1 Singulärwertzerlegung und Pseudoinverse

Größe: px
Ab Seite anzeigen:

Download "1 Singulärwertzerlegung und Pseudoinverse"

Transkript

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese sind nicht-negativ und werden in der Reihenfolge λ λ λ k > λ k+ = = λ n = nummeriert. Als Kontrolle kann möglicherweise benutzt werden, dass k der Rang der Matrix A (und auch der Rang von A A) ist. Bilde eine ON-Basis v,..., v n des R n. Dabei ist v i Eigenvektor zum Eigenwert λ i. V := [ v,, v n ] ist dann eine orthogonale Matrix (V = V ). 4 Die singulären Werte von A sind als s i = λ i definiert. Die Matrix S = (s ij ) ist eine Matrix vom Diagonaltyp, d.h. für i j ist s ij =. S hat dieselbe Form wie A, also n Spalten und m Zeilen. Die Diagonalelemente sind durch die singulären Werte gegeben: s ii = s i. 5 Für i k definiere die Vektoren u i = λi A v i. Diese Vektoren bilden ein Othonormalsystem. Ergänze diese Vektoren zu einer ON-Basis u,..., u m des R m und fasse sie in der Matrix U = [ u,, u m ] zusammen. 6 Die Singulärwertzerlegung von A ist dann singulären Werte Diagonaltyp Singulärwertzerlegung A = USV. Eigenschaften der Singulärwertzerlegung: Zerlegung von A A = USV A = V S U Ist A invertierbar, so ist A = US V (beachte: U = U und V = V ). Die erste Regel nutzt man aus, wenn n > m ist (die Matrix ist breiter als hoch). Dann geht man so vor: Setze A = A und zerlege A = U S V. Die Zerlegung von A ist dann A = USV mit U = V, S = S und V = U. Für die meisten Rechnungen braucht man weder die Eigenvektoren von A A zum Eigenwert λ = noch die in 5 ergänzten Vektoren u k+ bis u m explizit. Man erhält die Sparversion der Singulärwertzerlegung, wenn die Einträge in diesen Vektoren einfach durch ersetzt werden. Sparversion

2 Beispiel : Singulärwertzerlegung von A = Da n = < m = ist, kann man direkt losrechnen: Es ist B = A A. [ ] [ ] 5 = B Mit p(λ) = λ 7λ + 6 = (λ 6)(λ ) ist λ = 6 und λ =. [ ] [ ] Eigenvektor zu λ = 6: Es ist B 6E =, also ist v 4 = Eigenvektor. [ ] Entweder berechnet man analog v = als Eigenvektor zu λ = oder man nutzt die Tasache aus, dass die Eigenvektoren der symmetrischen Matrix B zu verschiedenen eigenwerten orthogonal sind. V ist nun die Matrix der normierten Eigenvektoren: V = [ 5 4 S enthält auf der Diagonalen die Wurzeln der Eigenwerte von B: S = 5 Es ist u = A v = 6 5 und u = A v =. 5 Um u und u zu einer ON-Basis des R zu ergänzen, kann man ] 6. entweder das Gram-Schmidt-Verfahren verwenden: u und u sind ja schon zueinander senkrecht und normiert, man lässt also das Orthonormalisierungsverfahren auf einen beliebigen davon linear unabhängigen Vektor des R los, z.b. auf e, weil dann das Skalarprodunkt mit u schon Null ist: w =, 5 5 = 5 5 = 6 Man erhält u = w w =. 6

3 oder man nutzt die Tatsache aus, dass die Rechnung im R stattfindet und berechnet u = u u. 5 6 Damit wird U = Die Singulärwertzerlegung von A ist A = USV = wegge- Bei der Sparversion wird der rechenaufwändige Basisergänzungsschritt in lassen und man hat 5 6 A = USV = Man sieht dass beim Ausmultiplizieren die -Werte gerade mit den Nullen der S - Matrix multipliziert werden. Beispiel : Singulärwertzerlegung von A = [ ] Da die Matrix A breiter als hoch ist, wird eine Zerlegung von A = A vorgenommen. Man sieht B = A A = AA = [9]. λ = 9 ist der einzige Eigenwert dieser -Matrix. v = [] ist eine ONB des R, V = []. 4 S =.

4 5 u = A v =. Statt u mit dem Gram-Schmidt-Verfahren zu einer ON-Basis des R zu ergänzen, benutzen wir wieder das Kreuzprodukt: sicher steht w = auf u senkrecht, und w = = steht auf 4 beiden senkrecht. Damit muss man w und w nur noch normieren: U = [ ] u u u = 4 6 Damit ist A = U S V = 4 und A = A = V SU = [] [ ] [] 4 In der Sparversion hat man 5 u =, u =, u = und U = und damit A = U S V = [] Man kann die Singulärwertzerlegung von A natürlich auch direkt berechnen: Es ist B = A A =

5 Hier sieht man, wo der größere Aufwand steckt: das charakteristische Polynom ist p(λ) = λ + 9λ, also λ = 9, λ = λ =. Mit etwas Mühe und dem Gauss-Algorithmus berechnet man v = als Eigenvektor zu λ = 9 und genaus wie oben z.b. v = und v = als Eigenvektoren zu λ = λ =. 4 4 In S stehen wieder die Wurzeln der Eigenwerte: S =. 5 U ist diesmal die -Matrix, die nur aus u = A v = [] = [] besteht. 6 A = USV hat damit dieselben Komponenten wie oben. Pseudoinverse, Moore-Penrose-Inverse, Pseudonormallösung Ist S = (s ij ) eine n m-matrix vom Diagonaltyp, so definiert man die m n-matrix S + = (s + ji ) durch s+ ij = falls s ii s ii. Das heisst, dass S + aus S dadurch sonst entsteht, dass S transponiert wird und die Nicht-Null-Elemente auf der Diagonalen durch ihre Kehrwerte ersetzt werden. Ist A = USV, so ist die Moore-Penrose-Inverse oder Pseudoinverse A + von A durch A + = V S + U definiert. A = USV A + = V S + U Hier reicht die Sparversion der Singulärwertzerlegung. (A + ) = (A ) +, A existiert A = A + Achtung: im allg. ist (AB) + B + A +. Ist A x = b ein (möglicherweise mehrdeutig lösbares oder unlösbares) lineares Gleichungssystem, so ist die Pseudonormallösung x + definiert als x + = A + b. x + ist dadurch charakterisiert, dass gilt: (i) Die Norm des Fehlers A x + b ist minimal und 5

6 (ii) die Norm von x + ist minimal. Insbesondere ist im Fall eine eindeutig lösbaren Systems x + die Lösung und in mehrdeutig lösbaren Systemen die Lösung mit der kleinsten Norm. Ein wichtiger Spezialfall ist: Ist A injektiv (d.h. rang A = n), so sind A + und x + ohne Singulärwertzerlegung bestimmbar: A + = (A A) A und x + ist eindeutige Lösung von A A x + = A b. Beispiel : Pseudoinverse von A = und Pseudonormallösung von A x = Da der Rang von A zwei ist, kann man die Formel oben anwenden: [ ] B = A 5 A = B = [ ] A + = B A = [ ] 5 Damit berechnet man sofort die Pseudonormallösung [ ] [ x + = A + b = = 5 ] [ Wenn man die Pseudoinverse nicht benötigt, berechnet man noch schneller A 5 b = ] und x + als Lösung von [ ] [ 5 x + 5 =. ] Die Berechnung von A + = V S + U über die Singulärwertzerlegung bzw. die Sparversion ist mühsamer (liefert aber natürlich dasselbe Ergebnis): 5 5 A + = = Beispiel 4: Pseudonormallösung von [ ] x = [4] Da die Matrix nicht Rang hat, kann man die obige Formel nicht direkt verwenden. 6

7 Allerdings hat A = den Rang und deshalb ist ( [ (A ) + ] = ) = [ ]. 9 Mit Hilfe der Formel (A ) + = (A + ), also A + = ((A ) + ) folgt A + = und x + = A + b = [4] = Anwendung: Numerischer Rangabfall Von numerischem Rangabfall spricht man, wenn eine Matrix A sehr nahe an einer mit kleinerem Rang liegt. Dies führt dazu, dass die Konditionszahl ( A A ) sehr groß wird. Kleine Abweichungen in den Daten des linearen Gleichungssystems A x = b führen zu großen Abweichungen in der Lösung x. Beispiel 5: A x = 4 b mit A = 4. und b = 4 5 Man sieht leicht (oder rechnet nach), dass A invertierbar ist. Die Lösung x ist also eindeutig bestimmt: Die exakte Lösung ist x =. Allerdings ist z.b. y =.5 eine fast genau so.5 gute Lösung: Es ist A y =.5. Wenn man die Lösung des leicht gestörten Systems A x = b mit b =.9 berechnet, erhält man x =... Der Schlüssel zu dieser Problematik liegt in der Singulärwertzerlegung von A: Es ist A = USV mit S =.87.8 und unitären Matrizen U und V.. Man sieht, dass A einen sehr kleinen singulären Wert hat. Die singulären Werte von A sind die Kehrwerte der singulären Werte von A und der größte davon ist

8 In solchen Fällen kann man so vorgehen: Zerlege A = USV. Die Matrix S entsteht, indem in S alle singulären Werte, die kleiner als eine vorgegebene Zahl ε > sind, durch Null ersetzt werden. Statt der Lösungen von A x = b bestimme die Pseudonormallösungen von A x = b durch x + = A + b = V S + U b In diesem Beispiel ersetzt man den dritten singulären Wert duch Null und erhält S =.87.8 und S + = Damit wird und x + = A A + = = und x + = A+.9 = Anwendung: Ausgleichsrechnung Andere Bezeichnungen: Gaußsche Methode der kleinsten Quadrate, Ausgleichspolynome, Ausgleichsgerade, Regressionsgerade Ausgleichsgerade Wichtigster Fall: Ausgleichsgerade Gegeben sind n > Punktepaare (x i, y i ), wobei mindestens zwei verschiedene x- Koordinaten auftreten sollen. Gesucht ist eine Gerade y = ax + b, die diese Punkte bestmöglich annähert, d.h. Zahlen a und b, so dass der quadratische Fehler n ( ) (ax i + b) y i möglichst klein wird. i= Die Lösung dieses Problems wird gegeben durch die Pseudonormallösung des folgenden Gleichungssystems: b + ax = y [ ] x y. b., also A = y mit A =.. a.. und y =.. b + ax n = y n x n y n 8

9 Da die Matrix A injektiv [ ist, läßt sich die Pseudonormallösung mit Hilfe der Transponierten berechnen: = (A b a] A) A y. Der Korrelationskoeffizient r ist ein Maß für die Güte der Approximation durch die Ausgleichsgerade. Stets ist r, und je näher r bei ist, desto stärker ist die (lineare) Abhängigkeit der y- von den x-werten. Korrelationskoeffizient Berechnung Die Berechnung beruht [ ] auf der Anwendung der Cramerschen Regel auf das Gleichungssystem A A = A b a y. Der Einfachheit halber sind die Summationsgrenzen weggelassen. Alle Summen laufen von i = bis n. Berechne = n x i ( x i ) Die Ausgleichsgerade y = ax + b hat die Koeffizienten a = (n x i y i x i yi ) und b = ( x i yi x i y i xi ). Es ist r = n x i y i x i yi ( n )( x i ( x i ) n ) yi ( y i ) Praktische Durchführung: Die Werte werden in eine Tabelle eingetragen, die von außen nach innen ausgefüllt wird. Beispiel 6: n = 5 mit den Wertepaaren (, ), (, ), (, 5), (4, 4) und (5, 6). Die Starttabelle wird ausgefüllt. In die letzte Zeile werden die Summen eingetragen. Eine Spalte mit yi braucht man nur, wenn auch der Korrelationskoeffizient bestimmt werden soll. x i x i x i y i y i y i wird zu x i x i x i y i yi y i

10 Damit wird = 5 49 = = 76 a = 76 (5 6 8) = ( 4) = und 76 b = ( ) = (88 86) = Die Ausgleichsgerade ist also y = x +. y y = x x Der Korrelationskoeffizient ist r = (5 49 )( ) = Allgemeines Grundproblem der Ausgleichsrechnung Gegeben sind n Datenpaare (x i, y i ), i =,..., n und k < n Funktionen f bis f k. k Gesucht ist eine Linearkombination f(x) = α j f j (x) dieser f j, so dass die Summe der quadrierten Abweichungen von f an den Stellen x i zu y i minimal wird: F = n (f(x i ) y i ) = i= i= j= n ( k )! α j f j (x i ) y i = Min. Die Lösung dieses Problems wird durch die Pseudonormallösung des folgenden Gleichungssystems gegeben: Löse A a = y. Dabei enthält a = (α,..., α k ) die gesuchten Koeffizienten, f (x ) f (x ) f k (x ) y f (x ) f (x ) f k (x ) y A =..... und y =... f (x n ) f (x n ) f k (x n ) y n j= Allgemeines Grundproblem Beispiel 7: Approximation von x an den Stellen,,, und durch eine Funktion der Form f(x) = α + α x Es ist f (x) = und f (x) = x. Gesucht ist die Pseudonormallösung von y y = 7 x + 5 α +4α = (x = ) α +α = (x = ) α = (x = ) α +α = (x = ) α +4α = (x = ) x

11 4 Mit A = und [ ] [ ] b = 5 berechnet man A A = A 6 b = und damit α = 4 7 = 5 und α = 7 = 7. Das Ausgleichspolynom ist also y = 7 x + 5. Linearisierung und Gewichte Die Ausgleichsrechnung (insbesondere Die Ausgleichsgerade) läßt sich mit den obigen Methoden nur finden, wenn die unbekannten Paramerter α bis α k als Koeffizienten einer Linearkombination auftreten. Einige andere Fälle lassen sich durch Linearisierung darauf zurückführen: Linearisierung Typ y = ae bx Mit z = ln y erhält man z = ln a + bx. Man ermittelt also eine Ausgleichgerade z = c + dx für die (x i, z i ) = (x i, ln y i )-Punkte und findet so Werte für a = e c und b = d. Dieser Fall enthält auch Funktionen des Typs y = ab cx, da sich dies wegen b cx = e c ln bx wie oben schreiben läßt. Typ y = cx d Wegen x d = e d ln x ergibt Logarithmieren von x und y die Beziehung ln y = ln c + d ln x. Hat also die Ausgleichsgerade für die Wertepaare (w i, z i ) = (ln x i, ln y i ) die Form z = α + βw, so ist die Ausgleichsfunktion der Originaldaten y = e α x β. Typ y = ax + b Für z = y sucht man die Ausgleichsgerade für die Wertepaare (x i, z i ) in der Form z = ax + b. Die Ausgleichsfunktion ist dann y = ax + b. Ein gewichtetes Ausgleichsproblem liegt vor, wenn die Quadrate von (ax i + b) y i nicht gleichgewichtet eingehen, sondern wenn das Minimum einer Funktion der Form n F = γ i ((ax i + b) y i ) (γ i > ) i= gesucht wird. Die Zahlen γ i sind die Gewichte. gewichtetes Ausgleichsproblem Gewichte

12 Ist A x = y das Gleichungssystems des ungewichteten Ausgleichsproblems, so entstehen A und y dadurch, dass für k = bis n die k-te Zeile von A und der k-te Eintrag in y mit γ k multipliziert werden. Die Lösung des gewichteten Systems ist die Pseudonormallösung von (A A ) x = A y. In vielen Fällen ist A A invertierbar und das Problem hat eine eindeutige Lösung. Beispiel 8: Die Ausgleichsfunktion vom Typ y = ax + b (x, y ) = (, ), (x, y ) = (, ) und (x, y ) = (, 4 ). zu den Punkten Rückführung auf Ausgleichsgerade: mit z = y ist z = z =, z = 4. [ b Das Gleichungssystem A = z ist a] =. 4 Mit der Tabelle erhält man x i x i x i z i z i also = 5 4 = 4 α = = 8 4 = 4 7, α = = 4 4 = 6 7 Die Ausgleichsfunktion des Ausgabgsproblems ist also y = z = 7 6x + 4. Beispiel 9: Die Ausgleichsgerade zu den Punkte (, ), (, ) und (, 4) mit und ohne den Gewichten γ = γ = und γ =. Die Ausgleichsgerade für den Fall ohne Gewichte ist in Beispiel 7 schon berechnet worden: y = 6 7 x Die Matrizen erhält man durch Abwandlung des Systems aus Beispiel 8: [ ] b A = y a [ 6 b = a]. 4

13 [ ] [ ] Es ist A A = und A 9 y =. Daraus liest man die Lösung 8 b = 6 4 = 8 und a = 4 4 = ab. Die Ausgleichsgerade des gewichteten 4 Problems ist also y = 4 x + 4. Warnungen: (i) Die Matrix A A in Beispiel 9 ist nur zufällig symmetrisch, i.allg. ist das nicht so. (ii) Die in Beispiel 8 berechnete Ausgleichsfunktion löst nicht das nichtlineare Problem γ i ( ax i + b y i)! = Min, das mit Hilfe der mehrdimensionalen Differen- i= tialrechnung bearbeitet werden kann. Die Lösung ist ungefähr y = und ist in der Skizze dünn gestrichelt..7x +.96 y y = x z 4 z = x z = x x x

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 9. Aufgabe 9.1. Herbstsemester Dr. V. Gradinaru D. Devaud A. Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 2014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 91 91a) Sei A eine n n-matrix Das Gleichungssystem Ax

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

5 Lineare Ausgleichsrechnung

5 Lineare Ausgleichsrechnung Numerische Mathematik 195 5 Lineare Ausgleichsrechnung 5.1 Die Normalgleichungen Das lineare Ausgleichsproblem (Kleinste-Quadrate-Problem): Gegeben sind A R m n und b R m. Gesucht ist ein Vektor x R n

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Exkurs: Eigenwertproblem

Exkurs: Eigenwertproblem 1 von 7 29.11.2008 16:09 Exkurs: Eigenwertproblem Bei der Faktorenanalyse tritt das Eigenwertproblem auf. Man spricht von einem Eigenwertproblem wenn das Produkt zwischen einer Matrix und einem Vektor

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Probeklausur zu Mathematik 2 für Informatik

Probeklausur zu Mathematik 2 für Informatik Gunter Ochs Wintersemester 4/5 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immer ohne Garantie auf Fehlefreiheit. Gegeben sei das Dreieck im R mit den Eckpunkten A a Berechnen Sie die

Mehr

Singulärwertzerlegung

Singulärwertzerlegung LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1

Mehr

3. Lineare Ausgleichsrechnung

3. Lineare Ausgleichsrechnung 3 Lineare Ausgleichsrechnung 1 Ausgleichsrechnung (1) Definition 31 (Ausgleichsproblem) Gegeben sind n Wertepaare (x i,y i ), i = 1,,n mit x i x j für i j Gesucht ist eine stetige Funktion f, die in einem

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice:

Lineare Algebra und Numerische Mathematik D-BAUG Winter 2013 Prof. H.-R. Künsch. Regeln Multiple Choice: b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Winter 03 Prof. H.-R. Künsch c Alle Aufgaben haben das gleiche Gewicht. Die Lösungswege müssen, abgesehen von Aufgabe, nachvollziehbar dargestellt

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS 7 Freitag 3.6 $Id: quadrat.tex,v.3 7/6/3 :8:3 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6. Symmetrische und hermitesche Matrizen Wir kommen jetzt zu den symmetrischen

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4 Lineare Ausgleichsrechnung

4 Lineare Ausgleichsrechnung Numerik I 15 4 Lineare Ausgleichsrechnung Die folgende Tabelle zeigt die Bevölkerungsentwicklung in den U.S.A. 19 191 192 193 194 75.995 91.972 15.711 123.23 131.669 195 196 197 198 199 15.697 179.323

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Überbestimmte Gleichungssysteme, Regression

Überbestimmte Gleichungssysteme, Regression Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/

Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 2016/ Dr. P. Furlan Dr. J. Horst Fakultät Mathematik Technische Universität Dortmund Klausur zur Höheren Mathematik I (ET/IT/AI/IKT/P/MP) WS 06/7 6.0.07 Es sind insgesamt 50 Punkte erreichbar. Bei mindestens

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS Freitag 4.6 $Id: quadrat.tex,v.8 /6/4 4:44:39 hk Exp hk $ 6 Symmetrische und hermitesche Matrizen 6. Prä-Hilberträume Wir sind gerade mit der Diskussion der sogenannten Ausgleichsgerade

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 0 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransformationen Objektrepräsentation und -Modellierung Sichttransformationen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 16 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Name a a Note Vorname Leginummer Datum 18.8.17 1 3 4 Total 1P 1P 1P 1P 1P P

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Matrixzerlegungen. Überbestimmte Systeme

Matrixzerlegungen. Überbestimmte Systeme Matrixzerlegungen. Überbestimmte Systeme 6. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. März 2014 Gliederung 1 Matrixzerlegungen Links-Rechts-Zerlegung

Mehr

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2

Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2 Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Lineare Gleichungssysteme Das System a x + a x +... + a n x n = b a x + a x +... + a n x n = b. +. +... +. =. a m x + a m x +... + a mn x n = b m heißt lineares Gleichungssystem

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden = = 83 79

In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden = = 83 79 Matrixpotenzen n Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden. a) terative Berechnung = 2 = 2 2 2 5 = 7 = 2 2 2 2 = 5 4 4 5 = 5 4 4 5 5 = 29 25 = 5 4 4 5 2 3 = 4 2 3

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Über- und unterbestimmte Systeme

Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr