Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Größe: px
Ab Seite anzeigen:

Download "Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes"

Transkript

1 Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes Wetter voraus; die Trefferquote liegt für die Voraussage schön bei 80% und für die Voraussage schlecht bei 90 %. (a) Wieviel % schöne Tage gibt es? (b) Trotz schönen Wetters ist Kumpel K nicht zum verabredeten Fallschirmsprung erscheinen mit dem Hinweis, der gestrige Wetterbericht wäre schlecht gewesen, so dass er anders disponierte. Mit welcher Wahrscheinlichkeit war dies bei Unkenntnis des gestrigen Wetterberichts nur eine Ausrede? Lösungsvorschlag zu Aufgabe 1: Wetterbericht (a) Allgemein gilt: Falls n Ereignisse A i paarweise disjunkt sind (sich gegenseitig ausschließen) und zusammen das sichere Ereignis bilden, kann man aus den bedingten Wahrscheinlichkeiten P(B A i ) für ein Ereignis B die (unbedingte) totale Wahrscheinlichkeit P(B) einfach ermitteln (Herleitung siehe Vorlesung): P(B) = n P(B A i )P(A i ) i=1 Hier: B: morgen ist schönes Wetter A 1 : Der Wetterbericht ist schön A 2 : Der Wetterbericht ist schlecht (Klar: Es gilt A 1 A 2 = ) Also: P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) = (1 0.9) = 0.52 = 52%. Hier wurde P(B A 2 ) = 1 P(B, A 2 ) = Thema: Satz von Bayes, Seite 1

2 verwendet mit P(B, A 2 ) der Wahrscheinlichkeit schlechten Wetters bei schlechter Voraussage. Da die totale Wahrscheinlichkeit P(B) eine unbedingte Wahrscheinlichkeit ist, hängt sie gar nicht vom Wetterbericht des Vortags ab und gilt damit für alle Tage (falls die Homogenitätsvoraussetzung erfüllt ist, d.h. der Wetterbericht nicht z.b. im Winter bessere Voraussagen macht als im Sommer). (b) Heute sei schönes Wetter. Mit welcher Wahrscheinlichkeit lautete der gestrige Wetterbericht schön? Ausgangspunkt ist das Theorem von Bayes: P(A i B) = P(B A i)p(a i ) P(B) Mit ihm lässt sich aus den vor Durchführung des Zufallsexperiments geltenden A priori-wahrscheinlichkeiten P(A i ) sowie der bedingten Wahrscheinlichkeiten P(B A i ) die nach Durchführung des Experiments geltenden Wahrscheinlichkeiten P(A i B) ( A posteriori-wahrscheinlichkeiten ) bestimmen. Anders ausgedrückt: Kennt also nur das Ergebnis, nicht aber, welche von sich voneinander aussschließenden Ursachen das Ergebnis bewirkt hat, so kann mit Bayes die Wahrscheinlichkeit für das Vorhandensein der diversen Ursachen ermittelt werden. Medizin! (A i = Krankeiten, B = festgestelltes Symptom) Hier: Gesucht: Gegeben: P(A 1 ) B) = P(gestern schöner Wetterbericht bei heute schönem Wetter). P(B) = 0.52 Totale Wahrscheinlichkeit schöner Tage, P(A 1 ) = 0.6 Wahrscheinlichleit für gute Wettervoraussage P(B A 1 ) Wahrscheinlichkeit schönen Wetters bei guter Voraussage Also P(A 1 ) B) = P(B A 1)P(A 1 ) P(B) = = 0.92 Zu 92% war es also eine faule Ausrede. Thema: Satz von Bayes, Seite 2

3 Anschauliche Lösung mit Wahrscheinlichkeitsbaum Zeit Wetterbericht schön schlecht Wetter schön Wetter schlecht 48% 12% Wetter schön Wetter schlecht 4% 36% Aufgabe 2: Aids Im Mittel sind in der untersuchten Gegend einer von Männern an Aids erkrankt. Der Aids-test erkennt mit einer Wahrscheinlichkeit von 99.99% Kranke und Gesunde richtig. Wie hoch ist bei einem positiven Befund die Wahrscheinlichkeit, Aids zu haben? (Lösung: 50%) Lösungsvorschlag zu Aufgabe 2: Aids Zeit untersuchte Männer 0.01% 99.99% hat Aids 1 bzw. 0.01% hat kein Aids 9999 bzw % 0.01% 99.99% 99.99% 0.01% Diagnose: kein Aids Diagnose: Aids Diagnose: kein Aids Diagnose: Aids Thema: Satz von Bayes, Seite 3

4 Aufgabe 3: Schwarzfahrer In Dresden wird im Mittel zu 10% Schwarzgefahren. 70% der Schwarzfahrer haben keine Fahrkarte, während die anderen 30% gefälschte oder illegal besorgte Karten besitzen. Von den ehrlichen Fahrgästen haben im Mittel 5% ihre Fahrkarte vegessen. Mit welcher Wahrscheinlichkeit ist ein kontrollierter Fahrgast, der keine Karte vorzeigen kann, ein Schwarzfahrer? (Lösung: 7/11.5=61%) Lösungsvorschlag zu Aufgabe 3: Schwarzfahrer Aus der Aufgabe ergeben sich die folgenden Wahrscheinlichkeiten: P(S = Schwarzfahrer) = 1 10, P(K = keine Karte S) = 7 10, P(F = falsche Karte S) = 3 10, P(K E = ehrliche Fahrgäste) = Uns interessiert das Ereignis P(Schwarzfahrer keine Karte), was sich nach Bayes auch ausdrücken lässt als P(K S) P(S) P(S K) =. (1) P(K) Wir brauchen dafür P(K), also die totale Wahrscheinlichkeit über die disjunkte Zerlegung der ehrlichen Fahrgäste und der Schwarzfahrer: P(K) = P(K E)P(E) + P(K S)P(S) = = 0.115, (2) so dass sich als Ergebnis ergibt P(S K) = %. (3) Thema: Satz von Bayes, Seite 4

5 Zeit Kontrollierte Fahgäste ehrlich Schwarzfahrer Karte 86.5% Keine Karte 4.5% Karte Keine Karte 3% 7% Aufgabe 4: Disco oder: Ein Standardproblem für Heranwachsende Es sei eine Disco mit 4 Floors gegeben und die Flamme ist an einem beliebig herausgegriffenen Tag mit Wahrscheinlichkeit p in der Disco, d.h. in einen der 4 Floors. Der Typ hat null Peil über den Musikgeschmack seiner Flamme und fragt sich nach vergeblicher Suche in 3 der Floors, mit welcher Wahrscheinlichkeit w er sie im letzten Floor doch noch trifft. Berechnen Sie w. Für welchen Wert von p trifft er sie auf jeden Fall im 4. Floor? Und: Für welches p ist die Chance zumindest bei 50%? Lösungsvorschlag zu Aufgabe 4: Disco Lösung mit dem Satz von Bayes lautet w = 1 4 p 3 Für p 1 ergibt sich w 1. Also für p = 1 ist die Flamme im letzten Floor anzutreffen. Weiterhin ergibt sich w! = 0.5 p = 4 5. (4) Nun zu der Herleitung mit Satz von Bayes: Wir definieren die Ereignisse A= Flamme in Disco mit P(A) = p B= Flamme in den ersten 3 Floors getroffen Thema: Satz von Bayes, Seite 5

6 Wegen der fehlenden Ahnung vom Musikgeschmack gelten fürderhin die bedingten Wahrscheinlichkeiten und natürlich P(B A) = 3/4, P( B A) = 1/4 P(B Ā) = 0. (Wenn nicht in Disco, dann auch nicht auf einen der ersten drei Floors). Daraus ergibt sich sofort auch das komplementäre Ereignis P( B Ā) = 1. Die totale Wahrscheinlichkeit ist P( B) = P(A)P( B A) + P(Ā)P( B Ā) = p + (1 p). (5) 4 Gesucht ist die bedingte Wahrscheinlichkeit Aus dem Multiplikationssatz der Wahrscheinlichkeiten ergibt sich der Satz von Bayes w = P(A B). (6) P(A B) = P(A)P(B A) = P(B)P(A B) P(A B) = P(B A)P(A) P(B) (7) und damit w = P( B A)P(A) P( B) = 1 q.e.d. (8) 3, 4 p Lösungsvorschlag zu Aufgabe 4a: Lösung über Elementarereignisse Die Elementarereignisse sind: A 0 : Freundin nicht in Disko A i : Freundin in Raum i 1, 2, 3, 4. Offenbar sind alle komplementär. Wir sind interessiert an dem Ereignis A = A 4. Weiterhin gibt für das Ereignis aus dem vorigen Abschnitt B = A 1 A 2 A 3 = A 0 A 4. Damit ergibt sich P(A B) = = P(A B) P(B) P(A 4 ) P(A 0 ) + P(A 4 ) = = P(A 4 (A 4 A 0 )) P(A 0 A 4 ) p 4 1 p + p 4 = 1 4 p 3. Thema: Satz von Bayes, Seite 6

7 Aufgabe 5: Krankheit Eine Krankheit kommt bei ca. 5% der Bevölkerung vor. Ein Test zur Erkennung der Krankheit führt bei 99% der Kranken zu einer Reaktion, aber auch bei 2% der Gesunden. Wie groß ist die Wahrscheinlichkeit, dass eine Person, bei der die Reaktion eintritt, die Krankheit wirklich hat? Lösungsvorschlag zu Aufgabe 5: Krankheit Zum Selbermachen... Aufgabe 6: Mit dem LKW in die Türkei Eine Speditionsfirma transportiert unter anderem Maschinenteile von Deutschland in die Türkei (Wegstrecke: 4000 km). Da eine verzögerte Lieferung mit hohen Konventionalstrafen verbunden ist, ist vor jedem dieser Transporte eine Inspektion des LKW vorgesehen, die jedoch von den Fahrern aus Bequemlichkeit in 20% der Fälle nicht durchgeführt wird. Ohne Inspektion erleidet der LKW pro 1000 gefahrene km mit 3% Wahrscheinlichkeit eine Panne, die zu einer unzulässigen Verzögerung führt, mit Inspektion nur mit 0,5%. (a) Wie groß ist die Wahrscheinlichkeit mindestens einer Panne auf der 4000 km langen Strecke ohne und mit Inspektion? (b) Mit welcher Wahrscheinlichkeit hat ein auf der Strecke liegengebliebener Fahrer die Inspektion nicht durchgeführt? Hinweis: Berechnen Sie zunächst die mittlere Pannenwahrscheinlichkeit durch entsprechende Gewichtung der in (a) berechneten Wahrscheinlichkeiten (Lösung: 3,88%) und wenden Sie dann den Satz von Bayes an! (c) Neben Pannen gibt es mit P(D) = 1% Wahrscheinlichkeit andere Gründe, die zu unzulässigen Verzögerungen führen wie z.b. Zoll oder Verkehrsstaus. Mit welcher Wahrscheinlichkeit kommen die Maschinenteile verspätet an? Lösungsvorschlag zu Aufgabe 6: Mit dem LKW in die Türkei Pannenwahrscheinlichkeit: Es seien folgende Ereignisse definiert: A: Inspektion wurde durchgeführt B: Es gab mindestens eine Panne auf der Fahrt in die Türkei C: Es gab mindestens eine Panne auf 1000 km Fahrt Bekannt ist die unbedingte (totale) Wahrscheinlichkeit P(A) = 0.8, sowie die bedingten Wahrscheinlichkeiten P(C A) = Pannenwahrscheinlichkeit pro 1000 km bei durchgeführter Inspektion P(C Ā) = 0.03 Pannenwahrscheinlichkeit pro 1000 km, falls die Inspektion nicht durchgeführt wurde Thema: Satz von Bayes, Seite 7

8 Da die Pannenwahrscheinlichkeit nicht vom Streckenabschnitt bzw. von schon erlittenen Pannen abhängt, gilt für die Wahrscheinlichkeit, mit (A) oder ohne (Ā) Inspektion keine Panne zu erleiden: P( B A) = (1 P(C A)) 4 = ( ) 4 bzw. P( B Ā) = (1 P(C Ā))4 = (1 0.03) 4 Damit ergibt sich für die Wahrscheinlichkeiten, mindestens eine Panne zu erleiden: P(B A) = 1 P( B A) = 1 ( ) 4 = 1.985%, P(B Ā) = 1 P( B Ā) = 1 (1 0.03)4 = 11.47% Inspektionswahrscheinlichkeit: Unbedingte (totale) Wahrscheinlichkeit P(B): P(B) = k P(B A k )P(A k ) = P(B A)P(A) + P(B Ā)P(Ā) = Hier wurde A 1 = A und A 2 = Ā gesetzt. Die gesuchte Wahrscheinlichkeit P(Ā B) ergibt sich mit dem Satz von Bayes (mit A k = A 2 = Ā): P(B Ā)P(Ā) P(Ā B) = = = 0.59 P(B) Während die a-priori-wahrscheinlichkeit, keine Inspektion durchgeführt zu haben, nur P(Ā) = 0.2 beträgt, steigt sie auf P(Ā B) = 59%, wenn man die zusätzliche Information hat, dass eine Panne vorliegt. Verspätungswahrcheinlichkeit Sei Ereignis D: Sonsiger Grund für Verspätung. Dann gilt für Ereignis E = D B: Machinenteile kommen verspätet an bei Unabhängigkeit der sonstigen Ursachen wie Zoll etc. von den Pannen: P(E) = P(D B) DeMorgan = 1 P( D Unabhh. B) = 1 P( D)P( B) = = 4.84% Thema: Satz von Bayes, Seite 8

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist?

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist? Aufgabe 43 Ein Kraftfahrzeughändler weiß aus langjähriger Erfahrung, dass bei den in Zahlung genommenen Wagen 50% Mängel am Motor, 70% an der Karosserie und 30% an Motor und Karosserie aufweisen. Wie groß

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Internetkommunikation I WS 2004/05 Rafael Birkner

Internetkommunikation I WS 2004/05 Rafael Birkner Vortrag zum Thema: Bayes'sche Filter zur SPAM-Erkennung 1. Bayes'sche Filter: Eigenschaften - englischer Mathematiker Thomas Bayes (1702 1761) - state of the art Technologie zur Bekämpfung von Spam - adaptive

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen.

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen. 6 Vierfeldertafel An einer Prüfung nehmen 100 Studenten teil, von denen 40 als Raucher bekannt sind. 65 Studenten haben die Prüfung. Von den Nichtrauchern haben 50 die Prüfung. Wie groß ist der Anteil

Mehr

Abitur 2012 Mathematik GK Stochastik Aufgabe C1

Abitur 2012 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2012 Mathematik GK Stochastik Aufgabe C1 nter einem Regentag verstehen Meteorologen einen Tag, an dem mehr als ein Liter Niederschlag pro Quadratmeter gefallen

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006 Übungsrunde 4, Gruppe 2 LVA 107.369, Übungsrunde 4, Gruppe 2, 07.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 10/2006 1 17 1.1 Angabe Ein Parallelsystem funktioniert, wenn wenigstens eine seiner

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Das Bayes-Theorem Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Ein lahmer Witz Heute im Angebot: Ein praktisches Beispiel zur Einleitung Kurze Wiederholung der Überblick über Reverend

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Stochastik. Bedingte Wahrscheinlichkeiten INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. www.mathe-cd.de. Neues Manuskript. Datei Nummer 32111

Stochastik. Bedingte Wahrscheinlichkeiten INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. www.mathe-cd.de. Neues Manuskript. Datei Nummer 32111 Stochastik Bedingte Wahrscheinlichkeiten Neues anuskript Datei Nummer Stand 9. uni 008 INTERNETBIBIOTHEK FÜR SCHUTHETIK Inhalt Definitionen und Hinführung Einführungsbeispiel: Karten ziehen Bedingte Wahrscheinlichkeit

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik Knut Bartels / Hans Gerhard Strohe Arbeitsblätter zur Vorlesung im Wintersemester 2005/06 Induktive Statistik Dies ist kein Vorlesungsskript Wirtschafts- und Sozialwissenschaftliche Fakultät Lehrstuhl

Mehr

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt 1 STATISTISCHE KRANKHEITSTESTS 18.11.2008 Simon Schimpf und Nico Schmitt Gliederung 2 Hintergrund des Themas (worum geht es Voraussetzungen Lernziele Die intuitive Herangehensweise ohne Satz von Bayes

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

bedingte Wahrscheinlichkeit

bedingte Wahrscheinlichkeit bedingte Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von 10

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Rechnen

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN Beispiel: Wenn zwei Röhren gleichzeitig geöffnet sind, kann ein Wasserbecken in 40 Minuten gefüllt werden. Fließt das Wasser

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist

Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Wissenschaftler der israelischen Ben-Gurion-Universität sind der Frage nachgegangen, ob die Attraktivität eines

Mehr

Lösungshinweise zu Kapitel 13

Lösungshinweise zu Kapitel 13 L-112 Lösungshinweise zu Kapitel 13 zu Selbsttestaufgabe 13.2 (Eigenschaften der bedingten Unabhängigkeit) Sei P eine Wahrscheinlichkeitsverteilung über V. Wir setzen im Folgenden stillschweigend voraus,

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

6WDWHPHQW 3URIHVVRU'U-RFKHQ7DXSLW],QVWLWXWI U'HXWVFKHV(XURSlLVFKHVXQG,QWHUQDWLRQDOHV 0HGL]LQUHFKW*HVXQGKHLWVUHFKWXQG%LRHWKLN 8QLYHUVLWlWHQ+HLGHOEHUJXQG0DQQKHLP 6FKORVV 0DQQKHLP )D[ (0DLOWDXSLW]#MXUDXQLPDQQKHLPGH

Mehr

10 Bedingte Wahrscheinlichkeit

10 Bedingte Wahrscheinlichkeit 10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu

Mehr

Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance

Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance Immer an Ihrer Seite das kann jedem passieren Sie fahren durch eine unbekannte Stadt, ein Kreisverkehr nach dem anderen, und dann kommt

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 9 Aufgabe 1 Probabilistische Inferenz (30 Punkte) In einer medizinischen Studie wurden die Auswirkungen von Metastasen bildenden Karzinomen untersucht. Dabei wurde folgendes festgestellt: Bei

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015)

ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015) ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015) Zur leichteren Lesbarkeit wurde die männliche Form personenbezogener Hauptwörter

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

1. Richtig oder falsch? R F

1. Richtig oder falsch? R F FRANZ KAFKA: GIB S AUF! 1 Es war sehr früh am Morgen, die Straßen rein und leer, ich ging zum Bahnhof. Als ich eine Turmuhr mit meiner Uhr verglich 1, sah ich, dass es schon viel später war, als ich geglaubt

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur "Finanzmanagement" 14. März 2002

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur Finanzmanagement 14. März 2002 1 Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung Klausur "Finanzmanagement" 14. März 2002 Bearbeitungshinweise: - Die Gesamtbearbeitungsdauer beträgt 60 Minuten. - Schildern Sie ihren

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Bedingte Wahrscheinlichkeiten. Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten. Bedingte Wahrscheinlichkeiten Folie I - 9-1 Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten A) Definition, Multiplikationssatz A) Definition, Multiplikationssatz B) Hilfsmittel für systematische Lösungen: Venn-Diagramm,

Mehr

Der Weg zum Führerschein

Der Weg zum Führerschein Der Weg zum Führerschein Für Menschen mit Behinderungen Stand: Dezember 2004 Seite 1 von 6 Autofahren trotz Behinderung Der Weg zum Führerschein Oftmals stehen die Betroffenen relativ hilflos vor der großen

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl

REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl 1 von 8 REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl Zusammenfassung: Der Referenzbereich eines Laborwerts beschreibt meist den Bereich, in dem 95%

Mehr

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt?

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Behandelte Fragestellungen Was besagt eine Fehlerquote? Welche Bezugsgröße ist geeignet? Welche Fehlerquote ist gerade noch zulässig? Wie stellt

Mehr

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert)

Kaufhaus-Aufgabe. aus Abiturprüfung Bayern LK (abgeändert) Kaufhaus-Aufgabe aus Abiturprüfung Bayern LK (abgeändert) 5. a) Ein Kunde eines Kaufhauses benutzt mit einer Wahrscheinlichkeit von 75% die hauseigene Tiefgarage. Mit einer Wahrscheinlichkeit von 40% bleibt

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr