2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

Größe: px
Ab Seite anzeigen:

Download "2. Kongruenzsätze (SWS und SSS) ohne Parallelen."

Transkript

1 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück dieser Systematik werden wir in diesem Kapitel sehen, wie Euklid die Kongruenzsätze aus der xiomatik der Euklidischen Geometrie ableitet. Es gibt hier ein paar kleine Eigenheiten wie z.. der Versuch, wirklich alles definieren zu wollen. Es wird z.. auch versucht zu definieren was ein Punkt und was eine Gerade ist. Heute steht man (nach Hilbert) auf dem Standpunkt, daß Punkt und Gerade in der Euklidischen Geometrie undefinierbare Grundbegriffe sind. ber davon abgesehen ist die Herleitung der Kongruenzsätze heute immer noch gültig. Was uns hier besonders interessiert ist die Tatsache, daß Euklid die Kongruenzsätze auf einem sehr fundamentalen Niveau herleitet. Natürlich wird in der Euklidischen Geometrie nicht mehr gemessen, nachdem ja von den Pythagoräern festgestellt worden ist, daß nicht alle geraden Strecken meßbar sind. ber genauso bemerkenswert ist vielleicht die Tatsache, daß Euklid zur Herleitung der Kongruenzsätze auch nicht die Existenz und Eindeutigkeit von Parallelen voraussetzt. Es gibt also in diesem Teil noch keine Parallelverschiebung. Wir werden erst im nächsten Kapitel sehen, wie Euklid die Existenz von Parallelen herleitet. ie Kongruenz stellt eine gewisse Äquivalenzrelation zwischen den geometrischen Objekten der Euklidischen Ebene dar. Eine andere, schwächere Äquivalenzrelation, an die man an dieser Stellle auch denken könnte, ist die Flächengleichheit. Mit der beschäftigen wir uns im übernächsten Kapitel. Wir beginnen mit der Euklidischen xiomatik auf der alle rgumente in der Euklidischen Geometrie letztlich beruhen. Für eine moderne, aber auch sehr viel abstraktere Fassung dieser xiomatik siehe [Hilbert, Grundlagen der Geometrie] oder für eine erste Einführung meine Skripte [Johannson, Geometrie].

2 30. Geometrie (L2) 1. ie xiomatische Grundlegung der Euklidischen Geometrie. Wir wollen darauf achten, ob Euklid bei der Herleitung der Kongruenzsätze das Parallelenaxiom oder gar die Existenz von Paralellelen benutzt. nsonsten wollen wir natürlich sehen wie die Kongruenzsätze bewiesen, d.h. streng logisch aus den xiomen der Euklidischen Geometrie hergeleitet werden. n dieser Stelle bemerken wir noch, daß die Euklidischen xiome (die wir hier kennenlernen und für das Folgende zugrunde legen wollen) eine bestimmte, uns zwar anschaulich sehr vertraute, aber doch nicht einzig mögliche Geometrie, beschreiben. Es gibt im Gegenteil noch sehr viel andere sinnvolle Geometrien. ls besonders wichtige eispiele werden wir später noch die sphärische und die hyperbolische Geometrie behandeln. ie Euklidische Geometrie ist unter diesen Geometrien durch die Gültigkeit des Parallelenaxioms ausgezeichnet. as Parallelenaxiom lautet im Originaltext (deutsche Version): 5. Gefordert soll sein daß, wenn eine gerade Linie beim Schnitt mit zwei geraden Linien bewirkt, daß innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei Rechte werden, dann die zwei geraden Linien bei Verlängerung ins unendliche sich treffen auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte sind. ie anderen xiome sind viel kürzer. Sie lauten: Gefordert soll sein: 1. dass man von jedem Punkte nach jedem Punkte die Strecke ziehen kann. 2. dass man eine begrenzte gerade Linie zusammenhängend verlängern kann. 3. dass man mit jedem Mittelpunkt und bstand den Kreis ziehen kann. 4. dass alle rechten Winkel einander gleich sind. Zu den obigen xiomen gehören noch verschiedene efinitionen. Wie z.. 5. Wenn eine gerade Linie, auf eine gerade linie gestellt, einander gleiche Winkel bildet, dann ist jeder der beiden gleichen Winkel ein Rechter. 23. Parallel sind gerade Linien, die in derselben Ebene liegen und dabei, wenn man sie nach beiden Richtungen ins unendliche verlängert, auf keiner einander treffen. Hier ist die vollständige Liste aller efinition, Postulate und xiome aus [Euklid].

3 2. ie ufstellung der Euklidischen Geometrie. efinitionen. 2 Kongruenzsätze Ein Punkt ist, was keine Teile hat, 2. Eine Linie breitenlose Länge. 3. ie Enden einer Linie sind Punkte. 4. Eine gerade Linie (Strecke) ist eine solche, die zu den Punkten auf ihr gleichmäßig liegt. 5. Eine Fläche ist, was nur Länge und reite hat. 6. ie Enden einer Fläche sind Linien. 7. Eine ebene Fläche ist eine solche, die zu den geraden Linien auf ihr gleichmässig liegt. 8. Ein ebener Winkel ist die Neigung zweier Linien in einer Ebene i gegeneinander, die einander treffen, ohne einander gerade fortzusetzen. 9. Wenn die den Winkel umfassenden Linien gerade sind, heißt der Winkel geradlinig. 10. Wenn eine gerade Linie, auf eine gerade Linie gestellt, einander gleiche Nebenwinkel bildet, dann ist jeder der beiden Winkel ein Rechter. 11. Stumpf ist ein Winkel, wenn er größer als ein Rechter ist, 12. Spitz, wenn kleiner als ein Rechter. 13. Eine Grenze ist das, worin etwas endigt. 14. Eine Figur ist, was von einer oder mehreren Grenzen umfasst wird. 15. Ein Kreis ist eine ebene, von einer einzigen Linie [die Umfang (ogen) heißt] umfasste Figur mit der Eigenschaft, dass alle von einem innerhalb der Figur gelegenen Punkte bis zur Linie [zum Umfang des Kreis] laufende Strecken einander gleich sind; 16. Und Mittelpunkt des Kreises heißt dieser Punkt. 17. Ein urchmesser des Kreises ist jede durch den Mittelpunkt gezogene, auf beiden Seiten vom Kreisumfang begrenzte Strecke; eine solche hat auch die Eigenschaft den Kreis zu halbieren. 18. Ein Halbkreis ist die vom urchmesser und dem durch ihn abgeschnittenen ogen umfasste Figur. [und Mittelpunkt ist beim Halbkreis derselbe Punkte wie beim Kreis].

4 32. Geometrie (L2) 19. Geradlinige Figuren sind solche, die von Srecken umfaßt werden, dreiseitige die von drei, vierseitige, die von vier, vielseitige, die von mehr als vier Strecken umfaßten. 20. Von den dreiseitigen Figuren ist ein gleichseitiges reieck jede mit drei gleichen Seiten, ein gleichschenkliges jede mit nur zwei gleichen Seiten, ein schiefes jede mit drei ungleichen Seiten. 21. Weiter ist von den dreiseitigen Figuren ein rechtwinkliges reieck jede mit einem rechten Winkel, ein stumpfwinkliges jede mit einem stumpfen Winkel, ein spitzwinkliges jede mit drei spitzen Winkeln. 22. Von den vierseitigen Figuren ist ein Quadrat jede, die gleichseitig und rechtwinklig ist, ein längliches Rechteck jede, die zwar rechtwinklig aber nicht gleichseitig ist, ein Rhombus jede, die zwar gleichseitig aber nicht rechtwinklig ist, ein Rhomboid jede, in der die gegenüberliegenden Seiten sowohl als Winkel einander gleich sind und die dabei weder gleichseitig noch rechtwinklig ist; die übrigen vierseitigen Figuren sollen Trapeze heißen, 23. Parallel sind gerade Linien, die in derselben Ebene liegen und dabei, wenn man sie nach beiden Seiten ins unendliche verlängert, auf keiner einander treffen. Postulate. Gefordert soll sein: 1. ass man von jedem Punkt nach jedem Punkt die Strecke ziehen kann, 2. ass man eine begrenzte gerade Linie zusammenhängend gerade verlängern kann, 3. ass man mit jedem Mittelpunkt und bstand den Kreis zeichnen kann, 4. ass alle rechten Winkel einander gleich sind, 5. Und dass man, wenn eine gerade Linie beim Schnitt mit zwei geraden Linien bewirkt, dass innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei Rechte werden, dann die zwei geraden Linien bei Verlängerung ins unendliche sich treffen auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte sind.

5 2 Kongruenzsätze 33 xiome. 1. Was demselben gleich ist, ist auch einander gleich. 2. Wenn Gleichem Gleiches hinzugefügt wird, sind die Ganzen gleich. 3. Wenn von Gleichem Gleiches weggenommen wird, sind die Reste gleich. 4. Wenn Ungleichem Gleiches hinzugefügt wird, sind die Ganzen ungleich. 5. ie oppelten von demselben sind einander gleich. 6. ie Halben von demselben sind einander gleich. 7. Was einander deckt, ist einander gleich. 8. as Ganze ist größer als der Teil. 9. Zwei Strecken umfassen keinen Flächenraum. emerkung. amit ist das System der Euklidischen Geometrie festgelegt. Es ist für das Folgende sehr wichtig von vornherein hervorzuheben, dass man in der griechischen Mathematik nicht gemessen (man hatte hierfür auch gar nicht die Möglichkeiten. Ein Zahlsystem wie heute gab es bei den Griechen nicht). lso Strecken hatten keine Längen, da Längen nicht gemessen i werden konnten. Ebene Figuren hatten keinen Flächeninhalt, da Flächeninhalte nicht gemessen werden konnten.

6 34. Geometrie (L2) 3. Zwei Grundkonstruktionen. Im Folgenden werden wir einige eweise des Euklidischen Lehrbuchs vorstellen. Wir werden dabei alle benutzten efinitionen, Postulate und xiome fettgedruckt herausheben. ies soll es erleichtern, alle Voraussetzungen herauszufinden, die in einem eweis benutzt wurden. uf diese Weise sieht man z.. leicht, dass in diesem bschnitt das Parallelenaxiom (Post. 5) nirgends verwendet wurde. lle Konstruktionen dieses bschnitts sind also unabhängig vom Papallelenaxiom. Sie könnte man ganz ebenso in Geometrien durchführen in denen das Parallelaxiom nicht gilt, wie etwa in der sphärischen Geometrie und in der hyperbolischen Geometrie (siehe später). Insbesondere schließen wir, dass z.. der Kongruenzsatz (SWS) auch in der sphärischen Geometrie gilt. ufgabe. [Euklid I 1] Man konstruiere ein gleichseitiges reieck mit Grundseite. E Lösung. Man ziehe (Post. 3) einen Kreis um und einen Kreis um, jeweils mit als Radius. Sei einer der Schnittpunkte der Kreise. Man ziehe (Post. 1) die Strecken und. ann ist (ef. 15) und somit (x. 1) = und = = Für die nächste ufgabe beachte man, dass man eine Strecke nicht einfach parallel verschieben kann, da bisher die Existenz von Parallelen noch nicht gezeigt ist.

7 2 Kongruenzsätze 35 ufgabe. [Euklid I 2] Sei ein Punkt und sei eine gegebene Strecke. Man konstruiere eine Strecke L mit L =. K H L E G F Lösung der ufgabe. Man ziehe die Strecke (Post. 1). Man errichte das gleichseitige reieck [Euklid I 1]. Man verlängere, gerade um die Strecken E,F (Post. 2). Man zeichne den Kreis GH, mit als Mittelpunkt und als bstand. (Post. 3) Sei G der Schnittpunkt dieses Kreises mit der geraden Linie F. Man zeichne den Kreis GKL, mit als Mittelpunkt und G als bstand (Post. 3). Sei L der Schnittpunkt dieses Kreises mit der geraden Linie E. ann ist (ef. 15) G = und L = G, da Mittelpunkt des Kreises GH und Mittelpunkt des Kreises GKL ist. lso ist (x. 3, x. 1) L = G =

8 36. Geometrie (L2) 4. er Erste Kongruenzsatz (SWS). Erster Kongruenzsatz. (SWS) [Euklid I 4] Seien und EF zwei reiecke mit = E, = F und = EF. ann ist = EF, und = EF, = F E. E F eweis. Man lege auf EF und lege dabei den Punkt auf und die Strecke auf E ann muß auch der Punkt den Punkt E decken, denn = E. ann (x. 9) deckt die Strecke die Strecke E. lso liegt die Strecke auf der Strecke F, denn = EF. eshalb deckt der Punkt den Punkt F, denn = F. deckt aber E. Folglich muss (x. 9) die Strecke die Strecke EF decken. amit decken alle Seiten des einen reiecks die des anderen. Folglich muß das reieck das reieck EF decken und ihm gleich sein. Insbesondere müssen alle Winkel von die entsprechenden Winkel von EF decken und ihnen gleich sein.

9 5. er Zweite Kongruenzsatz (SSS) 2 Kongruenzsätze 37 Satz. [Euklid I 5] Sei ein gleichschenkliges reieck (ef. 20) mit =. ann ist =. F G E eweis. Es seien, um die geraden Linien,E verlängert (Post. 2). Man wähle auf den Punkt F beliebig. Man konstruiere den Punkt G auf E mit G = F. (1) (dies ist der Schnittpunkt von E und dem Kreis um mit Radius F). Schließlich ziehe man die Strecken F,G (Post. 1). ann ist F = G, = und F = G. ann sind [Euklid I 4] die reiecke F und G kongruent. Insbesondere F = G, F = G und F = G (2) Weiter ist (x. 3) F = G, da F = G (wegen (1)) und = (nach Vor.). Somit F = G, F = G und F = F = G = G lso sind [Euklid I 4] die reiecke F und G kongruent. Insbesondere F = G und F = G. (3) und so wegen (2) und (3) = G G = F F =.

10 38. Geometrie (L2) Satz. [Euklid I 7] Es ist nicht möglich, über derselben Strecke und auf derselben Seite, zwei Paare von Strecken, und, zu zeichnen mit = und =. eweis. ngenommen dies ist möglich. emerkung. Mit dieser nnahme hätte man zwei verschiedene reiecke und, über derselben Grundlinie, deren Seiten paarweise längengleich sind. ber chtung: Man darf jetzt nicht einfach den Kongruenzsatz (SSS) verwenden, denn wir sind ja erst noch dabei, ihn zu beweisen! Man ziehe. ann wäre [Euklid I 5] = und = (1) da = und = (nach Voraussetzung). Weiter ist lso wäre (x. 8) und (1) < und <. ies ist ein Widerspruch zu (1). <.

11 2 Kongruenzsätze 39 Zweiter Kongruenzsatz. (SSS) [Euklid I 8] Seien und EF reiecke mit zwei = E, = F, = EF. ann ist auch = EF, = EF, = EF. G E F eweis. Man lege das reieck auf das reieck EF und lege dabei den Punkt auf den Punkt E sowie die Strecke auf die Strecke EF. ann muss der Punkt den Punkt F decken, denn = EF. ann gilt [Euklid, 7], dass alle Seiten von Seiten von EF decken. Somit ist = EF, = EF, = EF. Literatur. Euklid, ie Elemente

4. Kongruenz ohne Parallelen.

4. Kongruenz ohne Parallelen. 4. Kongruenz ohne Parallelen. Den Griechen war bald klar, dass es bei einer solchen fundamentalen Frage, wie der nach der Existenz eines Pentagons, nicht mehr um noch so clevere geometrische Tricks gehen

Mehr

Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte.

Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte. Das erste der dreizehn Bücher von Euklids Elementen beginnt nach der Ausgabe in Ostwald s Klassikern der exakten Wissenschaften (Nr. 235), Leipzig 1933, folgendermaßen: Definitionen. 1. Ein Punkt ist,

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

3. Winkelsätze und der Kongruenzsatz (WWS).

3. Winkelsätze und der Kongruenzsatz (WWS). 3. Winkelsätze und der Kongruenzsatz (WWS). Nachdem wir die beiden ersten Kongruenzsätze bewiesen haben, kommen wir zum ritten Kongruenzsatz (WWS). r ist der am schwersten zu beweisende. Um ihn zu beweisen,

Mehr

4.15 Buch I der Elemente

4.15 Buch I der Elemente 4.15 Buch I der Elemente Das erste Buch der Elemente beginnt mit 23 Definitionen, 5 Postulate und einige Axiomen (von denen man in späteren Ausgaben bis zu 9 findet). Die ersten fünf Definitionen lauten

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT

DIE ELEMENTE EUKLID BUCH I-XIII CLEMENS THAER -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT EUKLID DIE ELEMENTE BUCH I-XIII h^ Nach Heibergs Text aus dem Griechischen übersetzt und herausgegeben von CLEMENS THAER WISS1 -.^AD'TLICHE BUCHGESELLSCHAFT DARMSTADT VI Inhaltsverzeichnis X. BUCH Definitionen

Mehr

2.3 Sätze und Konstruktionen

2.3 Sätze und Konstruktionen 43 2.3 Sätze und Konstruktionen Proposition 1. Über einer gegebenen Strecke kann ein gleichseitiges reieck errichtet werden. eweis: ie ormulierung ist etwas eigenartig. ber viele der euklidischen Sätze

Mehr

3. Die pythagoräische Geometrie.

3. Die pythagoräische Geometrie. II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen

Mehr

Euklid von Alexandria

Euklid von Alexandria Euklid von Alexandria lebte ca. 360 v. Chr. bis ca. 280 v. Chr. systematisierte in 13 Büchern ( Elemente ) das mathematische Wissen der Antike - bis ins 19. Jahrhundert nach Bibel das am meisten verbreitete

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb athematik aden-württemberg Lösungsvorschläge für die ufgaben der Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt Für die ganze Figur sind

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Jede Fläche hat einen Inhalt aber welchen?

Jede Fläche hat einen Inhalt aber welchen? Jede Fläche hat einen Inhalt aber welchen? ufgabe 46 ürgermeister Pfiffig sitzt mit zwei auern aus seiner Gemeinde an einem Tisch. Vor sich haben sie einen Plan, in den eine trapezförmige Fläche eingezeichnet

Mehr

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1

Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

2.2 Axiomatische Mathematik

2.2 Axiomatische Mathematik 33 2.2 Axiomatische Mathematik Die deduktive Methode funktioniert folgendermaßen: Der Beweis einer Aussage (A1) wird auf eine offensichtlichere Aussage (A2) zurückgeführt. Dann wird nach einer noch unbedenklicheren

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017 Landeswettbewerb Mathematik aden-württemberg Musterlösungen 2. Runde 206/207 ufgabe Paul soll fünf positive ganze Zahlen nebeneinander schreiben. abei muss er Folgendes beachten: ie erste Zahl ist so groß

Mehr

Dreieckskonstruktionen Anwendungsaufgaben Lösungen

Dreieckskonstruktionen Anwendungsaufgaben Lösungen Hilfe home Dreieckskonstruktionen nwendungsaufgaben Lösungen ufgabe 1 Konstruiere ein rechtwinklig gleichseitiges Dreieck mit der Hypotenuse c = 8 cm. Zeichne über den Katheten a und b die Quadrate und

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Geometrie I - Winkeljagd

Geometrie I - Winkeljagd Schweizer Mathematik-Olympiade smo osm Geometrie I - Winkeljagd aniel Sprecher ktualisiert: 1. ezember 2015 vers. 1.0.0 Inhaltsverzeichnis 1 Einleitung 2 2 Winkel im reieck 2 3 Winkel im Kreis 5 4 Sehnenvierecke

Mehr

c+ f + i= b + e+ h = a+ d+ g=

c+ f + i= b + e+ h = a+ d+ g= 1988 Runde 1 ufgabe 1 ie neun Ziffern 1,, 3,..., 9 werden jeweils auf eine Karte geschrieben. us diesen neun Karten wird ein 3x3 Quadrat gelegt. adurch entsteht in jeder Zeile und in jeder Spalte eine

Mehr

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion:

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Lösungen Geometrie-ossier 7 - Ebene Figuren eiten 7/ 8 ufgaben reiecke (ie Lösungen sind verkleinert gezeichnet. ie hier vorgeschlagenen Konstruktionswege sind nur eispiele unter einige Möglichkeiten.)

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Zwillinge von Archimedes (1)

Zwillinge von Archimedes (1) Zwillinge von Archimedes (1) Zwillinge von Archimedes (2) Zwillinge von Archimedes (3) DIDAKTIK DER GEOMETRIE Elementargeometrie 2 Prof. Heinz Klemenz Universität Zürich, Kantonsschule Rychenberg Winterthur

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε ϕ α o 26,57 Lösung: δ = 90 α = 45 ε = 26,86 ϕ = 63,43 ψ = 8,86 2. Gegeben ist

Mehr

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick Geometrische Konstruktionen ie Macht der Werkzeuge Zirkel allein hristian ick dick@in.tum.de Letzte Woche Was ist mit Lineal und Zirkel konstruierbar? 2 Zirkel allein hristian ick TU München SS 2004 Heute

Mehr

Flächeninhalt bestimmen bedeutet : Möglichst vielen Figuren F (Maß-)Zahl A(F) zuordnen. Kapitel 8: Der Flächeninhalt

Flächeninhalt bestimmen bedeutet : Möglichst vielen Figuren F (Maß-)Zahl A(F) zuordnen. Kapitel 8: Der Flächeninhalt EINFÜHRUNG IN IE GEOMETRIE SS 03 1 EISSLER Kapitel 8: er Flächeninhalt Flächeninhalt einer Figur soll etwas über deren Größe aussagen Flächeninhaltsbegriff intuitiv irgendwie klar, ab der Grundschule durch

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Kongruenz, Vierecke und Prismen

Kongruenz, Vierecke und Prismen Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren

Mehr

Problem des Monats Februar 2019

Problem des Monats Februar 2019 Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

9. Landeswettbewerb Mathematik Bayern

9. Landeswettbewerb Mathematik Bayern 9 Landeswettbewerb Mathematik aern ufgaben und Lösungsbeispiele Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt ür die ganze igur sind 6² 3² Streichhölzer

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/29 15:15:02 hk Exp $ $Id: trig.tex,v /04/29 15:15:28 hk Exp hk $ $Id: dreieck.tex,v 1.11 2013/04/29 15:15:02 hk Exp $ $Id: trig.tex,v 1.2 2013/04/29 15:15:28 hk Exp hk $ 1 Dreiecke 1.6 Einige Sätze über Kreise m Ende der letzten Sitzung hatten wir den Feuerbachkreis

Mehr

Skript zur Vorlesung Elementare und analytische Geometrie

Skript zur Vorlesung Elementare und analytische Geometrie Robert Labus Skript zur Vorlesung Elementare und analytische Geometrie Studienkolleg für ausländische Studierende Universität Kassel Wintersemester 2016/2017 Inhaltsverzeichnis 1 Elementargeometrie 1 1.1

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

Geometrie 0.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 0.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 0.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 0.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

5. Flächenlehre ohne Rechnen

5. Flächenlehre ohne Rechnen 5. Flächenlehre ohne Rechnen Die Zielsetzung. Was ist der Flächeninhalt eines Quadrats? Zunächst erscheint die Frage als ganz leicht zu beantworten: man messe die Länge der Quadratseite und quadriere die

Mehr

Strahlensätze und Ähnliches

Strahlensätze und Ähnliches Strahlensätze und Ähnliches Dr. Elke Warmuth Sommersemester 2018 1 / 27 Zentrische Streckung Strahlensätze Ähnliche Figuren 2 / 27 Was ist hier passiert? 3 / 27 Zentrische Streckung mit Streckungszentrum

Mehr

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren Klasse 7 - Fit in Winkeln und Eigenschaften ebener Figuren Für den fitten enker: Teil 4 Thema Winkel in ebenen Figuren 1. Ein Seil, das am linken Ende mit einem Gewicht belastet ist, wird über eine feste

Mehr

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen

31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Parallelogramme Rechtecke Quadrate

Parallelogramme Rechtecke Quadrate Parallelogramme Rechtecke Quadrate (Hinweis: Die ezeichnungen der Seiten entsprechen den ezeichnungen aus der Formelsammlung). erechne den Flächeninhalt des Parallelogramms mit der Seitenlänge a = 6,3

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche 1. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε o 6,57 Lösung: δ = 90 = 45 ε = 16,86 = 63,43 ψ = 81,86. Gegeben ist ein Kreis

Mehr

Mathematik hat Geschichte. Teil 4 Griechen. Zahlen bei den Griechen vChr. Zahlen bei den Griechen vChr.

Mathematik hat Geschichte. Teil 4 Griechen. Zahlen bei den Griechen vChr. Zahlen bei den Griechen vChr. hat Geschichte Zahlen bei den Griechen 500-100vChr. Teil 4 Griechen Pythagoras Griechische Zahlschreibweise Euklid Archimedes 1 2 Zahlen bei den Griechen 500-100vChr. Zahlen bei den Griechen 500-100vChr.

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Aufgabe 1: Multiple Choice Test

Aufgabe 1: Multiple Choice Test PH Heidelberg, Fach Mathematik, Klausur zur Teilprüfung Modul, Einführung in die Geometrie, SS010, 30.07.010 Aufgabe 1: Multiple Choice Test Kennzeichnen Sie die Ihrer Meinung nach richtigen Antworten.

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

3. Die Existenz des Pentagons.

3. Die Existenz des Pentagons. 3. Die Existenz des Pentagons. In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. Dieser Beweis ist schon recht anspruchsvoll. So anspruchsvoll, dass

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018 Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 39 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck 2 / 39 Wir betrachten nur konvexe Vierecke:

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

Arbeitsanleitung Besondere Linien im Dreieck

Arbeitsanleitung Besondere Linien im Dreieck rbeitsanleitung esondere Linien im reieck 1. Zeichne ein spitzwinkliges reieck und miss alle Winkel in diesem reieck. Zeichne die Mittelsenkrechten ein. Was stellst du fest? Verändere dann durch Ziehen

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Kompetenzbereich. Kompetenz

Kompetenzbereich. Kompetenz Faltkunst Du vertiefst dein Verständnis für Achsenspiegelungen und achsensymmetrische Figuren, indem du vom einfachen Scherenschnitt bis zur anspruchsvollen Origamifigur vieles mit Papier umsetzt. Die

Mehr

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele

4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele 4. Landeswettbewerb athematik ayern. Runde 00/00 ufgaben und Lösungsbeispiele ufgabe In einem Viereck sind die Seiten [], [] und [] gleich lang. ie Seite [] hat die gleiche Länge wie die iagonale []. iese

Mehr

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade

Die Eulergerade. Begrie. Spezialfälle. Konstruktion der Euler-Gerade Die Eulergerade Begrie In einem Dreieck liegen der Schwerpunkt S, der Höhenschnittpunkt H und der Umkreismittelpunkt U auf einer gemeinsamen Geraden, der Euler-Geraden (Bezeichnung: e). Zur Erinnerung:

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

Prof. Dr. Dörte Haftendorn Leuphana Universität 2

Prof. Dr. Dörte Haftendorn Leuphana Universität   2 Mathematik hat Geschichte Teil 4 Griechen Pythagoras Griechische Zahlschreibweise Euklid Archimedes Prof. Dr. Dörte Haftendorn Leuphana Universität www.mathematik-verstehen.de 1 Zahlen bei den Griechen

Mehr

Letzte Woche wurden uns die Axiome von Hilbert vorgestellt, genauer gesagt haben wir gesehen:

Letzte Woche wurden uns die Axiome von Hilbert vorgestellt, genauer gesagt haben wir gesehen: Hilbert Ebene Letzte Woche wurden uns die Axiome von Hilbert vorgestellt, genauer gesagt haben wir gesehen: - die Axiome der Verknüpfungen (Axioms of Incidence) - die Axiome der Anordnung (Axioms of Betweeness)

Mehr

Beispiellösungen zu Blatt 107

Beispiellösungen zu Blatt 107 µ κ Mathematisches Institut eorg-ugust-universität öttingen ufgabe 1 eispiellösungen zu latt 107 onstruiere eine Menge M aus 107 positiven ganzen Zahlen mit der folgenden igenschaft: eine zwei der Werte

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis er euerbach Kreis oder eun unkte Kreis 1 Geometrie er euerbach Kreis oder eun unkte Kreis utor: eter ndree Inhaltsverzeichnis 6 er euerbach Kreis oder eun unkte Kreis 1 6.1 Vorbemerkungen und Satz über

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

3 Nichteuklidische Geometrie

3 Nichteuklidische Geometrie 3 Nichteuklidische Geometrie 3.1 eweisversuche Schon früh störte Euklids Postulat V die ihm nachfolgenden Mathematiker, vor allem aus ästhetischen Gründen. Man kam zu der uffassung, das Postulat müsste

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Alle Sätze, die aus den Axiomen I/1 bis IV/3 folgen, gehören zur absoluten Geometrie. (Parallelenaxiom) folgen, gehören zur euklidischen

Alle Sätze, die aus den Axiomen I/1 bis IV/3 folgen, gehören zur absoluten Geometrie. (Parallelenaxiom) folgen, gehören zur euklidischen 5 Das Parallelenaxiom 5.1 Absolute Geometrie, euklidische Geometrie, hyperbolische Geometrie Alle Sätze, die aus den Axiomen I/1 bis IV/3 folgen, gehören zur absoluten Geometrie. Alle Sätze, die aus den

Mehr

MAT746 Seminar über Euklidische Geometrie Philipp Becker

MAT746 Seminar über Euklidische Geometrie Philipp Becker MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke 1. Von einem reieck weiß man: (a) a = 5cm, = 65 und γ = 50 (b) a = b und β = 60 reiecke und Vierecke Fertige jeweils für den Fall (a) und für den Fall (b) eine Planfigur an. egründe damit die besonderen

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung

Mehr