn die ersten Ziffern der neuen ISBN 978 sind? g) Untersuchen Sie, welche der unter c) und d) genannten Fehler vom ISBN 13-Code erkannt werden und welche nicht. h) Welche Veränderungen ergeben sich für Ihre Ergebnisse unter g), wenn statt einer abwechselnden Gewichtung mit den Faktoren 1 und 3 eine abwechselnde Gewichtung mit den Faktoren 1 und 2 vorgenommen wird? i) Welche zusätzlichen Fragestellungen/Arbeitsaufträge wären möglich/sinnvoll/interessant? Hinweis: Unterrichtsreihen zu diesem Thema für den Schulunterricht in den Klassen 6 oder 7 finden Sie in: Herget, Wilfried: Artikelnummern und Zebrastreifen, Balkencode und Prüfziffern - Mathematik im Alltag. In: Werner Blum, Hans-Wolfgang Henn, Manfred Klika, Jürgen Maaß (Hrsg.). Materialien für einen realitätsbezogenen Mathematikunterricht. Schriftenreihe der ISTRON-Gruppe, Band 1, Hildesheim: Franzbecker, 1994, S Dorfmayr, Anita: Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I. In: Jürgen Maaß, Gilbert Greefrath (Hrsg.). Materialien für einen realitätsbezogenen Mathematikunterricht. Schriftenreihe der ISTRON-Gruppe, Band 11, Hildesheim, Berlin: Franzbecker, 2007, S Anhang zu Aufgabe 3: Ausführliche Darstellung der Prüfzifferberechnung ohne Kongruenzschreibweise Vergleich ISBN 10 zu ISBN 13 ISBN 10 ISBN Die Prüfziffern werden nach unterschiedlichen Methoden berechnet. Berechnung der Prüfziffer p der ISBN 10: 1. Alle Ziffern werden von rechts nach links, beginnend mit der vorletzten Ziffer (also vor der Stelle der Prüfziffer), mit ihrer Position in der Ziffernfolge gewichtet, d.h. die vorletzte Ziffer wird mit 2, die nächste mit 3, usw. multipliziert. 2. Die Produkte werden summiert. 3. Der volle Rest zum nächst niedrigeren Vielfachen von 11 (modulo 11) wird errechnet. 4. Die Prüfziffer ist die Differenz des Restes zu 11.

4 Ist die Differenz 10, setzt man p = X. Ist die Differenz 11, setzt man p = 0. Beispiel ISBN10: p Nummer Schritt 1: Gewichtung Schritt 2: Produktsummation p 1 - Summe 272 Schritt 3: Summe mod = 24 Rest 8 Schritt 4: Differenz zu = 3 Endergebnis Prüfziffer 3 ISBN Die Prüfziffernberechnung für die ISBN 13 erfolgt nach der Methode von EAN: 1. Von rechts nach links werden die Stellen abwechselnd mit 3 und 1 gewichtet. 2. Die jeweiligen Produkte aus den beiden Zahlen werden errechnet und summiert. 3. Die Prüfziffer ist der volle Rest zur nächsthöheren durch 10 teilbaren Zahl (Modulo 10).

5 Tabelle 3: EAN-Beispiel p Nummer Schritt 1: Gewichtung Schritt 2: Produktsummation Summe 53 Schritt 3: Summe mod Endergebnis Prüfziffer 7 EAN Abgabetermin: Freitag,

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3

Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik - Vertiefung Übungen 3 Die Mathematik ist eine Art Spielzeug,

Mehr

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung

WAS HEISST MODULO? MODULO. Zahlentheorie und Codierung WAS HEISST MODULO? 1.Was hat das modulo-rechnen mit dem Dividieren zu tun? 2.Begründe folgende Teilbarkeitsregeln: a)eine Zahl ist genau dann durch 3 teilbar, wenn ihre Ziffernsumme durch 3 teilbar ist.

Mehr

ISTRON. Materialien für einen realitätsbezogenen Mathematikunterricht. Inhaltsverzeichnis Bände 0 bis 14. div verlag. div.

ISTRON. Materialien für einen realitätsbezogenen Mathematikunterricht. Inhaltsverzeichnis Bände 0 bis 14. div verlag. div. ISTRON Materialien für einen realitätsbezogenen Mathematikunterricht Inhaltsverzeichnis Bände 0 bis 14 div div verlag franzbecker 1 Zu den Herausgebern der Schriftenreihe ISTRON - Materialien für einen

Mehr

Vortrag: Prüfzeichencodierung. Michael Gläser

Vortrag: Prüfzeichencodierung. Michael Gläser Vortrag: Prüfzeichencodierung Michael Gläser Prüfzeichencodierung (Inhalt): 1. Definition und allgemeine Eigenschaften 2. Prüfziffercodierung 3. ISBN-Codierung 4. EAN-Codierung 1. Definition und allgemeine

Mehr

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4

Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Westfälische Wilhelms-Universität Münster Institut für Didaktik der Mathematik und Informatik Dr. Astrid Brinkmann Didaktische Grundlagen Arithmetik Vertiefung Übungen 4 Von allen, die bis jetzt nach Wahrheit

Mehr

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK

Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Die Beitragskontonummer besteht aus einem 6-stelligen numerischen Begriff und einer Prüfziffer Die Prüfziffer wird auf folgende Art berechnet:

Mehr

Prüfziffern. Man versucht, solche Fehler zu erkennen, indem man der Zahl eine weitere Ziffern, die sog. Prüfziffern, hinzufügt.

Prüfziffern. Man versucht, solche Fehler zu erkennen, indem man der Zahl eine weitere Ziffern, die sog. Prüfziffern, hinzufügt. Prüfziffern Bei der Erfassung von langen Zahlen können Fehler auftreten: Ziffern werden weggelassen oder hinzugefügt, zwei benachbarte Ziffern werden vertauscht, eine Ziffer wird falsch übernommen, usw..

Mehr

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN?

13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? 13. Algorithmus der Woche Fehlererkennende Codes Was ist eigentlich ISBN? Autor Alexander Souza, Universität Freiburg Schon faszinierend, was man so alles mit Algorithmen machen kann: CDs schnell in Regalen

Mehr

Kapitel 5. Kapitel 5 Fehlererkennende Codes

Kapitel 5. Kapitel 5 Fehlererkennende Codes Fehlererkennende Codes Inhalt 5.1 5.1 Grundlagen: Was Was sind sind Vehler? 5.2 5.2 Vertuaschungsfehler 5.3 5.3 Der Der ISBN-Code 3-406-45404-6 5.4 5.4 Der Der EAN-Code ( Strichcode ) Seite 2 5.1 Grundlagen:

Mehr

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten?

Arbeitsblatt I. 5. Welche Arten von Fehlern könnten bei der Eingabe noch auftreten? Arbeitsblatt I 1. Sind folgende EAN gültig? a. 3956966784248 b. 3900271934004 2. Berechne händisch die Prüfziffer zu folgender Nummer: 100311409310 Tipp: Du kannst dir die Sache einfacher machen, wenn

Mehr

Wie erreiche ich was?

Wie erreiche ich was? Wie erreiche ich was? Projekt: Bezeichnung: Warenwirtschaft (WWSBAU) EAN-Nummer Version: 7.0 Datum: 02.06.2007 Kurzbeschreibung: Mit diesem Leitfaden erhalten Sie eine tabellarische Kurzanleitung, um in

Mehr

Pädagogische Hochschule Schwäbisch Gmünd

Pädagogische Hochschule Schwäbisch Gmünd Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Albrecht: Vorkurs Arithmetik/Algebra uebung_0_arith.docx: EAN Die European Article Number (EAN) ist die Bezeichnung für die

Mehr

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I

Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I Von Strichcode bis ASCII 9 Von Strichcode bis ASCII Codierungstheorie in der Sekundarstufe I von Anita Dorfmayr, Wien An Hand der einfachen Codes EAN Strichcode und ISBN können schon in der Sekundarstufe

Mehr

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017

Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Verschlüsselungs- und Codierungstheorie PD Dr. Thomas Timmermann Westfälische Wilhelms-Universität Münster Sommersemester 2017 Lineare Codes (Ausarbeitung von Benjamin Demes) 1) Was sind lineare Codes

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Barcode-Informationen

Barcode-Informationen Barcode-Informationen Einführung Der Barcode ist leicht zu erstellen und mit einfachen Geräten zu lesen und zu entschlüsseln. Man findet ihn direkt auf Umverpackungen oder auf Etiketten aller Art. In einigen

Mehr

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen

Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die

Mehr

Pädagogische Hochschule Karlsruhe

Pädagogische Hochschule Karlsruhe Die Diedergruppe D und deren Anwendung bei der Numerierung bundesdeutscher DM-Geldscheine Pädagogische Hochschule Karlsruhe Institut für Mathematik und Informatik Vorlesung: Codierung und Kryptographie

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie 11. Dezember 2007 Ausblick Einführung und Definitionen 1 Einführung und Definitionen 2 3 Einführung und Definitionen Code: eindeutige Zuordnung von x i X = {x 1,.., x k } und y j Y = {y 1,..., y n } Sender

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin,

Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, Warum darf sich der Laser irren? Vortrag von Ralph-Hardo Schulz Sommeruniversität an der FU Berlin, 28724 1 Prüfzeichensysteme zur Fehlererkennung 11 Europäische Artikel Nummer (EAN) Die EAN ist eine 13

Mehr

Wie werden die Barcode Prüfziffern berechnet?

Wie werden die Barcode Prüfziffern berechnet? KB Consult; K. Bögli Bergwiesenstrasse 3 CH88 Weisslingen Telefon: [] 05 / 38 6 96 Fax: [] 05 / 38 5 0 EMail: kurt.boegli@kbconsult.ch Wie werden die Barcode Prüfziffern berechnet? Nachfolgend die Beschreibung

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste Dr. Astrid Brinkmann Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule Themen- und Literaturliste Einführung 1. Vorstellung und Verteilung der Themen

Mehr

Aufgaben zu Kapitel 5

Aufgaben zu Kapitel 5 5.1 a) Seien a, b, c mit a b und b c. Dann gibt es ganze Zahlen n und m mit b = na und c = mb. Daraus folgt c = mna, also ac. Gilt a b und a c, so gibt es ganze Zahlen n und m mit b = na und c = ma. Sind

Mehr

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen. Klaus Wolthaus, Dülmen VORSCHAU Reihe 34 S 1 Verlauf Material LEK Glossar Lösungen EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen Klaus Wolthaus, Dülmen Beltz und Gelberg, Weinheim und Basel Wie findet der Buchhändler

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Prima Zahlen? Primzahlen

Prima Zahlen? Primzahlen Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More willi.more@uni-klu.ac.at I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule

Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule Dr. Astrid Brinkmann Spezielle Fragen der Mathematikdidaktik: Realitätsnaher Mathematikunterricht in der Grundschule Themen- und Literaturliste Einführung 1. Vorstellung und Verteilung der Themen I. Theoretische

Mehr

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?!

33 D Codes und Prüfziffern. Impuls 1. a b c d e f g h i j. k l m n o p q r s t. u v w x y z ss st au eu. ei äu ä ö ü ie ch sch , ; :.?! Codes und Prüfziffern 33 1 5 Impuls 1 Blindenschrift als spezielle Verschlüsselung a b c d e f g h i j k l m n o p q r s t u v w x y z ss st au eu ei äu ä ö ü ie ch sch, ; :.?! ( ) - 1 2 3 4 5 6 7 8 9

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Wissen INFORMATIONSMATERIALIEN. Fach Mathematik/Informatik. Die Europäische Artikelnummer (EAN)

Wissen INFORMATIONSMATERIALIEN. Fach Mathematik/Informatik. Die Europäische Artikelnummer (EAN) Wissen INFORMATIONSMATERIALIEN Fach Mathematik/Informatik Die Europäische Artikelnummer (EAN) FACH MATHEMATIK/INFORMATIK Die Europäische Artikelnummer (EAN) Tino Hempel Die Veröffentlichung erfolgt ohne

Mehr

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste

Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule. Themen- und Literaturliste Dr. Astrid Brinkmann Spezielle Fragen der Mathematikdidaktik: Mathematisches Modellieren und Problemlösen in der Grundschule Themen- und Literaturliste Einführung 1. Vorstellung und Verteilung der Themen

Mehr

Fehlerhafte Codes und Zauberei

Fehlerhafte Codes und Zauberei Fehlerhafte Codes und Zauberei THEORIE DER INFORMATIK Isolde Adler Humboldt Universität zu Berlin Girls Day, 24.04.2008 ISOLDE ADLER GIRLS DAY THEORIE DER INFORMATIK 1/12 Willkommen zum Girls Day! ISOLDE

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

3. Stellenwertsysteme

3. Stellenwertsysteme 3 Stellenwertsysteme 47 3. Stellenwertsysteme 3.1 Was ist ein Stellenwertsystem? 3.2 Andere Basissysteme 3.3 Teilbarkeitsregeln 3.4 Teilbarkeitsregeln in anderen Basissystemen In diesem Abschnitt wollen

Mehr

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014

Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014 Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster

Mehr

8 Planarbeit zur Vertiefung der Inhalte

8 Planarbeit zur Vertiefung der Inhalte 8 Planarbeit zur Vertiefung der Inhalte 8.1 Tabellarische Übersicht Zunächst sei eine Übersicht gegeben, aus der hervorgeht, mit welchen Aufgaben über welche Grundideen nachgedacht werden soll. Die Aufgaben

Mehr

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I

Mathematik und ihre Didaktik WS 02/03 W. Neidhardt Übung 1. Übungen zu Mathematik und Didaktik I W. Neidhardt Übung 1 Übungen zu Mathematik und Didaktik I Plenumsübung: Einfache Algorithmen mit JAVAscript 1 5 Beweisen Sie mit Hilfe des Prinzips vom kleinsten Element, dass 5 irrational ist. 2 Zahlen

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie 1 Elementare Zahlentheorie Die Mathematik ist die Königin der Wissenschaften, die Zahlentheorie ist die Königin der Mathematik (C. F. Gauss) Dieses Kapitel handelt von den Eigenschaften der ganzen Zahlen

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

2 angehängte. Länderkürzel A = 10, B = 11, C = 12, D = 13, E = 14, Teile diese Zahl durch 97. Notiere den Rest.

2 angehängte. Länderkürzel A = 10, B = 11, C = 12, D = 13, E = 14, Teile diese Zahl durch 97. Notiere den Rest. IBAN-Prüfziffern berechnen 1 Seit 1. Februar 2016 dürfen Banktransaktionen in Europa nur noch mit der sogenannten International Bank Account Number (IBAN, Internationale Bankkontonummer) durchgeführt werden.

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen

ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität

Mehr

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen

Mehr

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere. Klaus Wolthaus, Dülmen VORANSICHT. Klasse Klasse 9 und 10 Dauer Inhalt

Verlauf Material LEK Glossar Lösungen. EAN, ISBN und andere. Klaus Wolthaus, Dülmen VORANSICHT. Klasse Klasse 9 und 10 Dauer Inhalt Reihe 34 S 1 Verlauf Material LEK Glossar Lösungen EAN, ISBN und andere Prüfziffern und Prüfverfahren kennenlernen Klaus Wolthaus, Dülmen Beltz und Gelberg, Weinheim und Basel Orlev erzählt diese authentische

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware

Codierung. Codierung. EAN Europäische Artikelnummer Ziffern 1 und 2 codieren das Hersteller-Land. Ziffer 2 bis 12 codieren Händler und Ware Codierung Codierung Haydn: Streichquartett op 54.3 aus Largo, Violine I 1 2 Ziffern 1 und 2 codieren das Hersteller-Land Ziffer 2 bis 12 codieren Händler und Ware Die letzte Ziffer ist eine Prüfziffer

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

Spielen mit Zahlen Seminarleiter: Dieter Bauke

Spielen mit Zahlen Seminarleiter: Dieter Bauke Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter

Mehr

Fehlererkennende und fehlerkorrigierende Codes

Fehlererkennende und fehlerkorrigierende Codes Fehlererkennende und fehlerkorrigierende Codes Claudiu-Vlad URSACHE, 5AHITN Inhalt 1. Codes... 2 2. Hammingdistanz... 3 3. Fehlererkennende Codes... 4 4. Fehlerkorrigierende Codes... 5 1. Codes a 2 a 00

Mehr

Thomas Markwig. 20. Oktober 2008

Thomas Markwig. 20. Oktober 2008 Thomas Markwig http://www.mathematik.uni-kl.de/ keilen 20. Oktober 2008 Jede Woche ein Übungsblatt. Aufgaben zu Hause bearbeiten und zur Lösung einreichen. Diskutiert über Lösungsansätze und Lösungen mit

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Kurzanleitung /Kompalitätstest Barcode. Sie haben zwei Möglichkeiten unsere Barcode/Strichcodes für Ihren eigenen stationären Einzelhandel zu nutzen.

Kurzanleitung /Kompalitätstest Barcode. Sie haben zwei Möglichkeiten unsere Barcode/Strichcodes für Ihren eigenen stationären Einzelhandel zu nutzen. Kurzanleitung /Kompalitätstest Barcode Bitte drucken Sie diese Anleitung aus. Sie haben zwei Möglichkeiten unsere Barcode/Strichcodes für Ihren eigenen stationären Einzelhandel zu nutzen. 1. Möglichkeit

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 14 Kunst gibt nicht das Sichtbare wieder, sondern Kunst macht sichtbar Paul Klee Division mit Rest Jede natürliche Zahl lässt

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung

Mehr

EDI. Electronic Data Interchange (Elektronischer Datenaustausch) H. Werntges, FB Informatik, FH Wiesbaden 1. Exkurse

EDI. Electronic Data Interchange (Elektronischer Datenaustausch) H. Werntges, FB Informatik, FH Wiesbaden 1. Exkurse Fachhochschule Wiesbaden - Fachbereich Informatik EDI Electronic Data Interchange (Elektronischer Datenaustausch) 25.03.2003 H. Werntges, FB Informatik, FH Wiesbaden 1 Fachhochschule Wiesbaden - Fachbereich

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Modellierungsaufgaben in Klassenarbeiten

Modellierungsaufgaben in Klassenarbeiten Modellierungsaufgaben in Klassenarbeiten Gerechte Bewertung (un)möglich? Ziele Modellierungen und Realitätsbezüge Mathematik im Leben anwenden Bedeutung von Mathematik für das Leben und unsere Gesellschaft

Mehr

Da Code 128 B und C am häufigsten verwendet werden, wurden in HIT nur diese beiden implementiert.

Da Code 128 B und C am häufigsten verwendet werden, wurden in HIT nur diese beiden implementiert. Definition Code 128 Der Code 128 untergliedert sich in drei Untercodes: Charset A: Unterstützt ASCII 32 mit 63 (also Satzzeichen, nur Großbuchstaben und Ziffern und etwas mehr) und ASCII 0 31 in einem

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Universität Siegen Lehrstuhl Theoretische Informatik Carl Philipp Reh Daniel König Diskrete Mathematik für Informatiker WS 016/017 Übung 7 1. Gegeben sei folgender Graph und das Matching M = {{h, f}, {c,

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7

Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7 Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund

Mehr

Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen

Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen Sachinformation Haus 2.1: Summen aufeinander folgender Zahlen Worum geht es? Die Auseinandersetzung mit Aufgabenstellungen aus dem mathematisch substanziellen Problemfeld Summen von aufeinander folgenden

Mehr

= 1. Falls ( a n. ) r i. i=1 ( b p i

= 1. Falls ( a n. ) r i. i=1 ( b p i Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest

Mehr

101 Jahre. Festvortrag. International Bank Account Number. Mario Spengler, Januar 2014, gymherm

101 Jahre. Festvortrag. International Bank Account Number. Mario Spengler, Januar 2014, gymherm 101 Jahre gymherm Festvortrag International Bank Account Number Mario Spengler, Januar 2014, gymherm Was ist eine IBAN? Wozu eine IBAN? national international Fehlervermeidung Wie erstellt man eine IBAN?

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

Nummern. und. Normen. Buchhandel

Nummern. und. Normen. Buchhandel Nummern und Normen im Buchhandel 1. Nummern für Buchhandelsprodukte... 3 a) ISBN... 3 b) ISSN... 4 c) EAN... 5 d) BZ Nummern... 6 2. Ländercodes und Währungen... 7 a) Ländercodes... 7 b) Währungen... 7

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen

Mehr

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Das Bauen einer Zahlenmauer erfolgt nach folgender Regel: Die Summe von zwei nebeneinander stehenden Zahlen ergibt stets die darüber liegende Zahl.

Das Bauen einer Zahlenmauer erfolgt nach folgender Regel: Die Summe von zwei nebeneinander stehenden Zahlen ergibt stets die darüber liegende Zahl. Einführung Mauern bestehen aus Steinen. Bei einer Zahlenmauer steht jeder Stein für eine Zahl. Später verwenden wir statt Zahlen auch Variablen. Wenn nicht anders angegeben verwenden wir meist die Zahlen

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Konzept IBAN/BIC & SEPA vendit. MDSI 05/2012 Version 1.1

Konzept IBAN/BIC & SEPA vendit. MDSI 05/2012 Version 1.1 Konzept IBAN/BIC & SEPA vendit - MDSI 05/2012 Version 1.1 MDSI Branchensoftware IBAN/BIC & SEPA - Version 1.1 DOKUMENT CHANGELOG 3 IBAN/BIC 4 BEGRIFFSERKLÄRUNG 4 IBAN DEFINITION 5 BIC DEFINITION 7 IBAN

Mehr

Summe und Teilbarkeit

Summe und Teilbarkeit BIP Kreativitätsgymnasium Leipzig Schuljahr 009/10 Begabtenförderung Mathematik - Klassenstufe 8 Summe und Teilbarkeit Matthias Richter 19. März 010 Aufgabenstellung Betrachten die Summe von n aufeinander

Mehr