Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12"

Transkript

1 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls x Ω χ Ω (x) := 0, sost die sogete Iditorfutio der Mege Ω. Flls Ω ei Itervll ist, d et m χ Ω uch Rechtecsfutio, ud im Flle vo [0, ) Sprug- oder Heviside-Futio. Bereche Sie für, b, c R mit < c < b ds Oberitegrl J + (χ [,c],, b), sowie ds Uteritegrl J (χ [,c],, b). Ist χ [,c] itegrierbr? [Tipp: D χ [,c] beschrät ist, dürfe wir Stz 5.6 beutze. Wähle Sie für jedes eie Zerlegug { } Z = =x () 0, x (),..., x () =c ε, c+ε =y () 0,..., y () =b vo [, b], sodss x () x() = c ε, sowie y () y() = b c ε für jedes =,...,, wobei (ε ) N eie Nullfolge ist, mit 0 < ε < mi{c, b c}. Ws ist lim Z? Bereche Sie die Ober- ud Utersumme S ± (χ [,c], Z ) ud ihre Grezwerte für.] Lösug. Ei Hiweis vorb: Aufgbe dieser Art werde sehr viel zugäglicher, we Sie sich ei Bild dzu zeiche. Die obige Zerlegug wurde so gewählt, dss die Uter- ud Obersumme eie möglichst eifche Form ehme. Isbesodere ist die Whl eier Nullfolge (ε ) (um die Stelle c zu sepriere) eiesflls otwedig, erleichtert ber die Rechug. Für die -te Obersumme erhlte wir S + (χ [,c], Z ) = (x () x() ) sup χ [,c] [x (),x() ] + = c ε =, d x () j <c (y () y() ) sup χ [,c] [y (),y() ] = c ε ud log für die Utersumme S (χ [,c], Z ) = c ε = b c ε =0, d c< y () j b + 2ε + b c ε + (y () 0 x () ) sup χ [,c] [x (),y () =2ε 0 ] = 0 = c + ε + 2ε 0 + b c ε 0 = c ε, wobei i der obige Rechug ds Supremum durch ds Ifimum ersetzt werde muss. So ist ds Ifimimum vo χ [,c] im Itervll [x (), y () 0 ] gleich 0 [4 Pute].

2 Für die Feiheit Z der Zerlegug Z gilt { c ε Z = mx, b c ε }, 2ε 0. ( Put) D ußerdem χ [,c] (x) für lle x R, dürfe wir Stz 5.6 wede, d.h. ds Uterbzw. Oberitegrl ist der Grezwert der Uter- bzw. Obersumme für. Es gilt somit J + (χ [,c],, b) = lim (c +ε ) = c ( Put) sowie J (χ [,c],, b) = lim (c ε ) = c ( Put) Isbesodere stimme lso Ober- ud Uteritegrl vo χ [,c] überei, weshlb χ [,c] über [, b] itegrierbr ist(mit Itegrl χ [,c](x) dx = c ) [ Put]. Aufgbe 2.2 [8 Pute] Sei f : [, ] R eie stetige Futio ud χ Ω wie obe. () Zeige Sie, dss gilt χ [,b] (x)f(x) dx = f(x) dx, flls < b. [2 Pute; Tipp: Gebietsdditivität, d.h. für eie uf eiem Itervll [, b] itegrierbre Futio g gilt g(x)dx = c g(x)dx + g(x)dx, flls c c b (Stz 5.5).] Beweis. D f stetig ist, ud χ Ω ch Aufgbe 2.2 Riem-itegrierbr ist, gilt ch Stz 5.5 χ [,b] (x)f(x) dx = = χ [,b] (x)f(x) dx + 0 dx + f(x) dx + χ [,b] (x)f(x) dx + 0 dx = b b f(x) dx, χ [,b] (x)f(x) dx wobei wir beutzt hbe, dss g(x)dx = h(x)dx, we g(x) = h(x) x (, b), d.h. die Rdpute sid icht relevt für de Wert des Itegrls. Dies ist äquivlet zu u(x) dx = 0 flls u(x) = 0 für lle x (, b). Es folgt eierseits diret us der Kostrutio des Riem-Itegrls, dss Futioswerte uf Putmege eie Eifluss uf de Wert des Itegrls hbe, dererseits sieht m dies z.b. mithilfe des Mittelwertstzes (ei Beweis dieser Aussge wr hier llerdigs icht verlgt): Sei u eie uf [, b] itegrierbre Futio. Für jedes ε > 0 mit ε < b gibt es ei η ε R (zwische if [,+ε] u ud sup [,+ε] u), sodss u(x)dx = +ε u(x) dx + +ε u(x) dx = η ε ε + +ε u(x) dx D u beschrät ist, ist isbesodere (η ε ) ε beschrät. Durch die Whl vo ε > 0 η ε ε somit beliebig lei gemcht werde. Dies zeigt, dss ds Itegrl uf der lie Seite icht vo u(), soder ur vo u(x) für x > bhägt. Aloges gilt der Stelle b (bzw. i jedem seprierte Put). 2

3 (b) Für jedes N ud x [, ], sei g (x) := χ 2 [, ](x). Zeige Sie, dss lim g (x)f(x) dx = f(0). [6 Pute; Tipp: Mittelwertstz der Itegrlrechug] Beweis. Zuächst gilt ch Aufgbeteil () [ Put] g (x)f(x) dx = 2 / / f(x) dx D f stetig ist, gibt es ch dem Mittelwertstz der Itegrlrechug für jedes N ei ξ [ /, /], sodss / f(x) dx = f(ξ / ) 2 [3 Pute], d.h. für lle N g (x)f(x) dx = f(ξ ). Die Behuptug folgt u wege lim ξ = 0 [ Put] ud der (Folge-)Stetigeit vo f [ Put]. Aufgbe 2.3 [8 Pute] Ziel dieser Aufgbe ist es, x 0 t2 dt für x > 0 uf zwei verschiedee Arte zu bereche. () Bereche Sie x 0 t2 dt mithilfe vo Riem-Summe. [7 Pute; Tipp: Orietiere Sie sich Beispiel 5.9: Ageomme Z = {x 0,..., x } ist eie Zerlegug vo [0, x], d gibt es α > 0, sodss es für jedes j =,..., ei ξ j (α) zwische x j ud x j gibt, mit ξ 2 j (α)(x j x j ) = α(x 3 j x 3 j ). Fide Sie α. Zeige Sie hierfür zuächst, dss ( t 3 )/( t) = +t+t 2 für t. Beweis. Wir orietiere us Beispielufgbe 5.9. Zuächst etbliere wir ei Lemm. Sei 0 < b. D existiert ξ(, b) ], b[ mit 3ξ(, b) 2 (b ) = b 3 3. Aus der Formel für die Geometrische Reihe, oder diretes Nchreche, folgt dss (b )(b 2 + b + 2 ) = b 3 3. D < b ud 2 < b < b 2 sehe wir, dss 3 2 < b 2 + b + 2 = b3 3 b < 3b2. b Wir setze ξ(, b) = 3 3 = 3 b 3 (b2 + b + 2 ) ud schlussfolger 2 < ξ 2 < b 2. D x x 2 streg mooto wchsed ist für x 0 folgt ξ ], b[. Ds schließt de Beweis des Lemms b. D f(t) = t 2 stetig ist, öe wir x 0 t2 dt mit Hilfe vo Riem-Summe bereche. Sei lso Z = {x 0,..., x } eie Zerlegug vo [0, x]. Wir wähle ξ = ξ(x, x ) (Nottio us dem Lemm) ud erhlte ls Riem-Summe für diese Zerlegug (ud Whl der Stützpute) (x x )f(ξ ) = (x x )ξ(x, x ) 2 = 3 (x3 x 3 ) Hierbei hdelt es sich um eie Telesope Summe mit Wert 3 (x3 x 3 0) = 3 (x3 0 3 ). Für diese Whl der Stützpute ist die Riem-Summe lso ubhägig vo der Zerlegug ud somit gleich dem Riem-Itegrl: x 0 t2 dt = x3. 3 3

4 (b) Vlidiere Sie Ihr Ergebis us () mithilfe vo Stz 5.2 (Huptstz der Differetilud Itegrlrechug). [ Put] Beweis. Sei F (t) = t3 3. D F = f ud f stetig ist, folgt x 0 f(t) dt = F (x) F (0) = x3 3. us dem Huptstz der Differetil- ud Itegrlrechug. Aufgbe 2.4 [8+4 Pute] I dieser Aufgbe zeige wir, dss ( ) ( ) e! e, ( ) e e für lle N, wobei e = exp() die Eulersche Zhl bezeichet. Bemerug: Abschätzuge dieser Art sid ls Stirlig-Formel bet. Mit mehr Aufwd m zeige, dss 2π (/e) eie bessere Näherug für! ist. Zeige Sie, dss (i) log! = =2 log, [ Put] Beweis. Wie i der Vorlesug gezeigt folgt us dem Additiostheorem 2.6 (exp(x+ y) = exp(x) exp(y)) die Versio log(xy) = log(x) + log(y). Eifche Idutio zeigt, dss log(x x 2... x ) = x + x x. D! = ( ) ( 2) ergibt sich log! = log. Ds gewüschte Ergebis folgt us der beobchtug exp(0) =, lso log = 0. (ii) log t dt = log +. [2 Pute] Beweis. F (x) = x log x x ist eie Stmmfutio vo log x. Ds folgt durch eifches Nchreche us der Produtregel ud (log x) =. D log x uf [, ] stetig x ist folgt us dem Huptstz der Itegrl- ud Differetilrechug (ud log = 0), dss log t dt = F () F () = log +. (iii) log t dt log! log t dt + log [4 Pute; Tipp: Schreibe Sie log t dt = =2 log t dt ud beutze/beweise Sie, dss für eie mooto wchsede Futio f, f()(b ) f(t) dt f(b)(b ).] 4

5 Beweis. Wir Beweise zuächst die Hilfsussge: sei f : [, b] R mooto wchsed (ud somit itegrierbr). D gilt f()(b ) f(t) dt f(b)(b ). Wir zeige die erste Ugleichug, die zweite ist log. Sei g(t) = f(). D gilt g(t) f(t) für lle t [, b] ud somit, dss g(t) dt f(t) dt. Aber g(t) ist eie ostte Futio, ud somit ht ds Itegrl de Wert f()(b ) (z. B. d f()t eie Stmmfutio zu g ist). Wir zeige u log t dt log!. Durch Gebietsdditivität öe wir log t dt = =2 log t dt schreibe. Aus der obe bewiesee Hilfsussge folgt, dss log t dt ( ( )) log = log (d log mooto wchsed ist, vgl Stz 3.9()). Die gewüschte Ugleichug folgt durch Aufsummiere (ud Teilufgbe (i)). Schließlich zeige wir log! log t dt + log. Aus der Hilfsussge folgt, dss log t dt log( ). Durch Aufsummiere folgt log t dt log. Die gewüschte Ugleichug folgt durch Additio vo log uf beide Seite (ud Teilufgbe (i)). Schließe Sie de Beweis vo ( ) b. [ Put] Beweis. Die Kombitio vo (ii) ud (iii) liefert log + log! log + + log. D die Expoetilfutio exp mooto wchsed ist, erhält sie Ugleichuge, ud es folgt dss exp( log + ) exp(log!) exp( log + + log ). Die Ugleichug ( ) folgt durch Beutzug des Additiostheorems 2.6. Zustzufgbe [4 Bouspute; mit Computer/Tscherecher]: Zeige Sie, dss ( )! für 7. e Beweis. D log mooto wchsed ist, ist es hireiched (ud otwedig) zu zeige, dss log! log + log. Sei d = log + log log!. (d ) ist eie mooto wchsede Folge. Ds folgt us userer Kostrutio der ursprügliche Abschätzug: Wir hbe log = log t dt, vgl. Teilufgbe (ii). Es gilt weiterhi log = + log t dt ud somit log t dt = log = log ( )!. Die Kombitio dieser Aussge liefert d = log + log log! = log log ( )! = = log t dt (log t log t ) dt 5 log t dt

6 D log mooto wchsed ist gilt log t log t 0 ud somit d + d = + (log t log t ) dt 0. Ds beweist die Behuptug, dss d mooto wächst. Wir solle zeige, dss d 0 für 7. D d mooto wächst ist es hireiched zu zeige, dss d 7 0. Tscherecher oder Computer bereche leicht, dss d 7 = > 0. Bemerug: Sei x = + ɛ, ɛ [0, [. D gilt log x log x = log ( + ) ɛ ɛ. Folglich gilt (log t log t ) dt ɛ dɛ = ud dher d dx log. D d 2 x 2 misst, wie viel zu groß usere Abschätzug ist, erhlte wir log! = log + log d log + log (vgl. die bessere Näherug i der erste Bemerug). I dieser Alyse hbe wir Terme ubhägig vo 2 verchlässigt, weswege wir de log 2π Term uf diese Weise icht erhlte öe. 6

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

Analysis I. Carsten Schütt WS 2010/11

Analysis I. Carsten Schütt WS 2010/11 . Falls Christa Purzelbäume schlägt, da isst Bruo Torte. Christa ist geau da übel, we Ato Likör trikt ud Christa Purzelbäume schlägt. Falls Christa übel ist, da ist Bruo besorgt ud isst Torte. Etweder

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Perkolation (WS 2014) Übungsblatt 2

Perkolation (WS 2014) Übungsblatt 2 Istitut für Stochasti Prof. Dr. G. Last Dipl.-Math. S. Ziesche Perolatio WS 04 Übugsblatt Aufgabe Zeige Sie für T, dass θ 0 p ud χ 0 p stetig auf [0, ] sid, we ma als Wertebereich R + { } zulässt. Lösug:

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Istitut für Techologie KIT) WS 0/3 Istitut für Aalysis 030 Prof Dr Tobias Lamm Dr Patrick Breuig Höhere Mathematik I für die Fachrichtug Physik 8 Übugsblatt Aufgabe Bereche Sie die Ableituge

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

10. Übungsblatt zur Vorlesung Mathematik I für Informatik

10. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathemati Prof. Dr. Thomas Streicher Dr. Sve Herrma Dipl.-Math. Susae Pape 0. Übugsblatt zur Vorlesug Mathemati I für Iformati Witersemester 2009/200 5./6. Dezember 2009 Wir wüsche Ihe schöe

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

January 25, n (x + y) n n. n k y k. k=0. := k!(n k)!, k 1, ergibt das. n ) n+1 = n + 1. k! n + 1 n n k + 2.

January 25, n (x + y) n n. n k y k. k=0. := k!(n k)!, k 1, ergibt das. n ) n+1 = n + 1. k! n + 1 n n k + 2. Lösuge Jauary 5, 09 Serie Aufgabe Wir zeige, dass die Zisfolge a = + /) mooto wachsed ist. Hierzu verwede wir de Biomialsatz, d.h. für x, y R ud N gilt x + y) = x ) y mit de Biomialoeffiziete! := )! )!,,

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

30 OM: Von der Änderung zum Bestand - Integralrechnung ea

30 OM: Von der Änderung zum Bestand - Integralrechnung ea 0 OM: Vo der Äderug zum Bestd - Itegrlrechug ea I diesem Olie-Mteril werde die Frge geklärt, wie weit der Formlismus bei der Etwicklug des Itegrls uszuführe ist ud wie eie schuliche Begrüdug des Huptstzes

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 4

Zusatzmaterial zur Mathematik I für E-Techniker Übung 4 Mathemati I für E-Techier C. Erdma WS 0/, Uiversität Rostoc, 4. Vorlesugswoche Zusatzmaterial zur Mathemati I für E-Techier Übug 4 Wiederholug - Theorie: Reihe Zu jeder Folge {a } b Die Reihe eier zugehörige

Mehr

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith

Ubungen zur Analysis 1. Prof. Dr. Kohnen. Dr. O. Delzeith Ubuge zur Aalysis 1 Prof. Dr. Kohe Dr. O. Delzeith SS 1996 1. Beweise Sie uter Beutzug der i der Vorlesug geate vier Axiome fur N : Sid m; ; p; q 2 N ud gilt m > sowie p > q, so gilt mp > q. (3 Pukte)

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Patrizio Neff 0.04.0 Lösugsvorschlag zur. Hausübug i Aalysis II im SS Hausaufgabe (8 Pute): Bereche Sie für die Futio f : R! R; f() : ep( ) a der Stelle

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

1 Integrationsmethoden

1 Integrationsmethoden KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma WS 3/4 4..4 Höhere Mathematik I für die Fachrichtug Iformatik Itegratiosmethode. Saalübug (4..4) Aufgabe Bereche

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff Abzähle Im Rhme des Semirs Extreml Combitorics A Le Dyckhoff 23. April 2004 Abzähle Fortgeschrittees Abzähle Die Kombitorik beschäftigt sich mit dem Abzähle vo Elemete. Dbei versucht m Strtegie, Methode

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13

Analysis 1 für Informatiker und Statistiker Beispielslösungen, Woche 13 Mathematisches Istitut der LMU WS 016/17 Prof. Dr. S. Morozov Olie am: Dr. H. Hogreve 1. 01. 017 Aalysis 1 für Iformatiker ud Statistiker Beispielslösuge, Woche 1 1.1 (a Um festzustelle, ob die utestehede

Mehr

Musterlösungen zur Klausur Analysis I Verständnisteil

Musterlösungen zur Klausur Analysis I Verständnisteil WS 2008/2009 Prof. Dr. Scheider Musterlösuge zur Klausur Aalysis I Verstädisteil 04.02.2009. a A ist ach Defiitio abzählbar, falls A edlich ist, oder falls carda = cardn gilt. b Ei Pukt x A ist ei ierer

Mehr

Wir wünschen Ihnen viel Erfolg bei der Klausur.

Wir wünschen Ihnen viel Erfolg bei der Klausur. Klausur zur Vorlesug Aalysis I Bo, de. Februar 009 Prof. Dr. W. Müller Dr. A. Wotze Nachame, Vorame: Matrielummer: Nummer der Übugsgruppe: A Drehe Sie diese Zettel bitte erst auf Aufforderug um. Sollte

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich.

Dann ist die Zahl auf der linken Seite gerade und die auf der rechten Seite ungerade. Also sind sie nicht gleich. Lösuge. Es gibt drei Lösuge.. Lösug: Ato ist traurig ud er trikt keie Likör. Bruo isst Torte ud ist besorgt. Christa ist icht übel ud sie macht Purzelbäume.. Lösug: Ato ist traurig ud trikt keie Likör.

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS07 0.0.07. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x 50 k m äherugsweise

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr