Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Größe: px
Ab Seite anzeigen:

Download "Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes"

Transkript

1 Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes Wetter voraus; die Trefferquote liegt für die Voraussage schön bei 80% und für die Voraussage schlecht bei 90 %. (a) Wieviel % schöne Tage gibt es? (b) Trotz schönen Wetters ist Kumpel K nicht zum verabredeten Fallschirmsprung erscheinen mit dem Hinweis, der gestrige Wetterbericht wäre schlecht gewesen, so dass er anders disponierte. Mit welcher Wahrscheinlichkeit war dies bei Unkenntnis des gestrigen Wetterberichts nur eine Ausrede? Lösungsvorschlag zu Aufgabe 1: Wetterbericht (a) Allgemein gilt: Falls n Ereignisse A i paarweise disjunkt sind (sich gegenseitig ausschließen) und zusammen das sichere Ereignis bilden, kann man aus den bedingten Wahrscheinlichkeiten P(B A i ) für ein Ereignis B die (unbedingte) totale Wahrscheinlichkeit P(B) einfach ermitteln (Herleitung siehe Vorlesung): P(B) = n P(B A i )P(A i ) i=1 Hier: B: morgen ist schönes Wetter A 1 : Der Wetterbericht ist schön A 2 : Der Wetterbericht ist schlecht (Klar: Es gilt A 1 A 2 = ) Also: P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) = (1 0.9) = 0.52 = 52%. Hier wurde P(B A 2 ) = 1 P(B, A 2 ) = Thema: Satz von Bayes, Seite 1

2 verwendet mit P(B, A 2 ) der Wahrscheinlichkeit schlechten Wetters bei schlechter Voraussage. Da die totale Wahrscheinlichkeit P(B) eine unbedingte Wahrscheinlichkeit ist, hängt sie gar nicht vom Wetterbericht des Vortags ab und gilt damit für alle Tage (falls die Homogenitätsvoraussetzung erfüllt ist, d.h. der Wetterbericht nicht z.b. im Winter bessere Voraussagen macht als im Sommer). (b) Heute sei schönes Wetter. Mit welcher Wahrscheinlichkeit lautete der gestrige Wetterbericht schön? Ausgangspunkt ist das Theorem von Bayes: P(A i B) = P(B A i)p(a i ) P(B) Mit ihm lässt sich aus den vor Durchführung des Zufallsexperiments geltenden A priori-wahrscheinlichkeiten P(A i ) sowie der bedingten Wahrscheinlichkeiten P(B A i ) die nach Durchführung des Experiments geltenden Wahrscheinlichkeiten P(A i B) ( A posteriori-wahrscheinlichkeiten ) bestimmen. Anders ausgedrückt: Kennt also nur das Ergebnis, nicht aber, welche von sich voneinander aussschließenden Ursachen das Ergebnis bewirkt hat, so kann mit Bayes die Wahrscheinlichkeit für das Vorhandensein der diversen Ursachen ermittelt werden. Medizin! (A i = Krankeiten, B = festgestelltes Symptom) Hier: Gesucht: Gegeben: P(A 1 ) B) = P(gestern schöner Wetterbericht bei heute schönem Wetter). P(B) = 0.52 Totale Wahrscheinlichkeit schöner Tage, P(A 1 ) = 0.6 Wahrscheinlichleit für gute Wettervoraussage P(B A 1 ) Wahrscheinlichkeit schönen Wetters bei guter Voraussage Also P(A 1 ) B) = P(B A 1)P(A 1 ) P(B) = = 0.92 Zu 92% war es also eine faule Ausrede. Thema: Satz von Bayes, Seite 2

3 Anschauliche Lösung mit Wahrscheinlichkeitsbaum Zeit Wetterbericht schön schlecht Wetter schön Wetter schlecht 48% 12% Wetter schön Wetter schlecht 4% 36% Aufgabe 2: Aids Im Mittel sind in der untersuchten Gegend einer von Männern an Aids erkrankt. Der Aids-test erkennt mit einer Wahrscheinlichkeit von 99.99% Kranke und Gesunde richtig. Wie hoch ist bei einem positiven Befund die Wahrscheinlichkeit, Aids zu haben? (Lösung: 50%) Lösungsvorschlag zu Aufgabe 2: Aids Zeit untersuchte Männer 0.01% 99.99% hat Aids 1 bzw. 0.01% hat kein Aids 9999 bzw % 0.01% 99.99% 99.99% 0.01% Diagnose: kein Aids Diagnose: Aids Diagnose: kein Aids Diagnose: Aids Thema: Satz von Bayes, Seite 3

4 Aufgabe 3: Schwarzfahrer In Dresden wird im Mittel zu 10% Schwarzgefahren. 70% der Schwarzfahrer haben keine Fahrkarte, während die anderen 30% gefälschte oder illegal besorgte Karten besitzen. Von den ehrlichen Fahrgästen haben im Mittel 5% ihre Fahrkarte vegessen. Mit welcher Wahrscheinlichkeit ist ein kontrollierter Fahrgast, der keine Karte vorzeigen kann, ein Schwarzfahrer? (Lösung: 7/11.5=61%) Lösungsvorschlag zu Aufgabe 3: Schwarzfahrer Aus der Aufgabe ergeben sich die folgenden Wahrscheinlichkeiten: P(S = Schwarzfahrer) = 1 10, P(K = keine Karte S) = 7 10, P(F = falsche Karte S) = 3 10, P(K E = ehrliche Fahrgäste) = Uns interessiert das Ereignis P(Schwarzfahrer keine Karte), was sich nach Bayes auch ausdrücken lässt als P(K S) P(S) P(S K) =. (1) P(K) Wir brauchen dafür P(K), also die totale Wahrscheinlichkeit über die disjunkte Zerlegung der ehrlichen Fahrgäste und der Schwarzfahrer: P(K) = P(K E)P(E) + P(K S)P(S) = = 0.115, (2) so dass sich als Ergebnis ergibt P(S K) = %. (3) Thema: Satz von Bayes, Seite 4

5 Zeit Kontrollierte Fahgäste ehrlich Schwarzfahrer Karte 86.5% Keine Karte 4.5% Karte Keine Karte 3% 7% Aufgabe 4: Disco oder: Ein Standardproblem für Heranwachsende Es sei eine Disco mit 4 Floors gegeben und die Flamme ist an einem beliebig herausgegriffenen Tag mit Wahrscheinlichkeit p in der Disco, d.h. in einen der 4 Floors. Der Typ hat null Peil über den Musikgeschmack seiner Flamme und fragt sich nach vergeblicher Suche in 3 der Floors, mit welcher Wahrscheinlichkeit w er sie im letzten Floor doch noch trifft. Berechnen Sie w. Für welchen Wert von p trifft er sie auf jeden Fall im 4. Floor? Und: Für welches p ist die Chance zumindest bei 50%? Lösungsvorschlag zu Aufgabe 4: Disco Lösung mit dem Satz von Bayes lautet w = 1 4 p 3 Für p 1 ergibt sich w 1. Also für p = 1 ist die Flamme im letzten Floor anzutreffen. Weiterhin ergibt sich w! = 0.5 p = 4 5. (4) Nun zu der Herleitung mit Satz von Bayes: Wir definieren die Ereignisse A= Flamme in Disco mit P(A) = p B= Flamme in den ersten 3 Floors getroffen Thema: Satz von Bayes, Seite 5

6 Wegen der fehlenden Ahnung vom Musikgeschmack gelten fürderhin die bedingten Wahrscheinlichkeiten und natürlich P(B A) = 3/4, P( B A) = 1/4 P(B Ā) = 0. (Wenn nicht in Disco, dann auch nicht auf einen der ersten drei Floors). Daraus ergibt sich sofort auch das komplementäre Ereignis P( B Ā) = 1. Die totale Wahrscheinlichkeit ist P( B) = P(A)P( B A) + P(Ā)P( B Ā) = p + (1 p). (5) 4 Gesucht ist die bedingte Wahrscheinlichkeit Aus dem Multiplikationssatz der Wahrscheinlichkeiten ergibt sich der Satz von Bayes w = P(A B). (6) P(A B) = P(A)P(B A) = P(B)P(A B) P(A B) = P(B A)P(A) P(B) (7) und damit w = P( B A)P(A) P( B) = 1 q.e.d. (8) 3, 4 p Lösungsvorschlag zu Aufgabe 4a: Lösung über Elementarereignisse Die Elementarereignisse sind: A 0 : Freundin nicht in Disko A i : Freundin in Raum i 1, 2, 3, 4. Offenbar sind alle komplementär. Wir sind interessiert an dem Ereignis A = A 4. Weiterhin gibt für das Ereignis aus dem vorigen Abschnitt B = A 1 A 2 A 3 = A 0 A 4. Damit ergibt sich P(A B) = = P(A B) P(B) P(A 4 ) P(A 0 ) + P(A 4 ) = = P(A 4 (A 4 A 0 )) P(A 0 A 4 ) p 4 1 p + p 4 = 1 4 p 3. Thema: Satz von Bayes, Seite 6

7 Aufgabe 5: Krankheit Eine Krankheit kommt bei ca. 5% der Bevölkerung vor. Ein Test zur Erkennung der Krankheit führt bei 99% der Kranken zu einer Reaktion, aber auch bei 2% der Gesunden. Wie groß ist die Wahrscheinlichkeit, dass eine Person, bei der die Reaktion eintritt, die Krankheit wirklich hat? Lösungsvorschlag zu Aufgabe 5: Krankheit Zum Selbermachen... Aufgabe 6: Mit dem LKW in die Türkei Eine Speditionsfirma transportiert unter anderem Maschinenteile von Deutschland in die Türkei (Wegstrecke: 4000 km). Da eine verzögerte Lieferung mit hohen Konventionalstrafen verbunden ist, ist vor jedem dieser Transporte eine Inspektion des LKW vorgesehen, die jedoch von den Fahrern aus Bequemlichkeit in 20% der Fälle nicht durchgeführt wird. Ohne Inspektion erleidet der LKW pro 1000 gefahrene km mit 3% Wahrscheinlichkeit eine Panne, die zu einer unzulässigen Verzögerung führt, mit Inspektion nur mit 0,5%. (a) Wie groß ist die Wahrscheinlichkeit mindestens einer Panne auf der 4000 km langen Strecke ohne und mit Inspektion? (b) Mit welcher Wahrscheinlichkeit hat ein auf der Strecke liegengebliebener Fahrer die Inspektion nicht durchgeführt? Hinweis: Berechnen Sie zunächst die mittlere Pannenwahrscheinlichkeit durch entsprechende Gewichtung der in (a) berechneten Wahrscheinlichkeiten (Lösung: 3,88%) und wenden Sie dann den Satz von Bayes an! (c) Neben Pannen gibt es mit P(D) = 1% Wahrscheinlichkeit andere Gründe, die zu unzulässigen Verzögerungen führen wie z.b. Zoll oder Verkehrsstaus. Mit welcher Wahrscheinlichkeit kommen die Maschinenteile verspätet an? Lösungsvorschlag zu Aufgabe 6: Mit dem LKW in die Türkei Pannenwahrscheinlichkeit: Es seien folgende Ereignisse definiert: A: Inspektion wurde durchgeführt B: Es gab mindestens eine Panne auf der Fahrt in die Türkei C: Es gab mindestens eine Panne auf 1000 km Fahrt Bekannt ist die unbedingte (totale) Wahrscheinlichkeit P(A) = 0.8, sowie die bedingten Wahrscheinlichkeiten P(C A) = Pannenwahrscheinlichkeit pro 1000 km bei durchgeführter Inspektion P(C Ā) = 0.03 Pannenwahrscheinlichkeit pro 1000 km, falls die Inspektion nicht durchgeführt wurde Thema: Satz von Bayes, Seite 7

8 Da die Pannenwahrscheinlichkeit nicht vom Streckenabschnitt bzw. von schon erlittenen Pannen abhängt, gilt für die Wahrscheinlichkeit, mit (A) oder ohne (Ā) Inspektion keine Panne zu erleiden: P( B A) = (1 P(C A)) 4 = ( ) 4 bzw. P( B Ā) = (1 P(C Ā))4 = (1 0.03) 4 Damit ergibt sich für die Wahrscheinlichkeiten, mindestens eine Panne zu erleiden: P(B A) = 1 P( B A) = 1 ( ) 4 = 1.985%, P(B Ā) = 1 P( B Ā) = 1 (1 0.03)4 = 11.47% Inspektionswahrscheinlichkeit: Unbedingte (totale) Wahrscheinlichkeit P(B): P(B) = k P(B A k )P(A k ) = P(B A)P(A) + P(B Ā)P(Ā) = Hier wurde A 1 = A und A 2 = Ā gesetzt. Die gesuchte Wahrscheinlichkeit P(Ā B) ergibt sich mit dem Satz von Bayes (mit A k = A 2 = Ā): P(B Ā)P(Ā) P(Ā B) = = = 0.59 P(B) Während die a-priori-wahrscheinlichkeit, keine Inspektion durchgeführt zu haben, nur P(Ā) = 0.2 beträgt, steigt sie auf P(Ā B) = 59%, wenn man die zusätzliche Information hat, dass eine Panne vorliegt. Verspätungswahrcheinlichkeit Sei Ereignis D: Sonsiger Grund für Verspätung. Dann gilt für Ereignis E = D B: Machinenteile kommen verspätet an bei Unabhängigkeit der sonstigen Ursachen wie Zoll etc. von den Pannen: P(E) = P(D B) DeMorgan = 1 P( D Unabhh. B) = 1 P( D)P( B) = = 4.84% Thema: Satz von Bayes, Seite 8

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist?

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist? Aufgabe 43 Ein Kraftfahrzeughändler weiß aus langjähriger Erfahrung, dass bei den in Zahlung genommenen Wagen 50% Mängel am Motor, 70% an der Karosserie und 30% an Motor und Karosserie aufweisen. Wie groß

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Internetkommunikation I WS 2004/05 Rafael Birkner

Internetkommunikation I WS 2004/05 Rafael Birkner Vortrag zum Thema: Bayes'sche Filter zur SPAM-Erkennung 1. Bayes'sche Filter: Eigenschaften - englischer Mathematiker Thomas Bayes (1702 1761) - state of the art Technologie zur Bekämpfung von Spam - adaptive

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 01.07.2005, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Abitur 2012 Mathematik GK Stochastik Aufgabe C1

Abitur 2012 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2012 Mathematik GK Stochastik Aufgabe C1 nter einem Regentag verstehen Meteorologen einen Tag, an dem mehr als ein Liter Niederschlag pro Quadratmeter gefallen

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00.

Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. 1 Statistik I für Wirtschaftswissenschaftler Klausur am 06.07.2007, 14.00 16.00. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Stochastik. Bedingte Wahrscheinlichkeiten INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. www.mathe-cd.de. Neues Manuskript. Datei Nummer 32111

Stochastik. Bedingte Wahrscheinlichkeiten INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. www.mathe-cd.de. Neues Manuskript. Datei Nummer 32111 Stochastik Bedingte Wahrscheinlichkeiten Neues anuskript Datei Nummer Stand 9. uni 008 INTERNETBIBIOTHEK FÜR SCHUTHETIK Inhalt Definitionen und Hinführung Einführungsbeispiel: Karten ziehen Bedingte Wahrscheinlichkeit

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Das Bayes-Theorem Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Ein lahmer Witz Heute im Angebot: Ein praktisches Beispiel zur Einleitung Kurze Wiederholung der Überblick über Reverend

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik

Knut Bartels / Hans Gerhard Strohe. Arbeitsblätter. zur Vorlesung im Wintersemester 2005/06. Statistik II Induktive Statistik Knut Bartels / Hans Gerhard Strohe Arbeitsblätter zur Vorlesung im Wintersemester 2005/06 Induktive Statistik Dies ist kein Vorlesungsskript Wirtschafts- und Sozialwissenschaftliche Fakultät Lehrstuhl

Mehr

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de

Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Rechnen

Mehr

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Wissenschaftler der israelischen Ben-Gurion-Universität sind der Frage nachgegangen, ob die Attraktivität eines

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Lösungshinweise zu Kapitel 13

Lösungshinweise zu Kapitel 13 L-112 Lösungshinweise zu Kapitel 13 zu Selbsttestaufgabe 13.2 (Eigenschaften der bedingten Unabhängigkeit) Sei P eine Wahrscheinlichkeitsverteilung über V. Wir setzen im Folgenden stillschweigend voraus,

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

bedingte Wahrscheinlichkeit

bedingte Wahrscheinlichkeit bedingte Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von 10

Mehr

ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015)

ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015) ENTSCHÄDIGUNGSBEDINGUNGEN der WESTbahn Management GmbH (gültig ab 11.12.2011 letzte Änderung am 21.09.2015 gültig mit 16.10.2015) Zur leichteren Lesbarkeit wurde die männliche Form personenbezogener Hauptwörter

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt?

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt? Behandelte Fragestellungen Was besagt eine Fehlerquote? Welche Bezugsgröße ist geeignet? Welche Fehlerquote ist gerade noch zulässig? Wie stellt

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance

Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance Scania Assistance: Nur einen Anruf weit entfernt. Scania Assistance Immer an Ihrer Seite das kann jedem passieren Sie fahren durch eine unbekannte Stadt, ein Kreisverkehr nach dem anderen, und dann kommt

Mehr

6WDWHPHQW 3URIHVVRU'U-RFKHQ7DXSLW],QVWLWXWI U'HXWVFKHV(XURSlLVFKHVXQG,QWHUQDWLRQDOHV 0HGL]LQUHFKW*HVXQGKHLWVUHFKWXQG%LRHWKLN 8QLYHUVLWlWHQ+HLGHOEHUJXQG0DQQKHLP 6FKORVV 0DQQKHLP )D[ (0DLOWDXSLW]#MXUDXQLPDQQKHLPGH

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

1. Richtig oder falsch? R F

1. Richtig oder falsch? R F FRANZ KAFKA: GIB S AUF! 1 Es war sehr früh am Morgen, die Straßen rein und leer, ich ging zum Bahnhof. Als ich eine Turmuhr mit meiner Uhr verglich 1, sah ich, dass es schon viel später war, als ich geglaubt

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur "Finanzmanagement" 14. März 2002

Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung. Klausur Finanzmanagement 14. März 2002 1 Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung Klausur "Finanzmanagement" 14. März 2002 Bearbeitungshinweise: - Die Gesamtbearbeitungsdauer beträgt 60 Minuten. - Schildern Sie ihren

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@dvz.fh-koeln.de Aufgabe 3.1 Übungen zur Vorlesung Induktive Statistik Bedingte Wahrscheinlichkeiten

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl

REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl 1 von 8 REFERENZBEREICH (NORMALBEREICH) UND DAVON ABWEICHENDE LABORBEFUNDE Univ.Doz.Dr.med. Wolfgang Hübl Zusammenfassung: Der Referenzbereich eines Laborwerts beschreibt meist den Bereich, in dem 95%

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

KOPIE. Diabetes in Kürze. «Schritt um Schritt zu mehr Gesundheit!»

KOPIE. Diabetes in Kürze. «Schritt um Schritt zu mehr Gesundheit!» Diabetes in Kürze «Schritt um Schritt zu mehr Gesundheit!» Schweizerische Diabetes-Gesellschaft Association Suisse du Diabète Associazione Svizzera per il Diabete Was ist Diabetes? Es gibt 2 Typen von

Mehr

4b. Wahrscheinlichkeit und Binomialverteilung

4b. Wahrscheinlichkeit und Binomialverteilung b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

Kapitel 2. Lösung 2.2

Kapitel 2. Lösung 2.2 Kapitel 2: Die Strukturierung des Entscheidungsproblems 1 Kapitel 2 Aufgabe 2.1 Sie möchten Ihrer Schwester etwas zum Geburtstag schenken. Auf der Suche nach etwas Passendem finden Sie bei einem Schaufensterbummel

Mehr

Ausfälle von Windkraftanlagen

Ausfälle von Windkraftanlagen Ausfälle von Windkraftanlagen Dr. Patrick Bangert, algorithmica technologies GmbH Problemstellung Windkraftwerke fallen manchmal wegen diverser mechanischer Defekte aus und müssen entsprechend gewartet

Mehr

Der Weg zum Führerschein

Der Weg zum Führerschein Der Weg zum Führerschein Für Menschen mit Behinderungen Stand: Dezember 2004 Seite 1 von 6 Autofahren trotz Behinderung Der Weg zum Führerschein Oftmals stehen die Betroffenen relativ hilflos vor der großen

Mehr

Bedingte Wahrscheinlichkeiten. Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten. Bedingte Wahrscheinlichkeiten Folie I - 9-1 Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten A) Definition, Multiplikationssatz A) Definition, Multiplikationssatz B) Hilfsmittel für systematische Lösungen: Venn-Diagramm,

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Klausur in Statistik VWA Essen

Klausur in Statistik VWA Essen Prof. Dr. Peter von der Lippe Klausur in Statistik VWA Essen neue Regelung (verkürzter Stoff) Bitte schreiben Sie hier Ihren Namen auf das Deckblatt. Bitte neben dieser Aufgabenstellung keine weitere Blätter

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik)

Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) Prof. Dr. Reinhold Kosfeld Fachbereich Wirtschaftswissenschaften Skript zur Statistik II (Wahrscheinlickeitsrechnung und induktive Statistik) 1. Einleitung Deskriptive Statistik: Allgemeine und spezielle

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

Gefördert durch: dynaklim-kompakt

Gefördert durch: dynaklim-kompakt Gefördert durch: dynaklim-kompakt Risiko & Co. - Begriffe und Abgrenzungen 1 Problemstellung Ein Basisproblem, das immer auftritt, wenn es um Risiko geht, ist die Existenz unterschiedlicher Risikodefinitionen

Mehr

Gene, Umwelt und Aktivität

Gene, Umwelt und Aktivität Neuigkeiten aus der Huntington-Forschung. In einfacher Sprache. Von Wissenschaftlern geschrieben Für die Huntington-Gemeinschaft weltweit. Ein aktiver Lebensstil beeinflusst vielleicht die Krankheitssymptome

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

Zeitbezogene Navigation im Straßenverkehr

Zeitbezogene Navigation im Straßenverkehr Zeitbezogene Navigation im Straßenverkehr Thomas M. Cerbe Fachhochschule Braunschweig/Wolfenbüttel Karl-Scharfenberg-Str. 55 38229 Salzgitter Kurzfassung Stand der Technik der Navigation im Straßenverkehr

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Statistik 1 für SoziologInnen Einführung in die Univ.Prof. Dr. Marcus Hudec WAHRSCHEINLICHKEITSRECHNUNG It is remarkable that a science which began with the consideration of games of chance should have

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

2015/03/12 18:37 1/6 Routingprofile

2015/03/12 18:37 1/6 Routingprofile 2015/03/12 18:37 1/6 Routingprofile Routingprofile Alle Routingprofile werden im Xplorer in der Datenbank Meine Daten in der Tabelle Routingprofile zentral verwaltet. Neu-Erstellen In den meisten Fällen

Mehr

Eine Patientenversicherung für Jedermann. Schäden infolge ärztlicher Behandlung

Eine Patientenversicherung für Jedermann. Schäden infolge ärztlicher Behandlung Eine Patientenversicherung für Jedermann Schäden infolge ärztlicher Behandlung Schäden infolge ärztlicher Behandlung Wenn Sie durch einen Behandlungsfehler Schaden erleiden, haben Sie nach dem Patientenschutzgesetz

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr