ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

Größe: px
Ab Seite anzeigen:

Download "ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN"

Transkript

1 ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a, b] stetig und im offenen Intervall a, b) differenzierbar. Ferner sei g ) 0 für alle a, b). Dann ist gb) ga) und es gibt ein c a, b), sodass fb) fa) gb) ga) f c) g c). Beweis. Es ist gb) ga), sonst gäbe es ein c a, b) mit g c) 0. Wir betrachten die Hilfsfunktion ϕ) : fb) fa) ) g) ga) ) gb) ga) ) f) fa) ). ϕ ist stetig auf [a, b], differenzierbar auf a, b) und ϕa) ϕb) 0. Nach dem Satz von Rolle Satz VI.3.3) eistiert ein c a, b) mit ϕ c) 0. Nun ist woraus die Behauptung folgt. 0 ϕ c) fb) fa) ) g c) gb) ga) ) f c), Bemerkung.. Unter zusätzlichen Voraussetzungen kann der zweite Mittelwertsatz in Quotientenform geschrieben werden. Sei zusätzlich g ) 0 für alle a, b), so gilt fb) fa) f c) ) gb) ga). g c) Der Faktor gb) ga) ist verschieden von Null, da andernfalls ein c a, b) eistiert mit g c ) 0. Also gilt fb) fa) gb) ga) f c) g c). Ist g), so ist g ) 0 für alle und man erhält den einfachen) Mittelwertsatz VI.3.4). Hinweis: Dieses Material dient der Ergänzung und wird in meiner Übung am Montag, 4. April 005 behandelt. Satz VI.3.4: Die Funktion f : [a, b] R sei stetig und in a, b) differenzierbar. Dann gibt es ein c a, b) derart, dass fb) fa) b a f c). Satz VI. 3.3: Ist die Funktion f in [a, b] stetig, in a, b) differenzierbar und gilt fa) fb), so eistiert ein c a, b) mit f c) 0.

2 CHRISTIAN HARTFELDT. Regel von Bernoulli / de l Hospital Man kann den verallgemeinerten Mittelwertsatz. für die Berechnung von Grenzwerten benutzen. Eistieren die Grenzwerte so gilt f), 0 g) 0, 0 f) 0 g) 0 f) 0 g). Sind 0 f) 0 und 0 g) 0, so eistiert der Grenzwert 0 f)/g) nicht. Die Frage ist, welche Aussagen für den Grenzwert des Quotienten getroffen werden können. wenn f) g) gilt. In diesem Fall spricht man von einem unbestimmten Ausdruck, der Form 0/0. Folgende Ausdrücke sind unbestimmt: ) 0,, 0 ), ), 0 ) ), 0 0 ), 0 ). Satz.. Seien D a, b)\{ 0 } mit a < 0 < b und f, g : D R differenzierbare Funktion, sowie g ) 0 auf D. Außerdem gelte ) f) g) oder ) 0 f) ±, Dann gilt 0 g) ±. f ) 3) 0 g ) a R f) 0 g) a. f) Die gleichen Aussagen gelten auch für Grenzwerte der Form, f) 0 g) 0 g) f) ±. g) Man beachte, dass die Implikation 3) auch beinhaltet, dass im Falle der Konvergenz von f ) f) der Grenzwert überhaupt eistiert. 0 g ) 0 g) Es ist ganz wichtig, dass eine der Voraussetzungen ) oder ) erfüllt ist. Andernfalls liefert die Implikation 3) ein falsches Ergebnis. Das wird in Beispiel..h illustriert. Wenn ) und ) beide nicht gelten, läßt sich der Grenzwert sowieso direkt bestimmen. Es kann auch vorkommen, dass erst eine mehrmalige Anwendung der L Hospitalschen Regel zum Ziel führt. Beispiel.. a.) 0 0 Seien f) sin), g) und 0 0. Dann ist ) erfüllt und wegen ist mit 3): sin) 0 0 f ) g ) cos 0 0 f) g). und

3 ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN 3 b.) Seien f) 3 und g) e. Dann ist ) bei 0 erfüllt und mehrmalige Anwendung der Regel von de L Hospital liefert: 3 e f) g) f ) g ) 3 e f ) g ) 6 e f 3) ) g 3) ) 6 e 0. c.) Seien f) e + und g) e. Dann ist ) bei 0 erfüllt und daher e e + e e e 0. d.) 0 Seien f) log), g) und 0 0. Es soll log) bestimmt werden. Dies ist zwar kein Quotient, aber durch Umformen erhält man log) log) e.) Seien f) + ) 0. und g). Dann ist + ) f)g) e logf)) g) e log+ ). Nun ist der Eponent für vom Typ 0 und daher ist wie in 3. ) ) + log Also ist + + e ) e. log + + f.) 0 Seien f) + und g). Dann gilt log) + ) log). f) g) e logf)) g) e log+) log). Der Eponent ist für vom Typ log + ) log) +. Somit ist +.

4 4 CHRISTIAN HARTFELDT Also ist + ) log) e. g.) 0 0 Für f) 3 und g) 3 ) log) log) gilt f) g) e logf)) g) e log 3 ) log) Der Eponent ist für 0 vom Typ, also log) + log3) log) log)+ log3) e log). + log3) ) + log3). Damit ist ) 3 log) e. h.) Abschließend noch ein Beispiel, das die Notwendigkeit der Voraussetzung ) oder ) zeigt. Betrachte f) e und g) e +. Es soll 4) f) g) bestimmt werden. Allein die Regel 3) würde wegen f ) g ) e e e 0 den Grenzwert 0 für 4) liefern. Das ist aber falsch, denn wegen f) und g), folglich f) g). e 0 ist Offensichtlich sind weder ) noch ) erfüllt, deshalb darf man 3) nicht anwenden. Sind Zähler und Nenner in Potenzreihen entwickelbar, ist die Limesbildung damit oft einfacher. cos Beispiel.3.. Nach viermaliger!) Anwendung von L Hospital erhält man 0 4 cos. Dies ist sehr aufwendig. Mit Potenzreihen sieht man den Grenzwert sofort: cos ) ) !

5 ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN 5 3. Zusätzliche Aufgaben zur Übung Analysis Themenkreis: Differentialrechnung, Mittelwertsätze. Beweisen Sie durch Anwendung der Mittelwertsätze folgende Abschätzungen: a.) Für > 0 gilt + < +. b.) Für a > b gilt e a b a) < e b e a < e b b a). Lösung: a.) Wir wenden den Mittelwertsatz auf f) + im Intervall 0, ) an, Dann ξ 0, ) mit f ξ) Mit der Abschätzung erhält man ξ <! + ξ. < + < + < +. b.) Nach dem zweiten Mittelwertsatz für f) e im Intervall a, b) eistiert ξ a, b) mit also e a e b a b eξ, e b e a e ξ b a) { > e a b a) < e b b a). Es sei c 0 oder d 0. Beweisen Sie, dass die rationale Funktion f mit f) : a + b c + d auf ihrem Definitionsbereich genau dann ein Etremum besitzt, wenn f eine Konstante ist. Beweis: Angenommen f habe auf D ein Etremum. Dann gilt zunächst für die erste Ableitung f ac + d)ca + b) ac + ad ca cb ad cb ) c + d) c + d) c + d). Damit ist die notwendige Bedingung für das Etremum erfüllt, wenn f ) 0. f ) 0 ad cb b ad, falls c 0. c Setzt man dieses in f) ein, so erhält man f) ad a + c c + d ca + ad c c + d a c c + d c + d a c

6 6 CHRISTIAN HARTFELDT und somit ist f) konstant und damit gilt auch die Rückrichtung. Bemerkung: Ist c 0, so muss d 0 sein. Man würde dann erhalten ad 0, also a 0, also f) b/d. 3. Beweisen Sie durch Kurvendiskussion): Für alle > 0 gilt ln + ) > +. Beweisidee: Wir untersuchen das Monotonieverhalten der Funktion f) : ln + ). + Beweis: Die Funktion f) : ln + ) ist differenzierbar in 0, ) und es gilt für + alle 0, ) f ) + ) < 0. Damit ist f streng monoton fallend in 0, ). Wegen f) 0 folgt, dass f) > 0 für alle 0, ) sein muss. Somit erhält man f) ln + ) > 0 ln + ) > + + und das ist die Behauptung. 4. Bestimmen Sie von der Funktion auf 0, 4) die lokalen Etrema der Funktion f. f) ) 5 + ) 4 Lösung: Wir betrachten die Funktion f) ) 5 + ) 4. Die Ableitungen sind f ) 5 ) ) 3 ) 3 5 ) + 8 ) f ) 0 ) ) ) 0 ) + 4 ) Mit der notwendigen Bedingung f ) 0 folgt 0 ) 3 5 ) + 8 ) ) ) was 0, 4) und 3 / 0, 4) liefert. Man sieht, dass 5 eine Dreifachnullstelle ist und untersuchen nun, ob wirklich ein lokales Minimum ist. Dazu benötigen wir hier noch die 3. und 4. Ableitung. f ) 0 ) ) f ) 0 f ) 60 ) + 48 ) f ) 0 f 4) ) 0 ) + 48 f 4) ) 48 > 0 Damit hat f) in ein lokales Minimum und besitzt auf 0, 4) keine weiteren Etrema. 5. Beweisen Sie, dass folgende Funktionen f auf R differenzierbar sind und die angegebenen Ableitungen haben: a.) f) arctan) f ) + b.) f) arsinh ) f ) +

7 ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN 7 c.) f) ln h), wobei h eine differenzierbare reellwertige Funktion ohne Nullstellen ist. f ) h ) h) d.) f) ln a + ib) + i arctan a, wobei a + ib C eine feste komplee Zahl mit b b 0 ist. f ) a + ib). Lösung: a.) Der arctan bildet von R auf π/, π/) ab, ist also auf R definiert und überall differenzierbar, da die Umkehrabbildung zum arctan, also tan von π/, π/) auf R abbildet und für alle y π/, π/) differenzierbar ist und es gilt tan y) cos y) 0 auf π, π ). Durch Anwendung des Theorems über die Differenzierbarkeit der Umkehrfunktion folgt arctan tan)) tan ) / cos cos + sin / cos tan und damit die Behauptung. b.) Der arsinh bildet von R auf R ab, ist also auf R definiert und überall differenzierbar, da die Umkehrabbildung zum arsinh, sinh ist und sinh ) cosh ) 0 ist. Durch Anwendung des Theorems über die Differenzierbarkeit der Umkehrfunktion folgt arsinh sinh )) sinh ) cosh ) + sinh ) und damit die Behauptung. c.) Die Funktion h ist laut Voraussetzung differenzierbar ohne Nullstelle. Damit muss h stetig sein und nach Anwendung des Zwischenwertsatzes muss h auf R positiv oder negativ sein. Damit müssen wir zwei Fälle untersuchen: Fall :: Sei h) > 0 für alle R. Dann ist nach Anwendung der Kettenregel f ) h) h ). Fall :: Sei h) < 0 für alle R. Dann ist f ) ln h)) h) h )) h ) h) und damit folgt die Behauptung. d.) Nach den Grenzwertsätzen ist f : D R C in 0 differenzierbar Re f), Im f) : D R in 0 differenzierbar sind.

8 8 CHRISTIAN HARTFELDT Wir setzen f ) : ln a + ib) ) und f ) : arctan a ) und untersuhen diese b beiden Funktion. Für die Ableitung von f ) erhalten wir f ) ln a) + b } {{ } :h) a) + b a) + b a) { a) + b } a für alle D R. a) + b Für die Ableitung von f ) erhalten wir ) a f ) arctan b + a) b b b a) + b. Damit erhält man schließlich f ) f ) + if ) a a) + b + i b a) + b a + ib a) + b a + ib a) + ib) a) ib) a + ib) und das ist die Behauptung.

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 7

Zusatzmaterial zur Mathematik I für E-Techniker Übung 7 Mathemati I für E-Technier C. Erdmann WS 0/, Universität Rostoc, 7. Vorlesungswoche Zusatzmaterial zur Mathemati I für E-Technier Übung 7 Loale Etrema, Satz von Rolle, Mittelwertsatz Man sagt, in liegt

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen

9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Übungsmaterial 9 Die trigonometrischen Funktionen und ihre Umkehrfunktionen Die trigonometrischen Funktionen sind die Sinus-, die Kosinus- und die Tangensfunktion. 9. Eigenschaften der trigonometrischen

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Mathematik für Informatiker Band 2: Analysis und Statistik

Mathematik für Informatiker Band 2: Analysis und Statistik Gerald Teschl Susanne Teschl Mathematik für Informatiker Band 2: Analysis und Statistik 2 Auflage Mit 02 Abbildungen 23 Gerald Teschl Universität Wien Fakultät für Mathematik Nordbergstraße 5 090 Wien,

Mehr

8.3 Lösen von Gleichungen mit dem Newton-Verfahren

8.3 Lösen von Gleichungen mit dem Newton-Verfahren 09.2.202 8.3 Lösen von Gleichungen mit dem Newton-Verfahren Beispiel: + 2 e Diese Gleichung kann nicht nach aufgelöst werden, da die beiden nicht zusammengefasst werden können. e - - 2 0 Die gesuchten

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x.

g(x) = lim 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert Beispiel: Seif(x) = x 2 undg(x) = x. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls x x 0 g(x), beide Funktionen gegen Null konvergieren, d.h. x x 0 = x x 0 g(x) = 0 beide Funktionen gegen Unendlich

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Mathematikaufgaben. Matura Session

Mathematikaufgaben. Matura Session Mathematikaufgaben Matura 05. Session Angaben 05. Session 05. Session Problemstellung Ein Telefonanbieter sieht für Auslandgespräche eine Figebühr von 0 Euro monatlich und zusätzlich 0 Cent pro Gesprächsminute

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

12. Stetigkeit und Differenzierbarkeit.

12. Stetigkeit und Differenzierbarkeit. 2- Funktionen 2 Stetigkeit und Differenzierbarkeit Wenn man von Analsis spricht, so meint man die Untersuchung von Funktionen in einer oder oder in mehreren Variablen, vor allem denkt man an das Differenzieren

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 92 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : Ê Ê systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

Analysis I/II, Information zum Repetitionsteil

Analysis I/II, Information zum Repetitionsteil Information Analysis I/II, Information zum Repetitionsteil Professor U. Stammbach Dieser Zusatz gehört zur Lehrveranstaltung Analysis I/II für die Studiengänge Maschinenbau/Verfahrenstechnik und Materialwissenschaften.

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3

Stetigkeit. Klaus-R. Loeffler. 1 Vorstellung, Definition und Folgerungen Stetigkeitscharakterisierung durch Folgen... 3 Stetigkeit Klaus-R. Loeffler Inhaltsverzeichnis 1 Vorstellung, Definition und Folgerungen 1.1 Stetigkeitscharakterisierung durch Folgen......................... 3 Regeln zur Stetigkeit an einer Stelle

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

4.7 Der Taylorsche Satz

4.7 Der Taylorsche Satz 288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise

Mehr

Mathematik für ChemikerInnen I

Mathematik für ChemikerInnen I Mathematik für ChemikerInnen I Prof. Dr. Ansgar Jüngel Institut für Mathematik Johannes Gutenberg-Universität Mainz Winter 26 unkorrigiertes Vorlesungsskript Inhaltsverzeichnis Motivation 3 2 Grundbegriffe

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr