6. Die Gruppe der Euklidischen Kongruenztransformationen

Größe: px
Ab Seite anzeigen:

Download "6. Die Gruppe der Euklidischen Kongruenztransformationen"

Transkript

1 6. Die Gruppe der Euklidischen Kongruenztransformationen Eine Fahne in der euklidischen Ebene besteht aus einem Tripel (P, g, H), wobei P ein Punkt, g eine Halbgerade mit Anfangspunkt P, und H eine Halbebene mit Rand g ist. Die Lage eines Punktes Q zu einer Fahne (P, g, H) kann man durch folgende Informationen eindeutig festlegen: (i) den Abstand von Q zur Geraden g, welcher von Q zu seinem Fußpunkt F gemessen wird; (ii) Den Abstand des Fußpunktes F vom Punkt P, (iii) die Information, ob F in g liegt, und ob Q in H liegt. Die euklidischen Kongruenztansformationen sind diejenigen Abbildungen der euklidischen Ebene auf sich, die Abstände von Punkten unverändert lassen. Weil die Winkel eines Dreiecks durch die Seitenlängen bestimmt sind, lassen euklidische Kongruenztransformationen Winkel ebenfalls unverändert. Eine solche Abbildung heißt gleichsinnig (oder Bewegung) bzw. gegensinnig, wenn der Umlaufsinn von Kreisen gleichbleibt bzw. sich ändert. Offenbar ist durch die Angabe einer Fahne und ihres Bildes eine euklidische Kongruenztransformation eindeutig bestimmt, weil man das Bild eines Punktes aus der Bild-Fahne rekonstruieren kann. Lemma. Für zwei Halbgerade g, h mit gemeinsamem Anfangspunkt gibt es genau eine Gerade w, sodaß die Spiegelung an w g in h überführt. Das folgt sofort aus Abschnitt 5. Diese Spiegelachse heißt die Winkelsymmetrale von g, h. Satz. Jede euklidische Kongruenztransformation ist das Produkt von höchstens drei Spiegelungen. Beweis. Wir zeigen, daß wir zwei Fahnen (P, g, H) und (P, g, H ) durch höchstens drei Spiegelungen ineinander überführen können. Falls nicht P = P, spiegeln wir an der Streckensymmetralen s P,P Dabei geht g in g über. Falls notwendig, spiegeln wir nun an der Winkelsymmetralen von g und g. Punkt und Halbgerade sind nun schon dort, wo sie sein sollen. Falls notwendig, spiegeln wir noch einmal an g, um auch H in die richtige Position zu bringen. Offenbar ist eine Spiegelung eine gegensinnige Kongruenztransformation, und es gilt Satz 2. Ein Produkt von Spiegelungen ist gleichsinnig genau dann, wenn die Anzahl der Spiegelungen gerade ist. Satz 3. Jede Bewegung ist das Produkt von zwei Spiegelungen. Sie ist entweder die identische Abbildung, eine Drehung um ein Zentrum, oder eine Parallelverschiebung. Beweis. Jede euklidische Kongruenztransformation ist ein Produkt von 0,, 2, oder 3 Spiegelungen. Für Bewegungen bleiben nur die Fälle 0 und 2 übrig. Den Fall 0 (die identische Abbildung) kann man auch durch zweimaliges Hintereinanderausführen derselben Spiegelung erzeugen. Daß die Produkte von zwei Spiegelungen entweder Drehungen oder Parallelverschiebungen sind, folgt aus Abschnitt 5. Man findet das Drehzentrum einer Bewegung durch Ausnützen der Eigenschaft, daß es von Ur- und Bildpunkten gleich weit entfernt liegt.

2 7. Winkel im Kreis einige Anwendungen Der Peripheriewinkelsatz und seine Verwandten haben viele Anwendungen in dem Sinne, daß sie sehr nützlich sind beim Beweis von elementargeometrischen Tatsachen. Hier sind zwei einfache Beispiele. 7. Das Erzeugnis von rotierenden Geraden Gegeben seien zwei Punkte P, Q, eine Gerade g durch P und eine Gerade h durch Q. Drehen wir beide Gerade um den gleichen orientierten Winkel α um P bzw. um Q, entstehen die Geraden g α bzw. h α. Die Menge aller Schnittpunkte g α h α bilden einen Kreis. Das folgt aus der Umkehrung des Peripheriewinkelsatzes. 7.2 Die Ellipsenbewegung Rollt ein Kreis k im Inneren eines doppelt so großen Kreises k 0 ab, so sind die Bahnkurven der Punkte von k Durchmesserstrecken von k 0. Mit den Bezeichnungen der untenstehenden Figur folgt das aus folgendem Argument: Die Halbgerade M 0 P trifft k 0 im Punkt P. Nach dem Peripheriewinkelsatz ist (P 0 MP ) = 2 (P 0 M 0 P ) = 2 (P 0 M 0 P ). Die Bogenlänge P 0 P auf k ist daher gleich der Bogenlänge P 0 P auf k 0. Dies zeigt einerseits, daß P beim Abrollen schließlich nach P gelangen wird, und andereseits, daß derjenige Punkt von k, der schließlich nach P gelangen wird, genau an der Stelle P ist. Nachdem die genaue Position von k und P 0 in dieser Formulierung nicht eingeht, heißt das, daß alle Zwischenpositionen von P während des Rollvorganges auf der Geraden M 0 P = M 0 P liegen. Von der Ellipsenbewegung gibt es ein bewegliches, für den Overhead-Projektor geeignetes Modell.

3 8. Inkommensurable Strecken der goldene Schnitt und das reguläre Fünfeck Eine positive reelle Zahl s besitzt eine Darstellung als Kettenbruch, die rekursiv folgendermaßen definiert ist: Ist die Zahl ganz, sind wir fertig. Ansonsten ist s = n + r mit n Z und einem Rest r mit 0 < r <. Wir setzen s = /r: () s = n + /s. Ist s ganzzahlig, so sind wir fertig, ansonsten wenden wir denselben Schritt auf s an, und so weiter. Zum Beispiel lautet die Kettenbruchentwicklung von 2.7 wie folgt: 2.7 = = 2 + 0/7 = 2 + (2) + 3 = = / Für rationale Zahlen p/q lautet der Algorithmus wie folgt: q ist in p n mal enthalten, mit p Rest, es ist also p/q = n + p /q mit p < q. Wir schreiben (3) p/q = n + q/p und wenden auf den Bruch q/p dasselbe Verfahren an. Für rationale Zahlen endet der Algorithmus irgendwann, denn von den beiden beteiligten Zahlen wird in jedem Schritt der Zähler kleiner und wandert in den Nenner. Umgekehrt ist ein endlicher Kettenbruch natürlich eine rationale Zahl. Die Entdeckung der irrationalen Zahlen wird den Pythagoreern zugeschrieben und basiert auf einem elementar-geometrischen Streckenverhältnis ohne endlichen Kettenbruch. Ein solches ist das Verhältnis Diagonale Seitenlänge in einem regulären Fünfeck ABCD (siehe Figur). Wir zeichnen die Diagonalen jede Diagonale ist aus Symmetriegründen parallel zu einer Seite und erhalten ein kleineres Fünfeck A B C D E, wobei immer gegenüberliegende Punkte denselben Buchstaben erhalten. Wegen des Parallelogramms AEDE ist AE gleich der Seitenlänge a 0 = ED, und wegen des Parallelogramms AC A D ist AD gleich der Diagonale d = A C im kleinen Fünfeck. Da das Verhältnis Seite zu Diagonale sowohl für das kleine (a /d ) als auch das große Fünfeck (a 0 /d 0 ) dasselbe ist, haben wir d 0 = AC a 0 AE = + E C = + AD = + AE AE AE AD (4) = + = + + D E + a = + AD d + d /a Wir sind also wieder bei demselben Verhältnis angelangt, von dem aus wir gestartet sind. Die Kettenbruchentwicklung bricht nie ab. Setzen wir fort, so erhalten wir (5) d 0/a 0 = Dieses Verhältnis heißt der goldene Schnitt. Diese von Pythagoras im 6. Jahrhundert v. Chr. gegründete philosophische Schule strebte unter anderem nach einer Erklärung der Geometrie, Musik und Arithmetik im besondern, und einer Antwort auf die große Frage betreffnd das Leben, das Universum, und den ganzen Rest im allgemeinen, in ganzen Zahlen. Im 5. Jahrhundert v. Chr. wurde entdeckt, daß in einigen einfachen geometrischen Figuren Verhältnisse von Streckenlängen auftreten, die nicht Vehältnisse von ganzen Zahlen sind. Diese Entdeckung hatte fatale Folgen für den naiven Standpunkt, daß das gesamte Universum durch ganze Zahlen beschrieben wird. Zumindest für die Pythagoreer, die das Quadrat und das reguläre Fünfeck für Teile der realen Welt hielten. Nach einigen Quellen wurde der Entdecker dieser furchtbaren Tatsache, Hippasus, nicht nur aus der Bruderschaft der Pythagoreer ausgeschlossen, sondern auch ertränkt.

4 9. Konstruieren auf der Zahlengeraden Der Strahlensatz Satz. Sind g, h zwei Gerade, und l, l 2,... eine Schar von Parallelen, die g und h schneiden, so gibt es eine reelle Zahl α, sodaß für die orientierten Entfernungen der Schnittpunkte die Relationen () g l i g l j = α h l i h l j gelten. Wir nehmen die Gültigkeit dieses Satzes an und versuchen keinen Beweis, was in diesem Rahmen auch nicht sinnvoll wäre Wir beschreiben die Punkte der Ebenen durch ein kartesisches oder schiefwinkeliges (affines) Koordinatensystem. Die Punkte der x-achse haben Koordinaten (a, 0), und die Punkte der y-achse Koordinaten (0, b). Wir verwenden die x-achse als Zahlengerade und identifizieren ihre Punkte mit der Menge der reellen Zahlen. Wir wollen ausgehend von den Punkten (a, 0) und (b, 0) die Punkte (a + b, 0) und (ab, 0) konstruieren. Addition Wir verwenden horizontale Gerade (Parallele zur x- Achse), vertikale Gerade (Parallele zur y-achse), und eine dritte Parallelschar von Geraden, die hier transversale Gerade heißen sollen. Für unsere Figuren wählen wir die transversalen Geraden mit einer Steigung von. Wir addieren die Punkte (a, 0) und (b, 0), indem wir eine Transversale durch (a, 0) mit der Vertikalen durch (0, 0) schneiden dies ergibt (0, a). Die Vertikale durch (b, 0) schneidet die Horizontale durch (0, a) in (b, a). Die Transversale durch (b, a) schneidet die x-achse in (a + b, 0) (siehe Figur). Multiplikation Wir multiplizieren die Punkte (a, 0) und (b, 0) wie folgt (siehe Figur): (2) (3) (, 0)(0, ) (b, 0)(0, b) (a, 0)(0, ) (ab, 0)(0, b) Das folgt aus dem Strahlensatz. Es ist dabei nicht notwendig, daß die Punkte (0, ) und (, 0) denselben Abstand vom Ursprung haben. Die Konstruktion funktioniert genauso, wenn die Skalen auf der x- und der y-achse verschieden sind. Außerdem ist es nicht notwendig, daß x- und y-achse aufeinander orthogonal stehen. Der Höhensatz Um die Quadratwurzel aus einer Zahl zu ziehen, erinnern wir uns an den Höhensatz im rechtwinkeligen Dreieck (siehe Figur): (4) h 2 = pq Der Höhensatz folgt daraus, daß Dreiecke mit denselben Winkeln dieselben Seitenverhältnisse besitzen (siehe Figur). Offenbar ist p : h = h : q, woraus die Aussage folgt. Das Ziehen der Quadratwurzel Wählt man p =, ist h = q und man kann die Quadratwurzel aus einer Strecke ziehen (siehe Figur). Man beachte, daß man für die Konstruktion von Summe und Produkt nur die Operationen Verbindungsgerade, Schnittpunkt, Parallelverschieben benötigt. Zum Quadratwurzelziehen benötigt man die Orthogonalität und einen Zirkel. Ein Beweis im Rahmen der linearen Algebra ist ein Übungsbeispiel. Für einen Beweis im Rahmen eines Axiomensystems der euklidischen Geometrie siehe etwa D. Hilbert: Grundlagen der Geometrie, 899.

5 0. Rechengesetze und geometrische Konfigurationen Die Rechengesetze, die für die Addition und die Multiplikation von reellen Zahlen gelten, können durch das konstruktive Addieren und Multiplizieren von Punkten auf der Zahlengeraden in geometrische Schließungssätze umgewandelt werden. Die untenstehenden Figuren zeigen der Reihe nach die Relationen () a + b = b + a (a b) c = a (b c) a b = b a Je nachdem, welche Konstruktion man wählt, um die Summe bzw. das Produkt zu ermitteln, ergeben sich verschiedene Schließungssätze. Meist läßt man auch Gerade, die nur Anhängsel sind, weg. Ein besonders prominenter und einfacher Satz ergibt sich aus der Relation ab = ba und lautet wie folgt: Satz. (Satz von Pappos, affine Variante) Liegen drei Punkte P, P 3, P 5 auf einer Geraden, und drei Punkte P 2, P 4, P 6 ebenfalls auf einer Geraden (der y-achse), sodaß (2) P P 2 P 4 P 5, P 2 P 3 P 5 P 6, dann ist auch (3) P 3 P 4 P 6 P. Beweis. Wir verwenden die beiden Geraden als x- und y-achse eines affinen (schiefwinkeligen) Koordinatensystems, und bezeichnen die Punkte mit P = (a, 0), P 3 = (b, 0), P 2 = (0, ), P 4 = (0, b). Wegen der Parallelitäten ist dann P 6 = (0, a) und P 5 = (ab, 0). Die letzte Parallelität folgt aus dem Strahlensatz bzw. aus der Kommutativität der Multiplikation.

1. Elementare Dreiecksgeometrie

1. Elementare Dreiecksgeometrie 1. Elementare Dreiecksgeometrie Die Menge s A1B 2 der Punkte, die von zwei Punkten A und B gleich weit entfernt sind, bilden die Streckensymmetrale der Punkte A und B. Ist A B, so ist dies eine Gerade.

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise! Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B

Mehr

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr.

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. 16 9 25 4 3 5 144 25 169 12 13 49 625 24 7 25 9 25 3 64 100 8 225 64 289 15 144 225 15 1296 225

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

GOLDENER SCHNITT UND FIBONACCI-FOLGE

GOLDENER SCHNITT UND FIBONACCI-FOLGE GOLDENER SCHNITT UND FIBONACCI-FOLGE NORA LOOSE Der Goldene Schnitt - Eine Irrationalität am Ordenssymbol der Pythagoreer Schon im 5 Jahrhundert v Chr entdeckte ein Pythagoreer eine Konsequenz der Unvollständigkeit

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2.

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2. Die Strahlensätze Ben Hambrecht Inhaltsverzeichnis 1 Zentrische Streckungen 2 2 Der 1. Strahlensatz 7 3 Der Streckfaktor 11 4 Der 2. Strahlensatz 14 5 Der 3. Strahlensatz 18 6 Die Umkehrungen der Strahlensätze

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Elementare Geometrie

Elementare Geometrie Elementare Geometrie Prof. Dr. M. Rost Übungen Blatt 1 (SS 019) 1 Abgabetermin: Donnerstag, 11. April http://www.math.uni-bielefeld.de/~rost/eg Vorbemerkung: Dies ist eine erste Nachbereitung der ersten

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

1.12 Einführung in die Vektorrechung

1.12 Einführung in die Vektorrechung . Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen Inhaltsverzeichnis Grundwissen Geometrische Abbildungen Achsensymmetrie 1 Achsensymmetrie erkennen 2 Symmetrieachsen finden (1) 3 Symmetrieachsen finden (2) 4 Symmetrieachsen finden (3) 5 Achsensymmetrische

Mehr

45. Österreichische Mathematik-Olympiade

45. Österreichische Mathematik-Olympiade 45. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfängerinnen und Anfänger 1. Juni 014 Aufgabe 1. Man bestimme alle Lösungen der Gleichung a = b (b + 7) mit ganzen Zahlen a 0 und b 0. W.

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur mit weiteren Erläuterungen in der Veranstaltung genutzt werden. Fehler sind

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

1 Angeordnete Körper und Anordnung

1 Angeordnete Körper und Anordnung 1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem

Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler Problem Die Kraft der Geometrie oder Eine geometrische Lösung zum Baseler roblem von Reimund Albers, Bremen Im Baseler roblem geht es um die Summe der reziproken Quadrate, also + + 2 3 + 2 4 + +..., und ein exaktes

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehhren zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehhren zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehhren zur Menge der natürlichen Zahlen? Schreibe ist ein Element der Menge der natürlichen Zahlen in Symbolschreibweise. Zeichne die Zahlen, und

Mehr

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am

zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden

Mehr

Qualiaufgaben Konstruktionen

Qualiaufgaben Konstruktionen Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der

Mehr

4 Das Vollständigkeitsaxiom und irrationale Zahlen

4 Das Vollständigkeitsaxiom und irrationale Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten

Mehr

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung Vektorrechnung als Teil der Linearen Algebra - Einleitung www.mathebaustelle.de. Einführungsbeispiel Archäologen untersuchen eine neu entdeckte Grabanlage aus der ägyptischen Frühgeschichte. Damit jeder

Mehr

Der Satz des Pythagoras. Kein Darwinscher Zufall

Der Satz des Pythagoras. Kein Darwinscher Zufall Der Satz des Pythagoras. Kein Darwinscher Zufall Detlef Dürr duerr@rz.mathematik.uni-muenchen.de 1. Mai 2012 1 Zahlen-Verhältnisse Die Grunderkenntnis der Gesetzmäßigkeit in der Natur ist Harmonie. Heute

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

Abbildung 1.4: Strecken abtragen

Abbildung 1.4: Strecken abtragen 1.1 Vom Geodreieck zum Axiomensystem 15 (II/4*) Von drei verschiedenen Punkten einer Geraden liegt mindestens einer zwischen den beiden anderen. Nun sind wir in der Lage, den Begriff Strecke wie folgt

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Geometrie Strecke, Gerade, Halbgerade

Geometrie Strecke, Gerade, Halbgerade Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Übungsblatt 1. Gruppenübungen

Übungsblatt 1. Gruppenübungen Übungsblatt Gruppenübungen Diese Übungen sollen direkt in der Übungsgruppe in der Woche vom 5.0. bis 9.0. bearbeitet und besprochen werden. Bitte bringen Sie dazu Zirkel und Lineal mit. G Die folgende

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Schulmathematik Geometrie und Vektorrechnung Blatt 1

Schulmathematik Geometrie und Vektorrechnung Blatt 1 Hans HUMENBERGER WS 05/6 Blatt Aufg.. a) Finden Sie eine Aufgabe aus einem Schulbuch der 5. Klasse, in der es um das Aufstellen, Interpretieren, Berechnen von Vektortermen (Addition, Subtraktion, Multiplikation

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

Geometrie für den Mathematikunterricht. Unterlagen

Geometrie für den Mathematikunterricht. Unterlagen Geometrie für den Mathematikunterricht Unterlagen Proseminar Wintersemester 2003/2004 (LVA Nr. 113.071) J. Wallner, Institut für Diskrete Mathematik und Geometrie, TU Wien 1 Inhaltsverzeichnis Elementare

Mehr

Klausur zur Vorlesung Elementargeometrie

Klausur zur Vorlesung Elementargeometrie Klausur zur Vorlesung Elementargeometrie 08.08.2012 Prof. Klaus Mohnke und Mitarbeiter Nachname, Vorname: Matrikelnummer: Bitte unterschreiben Sie hier bei der Abgabe: Zum Bearbeiten der Klausur haben

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

4.18 Buch IV der Elemente

4.18 Buch IV der Elemente 4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen

Mehr

Skriptum Konstruierbare Zahlen. Projekttage Mathematik 2007

Skriptum Konstruierbare Zahlen. Projekttage Mathematik 2007 Skriptum Konstruierbare Zahlen Projekttage Mathematik 007 c Florian Stefan und Stefan Englert Würzburg, 007 Konstruktion mit Zirkel und Lineal Gegeben sei eine Menge M von Punkten in der Zeichenebene Dann

Mehr

Ein Problem der Dreiecksspiegelung

Ein Problem der Dreiecksspiegelung Ein Problem der Dreiecksspiegelung Tobias Schoel 10. Februar 2008 1 Die Dreiecksspiegelung 1.1 Spiegelung eines Punktes Es sei ein Dreieck ABC mit den Seiten BC = a, AC = b und AB = c gegeben und P sei

Mehr

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade

ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :

B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen : Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

30. Satz des Apollonius I

30. Satz des Apollonius I 30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des

Mehr

Geometrie Strecke, Gerade, Halbgerade

Geometrie Strecke, Gerade, Halbgerade Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5). Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: 4x y +u 3v = 3x u + v =0 x +3y u +v =0. Sagen Sie

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13 Aufgabe 1 Sei M eine Menge von in einem Dreieck verlaufenden Strecken, über die Folgendes vorausgesetzt wird: Die Kanten

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

Elementare Geometrie - Die Gerade & das Dreieck Teil I

Elementare Geometrie - Die Gerade & das Dreieck Teil I Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Die Gerade & das Dreieck Teil I Eingereicht von: Alexandra Kopp 178294 alexandra.kopp@tu-dortmund.de Eingereicht bei: Prof.

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2.

Basis Dreieck 2. x = = y. 14 = y. x = = y. x = x = 28. x = 45. x = x = = 2.1+x y = 2. 3.6 m 1.69 m 6 m 1.69 m Seiten 9 / 10 / 11 1 Vorbemerkung: Alle abgebildeten Dreiecke sind ähnlich (weil sie lauter gleiche Winkel haben). Also gilt jeweils: 2 kurze Seite Dreieck 1 kurze Seite Dreieck

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:

Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen: Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr