Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms

Größe: px
Ab Seite anzeigen:

Download "Q y. dx dy dz. qdv. Bilanzgleichung des Wärmestroms"

Transkript

1 T( x, y, z, τ ) dv = dx dy dz Q z + dz Q y + dy Q * qdv x Q x + dx Q x+ dx Q x( x + dx, y, z, τ ) Q Q ( x, y + dy, z, τ ) y+ dy y Q Q ( x, y, z + dz, τ ) z+ dz z Q Q y Q z Bilanzgleichung des Wärmestroms

2 Randbedingung. Art (Dirichlet-Randbedingung) T( Ω, τ ) = T S ( Ω, τ ) TS ( Ω, τ ) Ω Ω Randbedingung 2. Art (Neumann-Randbedingung) T k ( Ω ) = q S ( Ω, τ ) n T q S = ( Ω, τ ) n k Ω Ω Lösungsgebiet: Ω Berandung: Ω Normalableitung / n Wärmeleitung: zulässige Randbedingungen

3 Randbedingung 2. Art - adiabat T q S = k ( Ω ) = n q S T = = n Ω Ω Randbedingung 3. Art (gemischte Randbedingung) T k ( Ω ) = h T( Ω) T n ( ) T T-T T k ( Ω ) = h T( Ω) T n ( ) Ω Ω Lösungsgebiet: Ω Berandung: Ω Normalableitung / n Wärmeleitung: zulässige Randbedingungen

4 Temperaturabhängigkeit der Wärmeleitfähigkeit von Flüssigkeiten und Gasen

5 Laplace-Operator = + + x y z Kartesisch = r + + r r r r θ z = r sin 2 + θ r r r r sinθ θ θ r sin θ ϕ Zylinderkoordinaten Kugelkoordinaten Laplace-Operator in verschiedenen Koordinatensystemen

6 k(t).25 T km = k( T ) dt ϑ( T) = k( T ) dt k T ϑ(t) m T T Wärmeleitfähigkeit k(t) T [K] Transformierte Temperatur ϑ(t) (T = 3 K, T = 5 K) T [K] Kirchhoff-Transformation

7 T( x, y ) = T sin( π x/ w) + T max m Temperatur-Isolinien 3-D-Ansicht der Temperaturverteilung stationäre Lösung der Wärmeleitungsgleichung (ebene Platte)

8 θ ( ξη, ) = sin( πx/ w) max normierte Temperatur-Isolinien 3-D-Ansicht der Temperaturverteilung stationäre Lösung der Wärmeleitungsgleichung (ebene Platte)

9 ξ=: θ (τ) (R.B.. Art) A.B.: θ (ξ,τ=) = θ (ξ) ξ=: θ (τ) f(τ) (R.B.. Art) einfache Anfangsbedingung einfache Randbedingung Summen-Lösung ξ.6 ξ ξ.8.8 τ + τ + τ Aufheizung unendlicher Platte mit einseitigem Temperaturanstieg

10 ξ=: θ/ ξ -Bi θ() (R.B. 3. Art) A.B.: θ (ξ,τ=) = ξ=: θ (τ) f(τ) (R.B.. Art) Bi =. Bi = Bi = τ + τ + τ ξ ξ.8.8 ξ.8 Aufheizung unendlicher Platte mit konvektiver Randbedingung

11 Beispiele für Wärmeübergang bei vergrößerter Oberfläche

12 Wärmetauscher mit Rippen

13 Erhöhung des Wärmeübergangs durch Rippen / Finnen

14 Kontrollvolumen bei quasi-eindimensionaler Wärmeleitung

15 Definition der Kontrollvolumina für quasi-eindimensionale Rechnung

16 Formen von Rippen / Finnen, Ringrippen und Nadeln

17 Q Basis dt = k A() dx x= Q U, konv Q Basis Q,konv L ( ) ( ) Q = hu( x) T( x) T dx+ h A( L) T( L) T konv, ges T W Berechnung Gesamt-Wärmestrom in Rippe

18 Quasi-eindimensionale Wärmeleitung bei Rippe und Nadel

19 2 5 5 Exp(x) Cosh(x) Exp(-x) Sinh(x) Exponentialfunktion und hyperbolische Funktionen

20 Temperaturverlauf in Rippen aus verschiedenen Materialien

21 θ(ξ) adiabat bei x=l θ(ξ) Konvektion bei x=l.4 adiabat bei x=l.2.2 Konvektion bei x=l m = ξ = x/l m = 3 ξ = x/l Temperaturverlauf in Rippe / Nadel mit konstantem Querschnitt (Bi = )

22 θ(ξ) η(x).8 m =.8 Konvektion bei x=l m = m = 3.2 adiabat bei x=l ξ = x/l Temperaturverlauf in Rippe θ(ξ) m Rippeneffektivität η(m) Temperaturverlauf und Rippenwirkungsgrad in ebener Rippe

23 Q Q ges ohne Rippe 5 4 a =.2 η(x).8 a = a = a =.2 a = 5 a = m m normierter Rippen-Wärmestrom (h =h) Rippeneffektivität η(m) Rippenwirkungsgrad in ebener Rippe

24 Rippenwirkungsgrad von ebenen Rippen

25 r b T h T w T w Definition des Kontrollvolumens in Ringrippe

26 h r b Q konv r e Q r Q r + dr h T W Energeibilanz am Kontrollvolumen in Ringrippe

27 5 I (x) 4 K (x) I (x) K (x) Modifizierte Bessel-Funktionen I, I, K, K

28 θ(x) r e = 5r b, w / d b =.2.8 m = m =.2 m = r/r b Temperaturverlauf in Ringrippe

29 Q nor m =.2 w = r e /5 2 Q nor 8 6 m = 5 w = r e /5 w=r e 4 w=r e 5 2 w = 4r e w = 4r e r/r b r/r b Wärmestrom durch Ringrippe normiert auf Wärmestrom ohne Rippe

30 η(x) w =.3 r e η(x) w = 3 r e m= m=3 m= r e /r b dünne Rippe r e /r b dicke Rippe Rippenwirkungsgrad in Ringrippe (konvektiver Wärmeübergang am Ende)

31 Rippenwirkungsgrad von Ringrippen

32 Randbedingungen Isolinien der reduzierten Temperatur θ(x,y) Stationäre Wärmeleitung in rechteckiger Platte

33 stationäre Wärmeleitung: Adiabaten und Temperatur-Isolinien

34 Randbedingung θ(x,y=w) = f(x) Randbedingung θ(x,y=w) = t Randbedingung θ(x,y=w) = f(x), θ(x,y=) = φ(x) Stationäre Wärmeleitung in rechteckiger Platte

35 π =. π Bi = Bi π π = = Bi Bi Quadratische Platte mit konvektivem Wärmeübergang an Stirnseite

36 Leitungsformfaktoren ()

37 Leitungsformfaktoren (2)

38 Leitungsformfaktoren (3)

39 T i T(τ) U ( τ ) t > T = T(τ) du Qconv dτ = Abkühlung eines Werkstücks (Blockkapazitätsmethode)

40 Instationäre Aufheizung einer unendlichen Platte bei verschiedenen Biot-Zahlen

41 T T(x,τ) T L x Instationärer Abkühlvorgang einer unendlich ausgedehnten Platte

42 T( x, τ) = ( T T ) θ ( ξ, τ + ) + T i Bi i T h T T(x i,τ) L Instationärer Abkühlvorgang eines Werkstücks

43 T (x) τ ξ Instationärer Wärmeausgleich in unendlicher Platte

44 (, + ) = n sin( n 2 )exp( n 2 + ) n= θ ξτ θ πξ πτ 2( ) n + θn = θ π n τ ξ Instationärer Wärmeausgleich in Platte (konstante Anfangstemperatur)

45 Instationäre Abkühlung einer unendlichen Platte Anfangsbedingung: Temperatur konstant (θ(x,fo=) = )

46 Anfangsbedingung Grundlösung der instationären WL-Gleichung Instationäre Wärmeleitung in unendlicher Platte mit beliebiger Anfangs-Temperaturverteilung T(x,τ=) = f(x)

47 Instationäre Wärmeleitung in halb-unendlichem Körper

48 Instationäre Wärmeleitung in unendlich langem Stab mit rechteckigem Querschnitt: Lösung durch Produktansatz

49 Quader (Schnitt von 3 ebenen Platten) Kreisscheibe (Schnitt von Zylinder und Platte) Lösung der instationären Wärmeleitungsgleichung durch Produktansatz: Quader und Kreisscheibe

50 .5.25 θ(l/2)..75 exakt Term τ x/l τ + τ x/l Lösung mit. Term in Reihe exakte Lösung Instationäre Wärmeleitung in isoliertem Draht mit Wärmequelle

51

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom )

Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom ) Technische Universität Dresden Seite 1 Instationäre Wärmeleitung (Ergänzung zur 7. Vorlesung vom 5.05.09) Beachte: In der Vorlesung wurden z. T. andere Symbole verwendet. Vorlesung Ergänzungsskript Bezeichnung

Mehr

Strömungslehre und Wärmeübertragung Teil 2 Wärmeübertragung

Strömungslehre und Wärmeübertragung Teil 2 Wärmeübertragung Einführung in den Maschinenbau und Technikfolgenabschätzung 2018/19 Strömungslehre und Wärmeübertragung Teil 2 Wärmeübertragung Univ.-Prof. Dr.-Ing. habil. Günter Brenn Ass.-Prof. Dipl.-Ing. Dr. techn.

Mehr

Arten der Wärmeübertragung

Arten der Wärmeübertragung Wärmeleitung durch einen Festkörper oder ein Fluid Konvektion von einem Festkörper zu einem Fluid Strahlungsaustauch bei zwei festen Oberflächen Fluid bei T=T Oberfläche bei T=T 1 Oberfläche bei T=T 2

Mehr

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen

Inhaltsverzeichnis 1 Einleitung und Definitionen 2 Wärmeleitung in ruhenden Stoffen Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung...3 1.2 Definitionen... 5 1.2.1 Wärmestrom und Wärmestromdichte... 5 1.2.2 Wärmeübergangszahl und Wärmedurchgangszahl...5

Mehr

Verbesserung des Wärmetransports:

Verbesserung des Wärmetransports: 7. Wärmeübertragung durch berippte Flächen A b ϑ ϑ ) ( a Grundgleichung i Verbesserung des Wärmetransports: k zeigt 3 Möglichkeiten für 1.) Vergrößerung der Temperaturdifferenz: Durchführbarkeit: Meist

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

Thermodynamik II Musterlösung Rechenübung 9

Thermodynamik II Musterlösung Rechenübung 9 Thermodynamik II Musterlösung Rechenübung 9 Aufgabe 1 Der Wärmetransfer des Festkörpers und diejenige des finiten Fluidvolumens sind über den konvektiven Wärmeübergang, der von A und α abhängt, gekoppelt.

Mehr

Praxis der Wärmeübertragung

Praxis der Wärmeübertragung Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben von Rudi Marek, Klaus Nitsche 1. Auflage Hanser München 2010 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 42510 1 Zu Leseprobe

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

Thermodynamik II Musterlösung Rechenübung 8

Thermodynamik II Musterlösung Rechenübung 8 Thermodynamik II Musterlösung Rechenübung 8 Aufgabe a) Annahmen: (a) stationärer Zustand (b) -dimensionale Wärmeleitung (x-richtg.) (c) λ = konst., α = konst. (d) keine Wärmequellen (e) keine Wärmestrahlung

Mehr

Wärme- und Stofftransport

Wärme- und Stofftransport Universität der Bundeswehr München Fakultät für Luft- und Raumfahrttechnik Institut für Thermodynamik Prof. Dr. rer. nat. Michael Pfitzner Wärme- und Stofftransport Vorlesungsskriptum Skript für das Master-Modul

Mehr

Inhaltsverzeichnis 1 Einführung. Technische Anwendungen

Inhaltsverzeichnis 1 Einführung. Technische Anwendungen Inhaltsverzeichnis 1 Einführung Technische Anwendungen 1 11 Die verschiedenen Arten der Wärmeübertragung 1 111 Wärmeleitung 2 112 Stationäre, geometrisch eindimensionale Wärmeleitung 5 113 Konvektiver

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 13.,15. und 29. Mai 2009 Transversalschwingungen

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen

Mehr

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas Herbst 213 Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom 5.3 Lösung von Prof. Dr. Erich Walter Farkas ETH Zürich Kapitel 5. Partielle Differentialgleichungen

Mehr

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben

Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben Rudi Marek, Klaus Nitsche Praxis der Wärmeübertragung Grundlagen - Anwendungen - Übungsaufgaben ISBN-10: 3-446-40999-8 ISBN-13: 978-3-446-40999-6 Inhaltsverzeichnis Weitere Informationen oder Bestellungen

Mehr

Klausur zur Vorlesung. Wärme- und Stoffübertragung

Klausur zur Vorlesung. Wärme- und Stoffübertragung Institut für Thermodynamik 27. Juli 202 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Wärme- und Stoffübertragung Für alle Aufgaben gilt: Der Rechen- und Gedankengang

Mehr

Inhaltsverzeichnis. Formelzeichen...

Inhaltsverzeichnis. Formelzeichen... Inhaltsverzeichnis Formelzeichen... xv 1 Einführung. Technische Anwendungen... 1 1.1 Die verschiedenen Arten der Wärmeübertragung... 1 1.1.1 Wärmeleitung... 2 1.1.2 Stationäre, geometrisch eindimensionale

Mehr

WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN

WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN Bernd Glück WÄRMEÜBERTRAGUNG WÄRMEABGABE VON RAUMHEIZFLÄCHEN UND ROHREN Verlag für Bauwesen Inhaltsverzeichnis 1. Grundprobleme der Wärmeübertragung 13 2. Leitung 14 2.1. Temperaturfeld 14 2.2. FouRiERsch.es

Mehr

Wärme- und Stoffübertragung

Wärme- und Stoffübertragung Wärme- und Stoffübertragung von Hans Dieter Baehr, Karl Stephan 6., neu bearb. Aufl. Springer 2008 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 540 87688 5 Zu Leseprobe schnell und portofrei erhältlich

Mehr

Wärme- und Stoff Übertragung

Wärme- und Stoff Übertragung Hans Dieter Baehr Karl Stephan Wärme- und Stoff Übertragung 7, neu bearbeitete Auflage Mit 343 Abbildungen und zahlreichen Tabellen sowie 62 Beispielen und 94 Aufgaben < j Springer Formelzeichen xv 1 Einführung.

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Proseminar Partielle Differentialgleichungen 1

Proseminar Partielle Differentialgleichungen 1 Proseminar Partielle Differentialgleichungen 1 Gerald Teschl SS2012 Bemerkung: Die meisten Beispiel sind aus dem Buch von L. C. Evans, Partial Differential Equations, Amer. Math. Soc., 1998 bzw. aus der

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen:

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen: Satz von Fubini Ein Integral einer stetigen Funktion über einem Elementarbereich V : a j (x 1,..., x j 1 ) x j b j (x 1,..., x j 1 ) lässt sich durch Hintereinanderausführung eindimensionaler Integrationen

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung SS 18: Woche vom Übungsaufgaben 3. Übung SS 18: Woche vom 23.-27. 4. 2018 Partielle DGL IV (PDGL 2. O.: Normalform, Separ.-ans.) Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen:

Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen. D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Bemerkungen: D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 6: Mehrfachintegrale und ihre Hauptsubstitutionen emerkungen: Die Aufgaben der Serie 6 bilden den Fokus der Übungsgruppen vom 3. März/2. April..

Mehr

Kimmerle Musterlösung , 120min. Tabelle der Standardnormalverteilung Φ(x) = 1. e t

Kimmerle Musterlösung , 120min. Tabelle der Standardnormalverteilung Φ(x) = 1. e t Kimmerle usterlösung 6.0.04, 0min Tabelle der Standardnormalverteilung Φx = π x e t x 0 0. 0. 0. 0.4 0.5 0.6 0.7 0.8 0.9 Φx 0.5000 0.598 0.579 0.679 0.6554 0.695 0.757 0.7580 0.788 0.859 x.0....4.5.6.7.8.9

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Der Vorgang im Thermometer wird quasistatisch angenommen. Diese Annahme ist berechtigt, da = 0, 0357 < 0, 1

Der Vorgang im Thermometer wird quasistatisch angenommen. Diese Annahme ist berechtigt, da = 0, 0357 < 0, 1 Lösung 3.1 3.1/1 Gegeben: zylindrisches Glasthermometer d = 5 mm, ϱ = 13600 kg/m 3, c p = 138 /(kg K), λ = 10, 5 W/(m K) t 0 = 20 o C Wasser t U = 60 o C, α = 150 W/(m 2 K) Gesucht: Zeit τ bis Anzeigefehler

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die

Mehr

Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP

Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP Dr.-Ing. A. Moschallski Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP 27.8.208. Stimmen folgende Aussagen? Bei einem Wärmeübertragungs-Problem steigt mit der Nußelt-Zahl immer auch die Wandwärmestromdichte.

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophsik Tutorübungen zu Elektromagnetische Feldtheorie (Prof. Wachutka. Aufgabe: Lösung Wintersemester 208/209 Lösung Blatt 6 a Laut der Spiegelladungsmethode

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie1 D-MAVT/D-MATL FS 8 Dr. Andreas Steiger Analysis IILösung - Serie. Das Volumenelement der Koordinaten, welche in der untenstehenden Abbildung definiert sind, ist gegeben durch z Q Ρ Α Β y (a) ϱ cos β dϱ

Mehr

Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP

Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP Dr.-Ing. A. Moschallski Lösung zur Klausur im Fach Wärmeübertragung, Modul mit 6 LP 2.3.2018 1. Stimmen folgende Aussagen? Die Kombination der Größen zu stellt eine Kennzahl dar. Die Nu-Zahl berücksichtigt

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Thermodynamik II Musterlösung Rechenübung 10

Thermodynamik II Musterlösung Rechenübung 10 Thermodynamik II Musterlösung Rechenübung 0 Aufgabe Seitenansicht: Querschnitt: Annahmen: stationärer Zustand Wärmeleitung in axialer Richtung ist vernachlässigbar konstante Materialeigenschaften Wärmeleitungswiderstand

Mehr

Fourier Transformation

Fourier Transformation Fourier Transformation Frank Essenberger FU Berlin 8.Dezember 006 Inhaltsverzeichnis 1 Endliche Periodenlänge 1 Unendlich Periodenlänge 4 3 Die δ F unktion 4 4 Beispiele 6 4.1 Endliche Periodenlänge.......................

Mehr

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten

Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Vorlesung Theoretische Chemie I (Prof. Dr. Georg Jansen) Der Laplace-Operator in Kugelkoordinaten Transformation der Koordinaten: Die Transformation von kartesischen in Kugelkoordinaten ist gegeben durch

Mehr

7. Die eindimensionale Wärmeleitungsgleichung

7. Die eindimensionale Wärmeleitungsgleichung H.J. Oberle Differentialgleichungen II SoSe 2013 7. Die eindimensionale Wärmeleitungsgleichung Als Beispiel für eine parabolische PDG betrachten wir die eindimensionale Wärmeleitungsgleichung u t (x, t)

Mehr

Protokoll zum Versuch: Wärmeausbreitung

Protokoll zum Versuch: Wärmeausbreitung Protokoll zum Versuch: Wärmeausbreitung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 006/007 Grundpraktikum I 14.1.006 Inhaltsverzeichnis 1 Ziel Theorie 3 Versuch 3 3.1 Versuchsaufbau............................

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden! D-HEST, Mathematik III HS 07 Prof. Dr. E. W. Farkas M. Nitzschner Lösung Bitte wenden! . Lösen von partiellen Differentialgleichungen mit Separationsansätzen a Betrachten Sie für D > 0 die partielle Differentialgleichung

Mehr

Projektbericht Kondensation an einem Fenster

Projektbericht Kondensation an einem Fenster Projektbericht Kondensation an einem Fenster Florian Hanzer Ruth Kalthaus Sommersemester 2009 Einleitung Da Glas ein relativ guter Wärmeleiter ist, sind Fenster einer der größten Schwachpunkte in Bezug

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Mathematische Formeln

Mathematische Formeln Mathematische Formeln Vektorfeld E(r ), skalares Feld f(r ) Kartesische Koordinaten x, y, Ortsvektor r =(x, y, ) =xe x + ye y + e = re r Linienelement: ds = dx e x + dy e y + d e Volumenelement dv = dx

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt 4: Lösungen

Mehr

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm

Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Übung zur Numerik linearer und nichtlinearer Parameterschätzprobleme A. Franke-Börner, M. Helm Numerik Parameterschätzprobleme INHALT 1. 1D Wärmeleitungsgleichung 1.1 Finite-Differenzen-Diskretisierung

Mehr

7. Die Funktionalgleichung der Zetafunktion

7. Die Funktionalgleichung der Zetafunktion 7. Die Funktionalgleichung der Zetafunktion 7.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x = O( x und f (x = O( x für x ˆf(t := f(xe πixt dx. die

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I.

Kapitel 4. Mehrfachintegrale. 4.1 Erinnerung an Integrationsrechnung. Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Kapitel 4 Mehrfachintegrale 4.1 Erinnerung an Integrationsrechnung 4.1.1 estimmtes Integral als Fläche Geg.: Funktion f : I R, I R ein Intervall, zunächst: f(x) > 0 x I. Ges.: Fläche F zwischen dem Graphen

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

1. Die Wellengleichung

1. Die Wellengleichung 1. Die Wellengleichung Die Wellengleichung ist eine partielle Differenzialgleichung für das Schallfeld. Sie lässt sich durch Linearisierung aus der Massenbilanz, der Impulsbilanz und der Energiebilanz

Mehr

8. Spezielle Funktionen

8. Spezielle Funktionen H.J. Oberle Differentialgleichungen II SoSe 2013 8. Spezielle Funktionen Spezielle Funktionen (der mathematischen Physik) entstehen zumeist aus Separationsansätzen für PDG bei Vorliegen von Symmetrie-Eigenschaften.

Mehr

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders

Mehr

Partielle Differentialgleichungen Prüfung am

Partielle Differentialgleichungen Prüfung am Partielle Differentialgleichungen Prüfung am 27.04.2017 Name, Vorname Matrikelnummer Unterschrift Dauer: 60 Minuten. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit. Bitte schreiben

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

201 Wärmeleitfähigkeit von Gasen

201 Wärmeleitfähigkeit von Gasen 01 Wärmeleitfähigkeit von Gasen 1. Aufgaben 1.1 Messen Sie die relative Wärmeleitfähigkeit x / 0 (bezogen auf Luft bei äußerem Luftdruck) für Luft und CO in Abhängigkeit vom Druck p. Stellen Sie x / 0

Mehr

1 Aufgaben zum Kapitel Wärmeleitung

1 Aufgaben zum Kapitel Wärmeleitung 1 Wärmeleitung 1 Wärmeleitung 1 Aufgaben zum Kapitel Wärmeleitung 1.2 Die eindimensionale Wärmeleitungsgleichung Review Aufgaben Aufgabe 1. Wie lautet die eindimensionale Wärmeleitungsgleichung? Erklären

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Serie 6. x 2 + y 2, 0 z 4.

Serie 6. x 2 + y 2, 0 z 4. Analysis D-BAUG Dr. Cornelia Busch FS 6 Serie 6. Wir betrachten drei verschiedene Flaschen in der Form eines Paraboloids P, eines Hyperboloids H und eines Kegels K. Diese sind wie folgt gegeben: P = {

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

Integralrechnung für Funktionen mehrerer Variabler

Integralrechnung für Funktionen mehrerer Variabler Inhaltsverzeichnis 9 Integralrechnung für Funktionen mehrerer ariabler 36 9. Integration über ebene Bereiche in kartesischen Koordinaten.............. 36 9. Integration über ebene Bereiche in Polarkoordinaten..................

Mehr

Herbst 2018 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik

Herbst 2018 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik Herbst 2018 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Zerfall eines Teilchens Ein punktförmiger Atomkern der Masse M fliege ohne äußere Kräfte im Laborsystem mit der

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen.

) ein lokales Minimum, oder ein lokales Maximum, oder kein Extremum? Begründen Sie das mit den ersten und zweiten Ableitungen. Mathematik 2 Klausur vom 22. November 23 Zoltán Zomotor Versionsstand: 2. Dezember 23, 9:2 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Mehrdimensionale Integralrechnung 2

Mehrdimensionale Integralrechnung 2 Mehrdimensionale Integralrechnung Quiz Wir wollen die Dynamik zweier Teilchen beschreiben, die über ein hoch elastisches Seil verbunden sind und sich wild im Raum bewegen! Ein Kollege schlägt dazu vor

Mehr

Wie man Flügel endlicher Länge berechnet

Wie man Flügel endlicher Länge berechnet 3. Flügel endlicher Länge Reduzierte Frequenz: Beim Flügel endlicher Länge wird als Referenzlänge c ref zur Definition der reduzierten Frequenz in der Regel die Profiltiefe an der Flügelwurzel gewählt.

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Skalarprodukte im Funktionenraum und orthogonale Funktionen

Skalarprodukte im Funktionenraum und orthogonale Funktionen 1 Skalarprodukte im Funktionenraum und orthogonale Funktionen Im Allgemeinen muss ein reelles Skalarprodukt (, ) (wir betrachten reelle Funktionen) folgende Eigenschaften ausweisen: Bilinearität (Linearität

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #4 am 3.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

Ferienkurs Analysis 3 für Physiker. Integration im R n

Ferienkurs Analysis 3 für Physiker. Integration im R n Ferienkurs Analysis 3 für Physiker Integration im R n Autor: Benjamin Rüth Stand: 16. ärz 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Definition des Riemann-Integrals über Quadern 3

Mehr

u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω,

u = 1 in Ω, v = 1 in BR (0), v = 0 auf B R (0). w = v + u = 1 1 = 0 in Ω, Aufgabe Es sei Ω R n ein beschränktes Gebiet mit Ω B R (0 für ein R > 0. Zeigen Sie: Ist u C (Ω C(Ω eine Lösung von u = in Ω, u = 0 auf Ω, so gilt die Abschätzung 0 u(x R x n für alle x Ω. Hinweis: Berechnen

Mehr

Die schwingende Membran

Die schwingende Membran Die schwingende Membran Michael Beer 1. Februar 2001 Inhaltsverzeichnis 1 Die Differentialgleichung der homogenen schwingenden Membran 1 2 Die allgemeine Lösung 2 3 Spezialfälle 4 3.1 Die rechteckige Membran.............................

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch,

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch, Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 202/3 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ T0: Nachholklausur Mittwoch, 03.04.203

Mehr