3. Leistungsdichtespektren

Größe: px
Ab Seite anzeigen:

Download "3. Leistungsdichtespektren"

Transkript

1 Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt es sich um so genannte stochastische Prozesse. Jede Messung liefert eine Realisierung des stochastischen Prozesses. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-

2 Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-2

3 Stochastische Prozesse werden durch statistische Kennwerte beschrieben: Mittelwert: p t = R R = p t Quadratischer Mittelwert: 2 p t = R R = p 2 t Varianz: 2 p t = R p t p t 2 R = Dabei ist R die Anzahl der Messungen. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-3

4 Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-4

5 Bei stationären stochastischen Prozessen hängen die statistischen Kennwerte nicht von der Zeit ab. Bei stationären Geräuschen ist der Mittelwert null. Der quadratische Mittelwert stimmt daher mit der Varianz überein. Ergodische stochastische Prozesse: Ein stationärer stochastischer Prozess heißt ergodisch, wenn sich die gleichen Zahlenwerte für die statistischen Kennwerte ergeben, wenn die Mittelung statt über die einzelnen Realisierungen des Prozesses entlang der Zeitachse einer Realisierung erfolgt. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-5

6 Bei einem ergodischen stochastischen Prozess gilt: Mittelwert: p = lim R R R = p t = lim T T t c T / 2 t c T / 2 p t dt= p = p Quadratischer Mittelwert: p 2 = lim R R R = p 2 t = lim T T t c T /2 t c T /2 p 2 t dt= p 2 = p 2 Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-6

7 Beispiel: Sei 3. Leistungsdichtespektren p t = n= p n sin 2 f n t n eine Realisierung eines stochastischen Prozesses. Dabei sind die Amplituden p n und die Frequenzen f n für alle Realisierungen gleich, während die Phasen n Zufallsgrößen sind. Für den über die Realisierungen gebildeten Mittelwert gilt: p t = lim R = n= R R = p n lim R n= p n sin 2 f n t n R sin 2 f n t n =0 R = Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-7

8 Für den über die Realisierungen gebildeten quadratischen Mittelwert gilt: p n sin 2 f n t n 2 p 2 t = lim R = n= m n R R = [ p 2 n lim R = 2 n= n= R R = p m p n lim R p n 2 sin 2 2 f n t n R ] sin 2 f m t m sin 2 f n t n R = Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-8

9 Beide Mittelwerte hängen nicht von der Zeit ab. Der stochastische Prozess ist stationär. Für den über die Zeit gebildeten Mittelwert gilt: p = lim T = n= = n= T p n lim T t c T /2 t c T /2 T p n f n lim T n= p n sin 2 f n t n dt 2 f n [cos 2 f n t c T /2 n cos 2 f n t c T /2 n ] sin 2 f n t c n sin f n T =0= p T Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-9

10 Für den über die Zeit gebildeten quadratischen Mittelwert gilt: p 2 = lim T = n= m n t c T /2 t c T /2 T [ p 2 n lim T = 2 n= [ n= T p m p n lim T p n 2 = p 2 t c T /2 t c T /2 ]2 p n sin 2 f n t n dt T sin 2 2 f n t n dt t c T /2 t c T /2 sin 2 f m t m sin 2 f n t n dt ] Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-0

11 Die über die Realisierungen gebildeten Mittelwerte stimmen mit den über die Zeit gebildeten Mittelwerten einer Realisierung überein: Der stochastische Prozess ist ergodisch. Bei den meisten in der Technik vorkommenden stochastischen Prozessen wird davon ausgegangen, dass sie ergodisch sind. Leistungsdichtespektren: Zwei Geräusche werden als gleich empfunden, wenn ihr Frequenzgehalt übereinstimmt. Für das angegebene Beispiel können die Beiträge einzelner Frequenzbänder wie in Kapitel. ermittelt werden. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-

12 Im Allgemeinen wird der Frequenzgehalt eines ergodischen stochastischen Prozesses durch sein Leistungsdichtespektrum beschrieben. Zur Definition wird das Zeitsignal p(t) durch ein Filter geschickt, das nur den Anteil p f (t) passieren lässt, der zu Frequenzen im Intervall [f Δf/2, f + Δf/2] gehört. Das Leistungsdichtespektrum Ψ p (f) ist definiert durch p f = lim f 0 p f 2 f Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-2

13 Filter mit f = 50Hz, Δf = 4Hz Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-3

14 Aus der Definition des Leistungsdichtespektrums folgt unmittelbar: p f df p 2 = 0 In der Praxis werden endliche Filterbreiten Δf verwendet. Schmalbandspektren werden z.b. mit Filtern der konstanten Breite Δf = 2Hz ermittelt. Zur Ermittlung von Terz- oder Oktavspektren werden Filter für Terz- bzw. Oktavbänder verwendet. Heute werden Leistungsdichtespektren in der Regel digital mithilfe der schnellen Fourier-Transformation aus den Zeitreihen ermittelt. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-4

15 Mithilfe von Bewertungsfiltern lassen sich auch bewertete quadratische Mittelwerte berechnen: p 2 W = 0 W 2 f p f df Bei Terz- und Oktavspektren werden die gewichteten Mittelwerte durch Gewichtung der Beiträge der einzelnen Frequenzbänder ermittelt. Dabei wird der Wert der Gewichtsfunktion für die Mittenfrequenz ermittelt. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-5

16 Beispiel: Weißes Rauschen 3. Leistungsdichtespektren Beim weißen Rauschen ist das Leistungsdichtespektrum im betrachteten Frequenzbereich konstant: p f = 0 =const. Der Beitrag einer Terz zum quadratischen Mittelwert berechnet sich zu p k 2 = 0 f ok f uk = f =0,236 f 6 mk 0 mk 2 Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-6

17 Für zwei aufeinander folgende Terzen gilt: 2 p k p k 2 = f mk f mk = 3 2 Daraus folgt für die Terzpegel: L pk L pk =0 log 3 2 = db Entsprechend gilt für zwei aufeinander folgende Oktaven: 2 p k p k 2 = f mk f mk =2 L pk L pk =0 log 2 =3dB Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-7

18 Sind Terzen im Geräusch enthalten und ist L p0 der Terzpegel der tiefsten Terz, dann gilt für den Gesamtpegel: L p =0 log n=0 Die Summe berechnet sich zu 0 L n /0 p 0 =0 L /0 p 0 n=0 n=0 0 L p 0 n /0 0 n /0 =0 L /0 p 0 /0 0 n n=0 =0 L /0 0 /0 p 0 0 /0 Dabei wurde die Summenformel für die geometrische Summe benutzt. Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-8

19 Daraus folgt für den Gesamtpegel: L p =L p 0 0 log 0 /0 0 /0 Für = 0 ergibt sich: Rosa Rauschen: L p =L p0 5,4 db Beim rosa Rauschen ist das Leistungsdichtespektrum umgekehrt proportional zur Frequenz: p f = 0 f 0 f Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-9

20 Das Rauschen eines Wasserfalls lässt sich näherungsweise durch rosa Rauschen beschreiben. Für den Beitrag einer Terz zum quadratischen Mittelwert gilt: f ok 2 p k = 0 f 0 f uk df f = 0 f 0 ln f ok f uk Jede Terz liefert also den gleichen Beitrag. = f ln 3 ln = 0 f 0 3 Entsprechend folgt für den Beitrag einer Oktav: f ok 2 p k = 0 f 0 f uk df f = 0 f 0 ln f ok f uk = 0 f 0 ln 2 Prof. Dr. Wandinger. Quantitative Beschreibung von Schall Akustik.3-20

1. Frequenzgehalt. Quadratischer Mittelwert:

1. Frequenzgehalt. Quadratischer Mittelwert: Quadratischer Mittelwert: 1. Frequenzgehalt Bei stationären Vorgängen ist der zeitliche Mittelwert des Schalldrucks null. Ein Maß für die Größe des Schalldrucks ist der quadratische Mittelwert: p = lim

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Herzlich Willkommen zum Fachvortrag Mess-Signale und Mess-Strategien von Harald Bonsel ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Harald Bonsel Fachvortrag: Messsignale und

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Spektralanalyse

Spektralanalyse 4. Spektralanalyse Die Spektralanalyse ermittelt, welche Beiträge die einzelnen Frequenzen zu einem Signal liefern. Je nach Art des Zeitsignals wird der Frequenzgehalt durch die Fourier-Transformation,

Mehr

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu

DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, rohnen@hm.edu 1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2

Mehr

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Ordnungsanalyse

Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse. Ordnungsanalyse Frequenzanalyse Praktischer Leitfaden zur Anwendung der Frequenzanalyse Definition Beispiel Drehzahlerfassung Methode FFT Methode Ordnungs-FFT Methode Filter Zusammenfassung 2 Unter versteht man die Analyse

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Tieffrequente Geräusche und Infraschall - Physikalische Aspekte -

Tieffrequente Geräusche und Infraschall - Physikalische Aspekte - Tieffrequente Geräusche und Infraschall - Physikalische Aspekte - Thomas Przybilla LANUV NRW Fachbereich 45: [...], Geräusche und Erschütterungen Fon: 0201-7995-1492 E-Mail: thomas.przybilla@lanuv.nrw.de

Mehr

Schindler 3300 / Schindler 5300 Informationen zu Schall und Schwingungen

Schindler 3300 / Schindler 5300 Informationen zu Schall und Schwingungen Schindler 3300 / Schindler 5300 Inhalt 0. Einführung 1. Fahrkomfort Rucken Kabinenbeschleunigung Vertikale Kabinenschwingungen Laterale Kabinenschwingungen Schall in der Kabine 2. Schall Grundlagen 3.

Mehr

Mathematik und Musik: Fourieranalyse

Mathematik und Musik: Fourieranalyse Mathematik und Musik: Fourieranalyse Matheseminar JKU Linz WS2015/16 Peter Gangl Linz 5. Februar 2016 1 / 20 Outline 1 Musik mathematisch betrachtet 2 2 / 20 Outline 1 Musik mathematisch betrachtet 2 2

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole

Seminar Akustik. Aufgaben zu Teil 1 des Skripts Uwe Reichel, Phil Hoole Seminar Akustik. Aufgaben zu Teil des Skripts Uwe Reichel, Phil Hoole Welche Kräfte wirken auf ein schwingendes Teilchen?! von außen angelegte Kraft (z.b. Glottisimpulse)! Rückstellkräfte (Elastizität,

Mehr

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an.

[ 1 ] Welche der folgenden Aussagen sind WAHR? Kreuzen Sie sie an. 13 Zeitreihenanalyse 1 Kapitel 13: Zeitreihenanalyse A: Übungsaufgaben: [ 1 ] 1 a a) Nach der Formel x t+i berechnet man einen ein f achen gleitenden Durchschnitt. 2a + 1 i= a b) Die Residuale berechnet

Mehr

Schallmessung (Geräuschmessung)

Schallmessung (Geräuschmessung) English version Schallmessung (Geräuschmessung) Berechnung: Frequenz f dba und dbc Bewertungsfilter nach DIN EN 61672-1 2003-10 (DIN-IEC 651) Merke: Schallpegelmesser messen den Schalldruckpegel in dbspl.

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

-Oktavanalyse Wavelet. FFT 1 / n. -Oktavanalyse Wavelet. Fast Fourier Transformation

-Oktavanalyse Wavelet. FFT 1 / n. -Oktavanalyse Wavelet. Fast Fourier Transformation 11/13 FFT 1 / n -Oktavanalyse Wavelet FFT 1 / n -Oktavanalyse Wavelet Für die meisten akustischen Untersuchungen ist eine reine Pegelanalyse unzureichend, denn nicht nur der Pegel, sondern auch die frequenzabhängige

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Was ist Lärm? Schall. Ton, Klang und Geräusch

Was ist Lärm? Schall. Ton, Klang und Geräusch Theoretische Grundlagen Was ist Lärm? Um das Phänomen Lärm verstehen zu können und um sich im Dschungel der später verwendeten Fachausdrücke nicht zu verlieren, sollte man über die wesentlichen physikalischen

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

A2.5: Scatter-Funktion

A2.5: Scatter-Funktion A2.5: Scatter-Funktion Für den Mobilfunkkanal als zeitvariantes System gibt es vier Systemfunktionen, die über die Fouriertransformation miteinander verknüpft sind. Mit der in diesem Lerntutorial formalisierten

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

P R Ü F B E R I C H T N R b

P R Ü F B E R I C H T N R b TECHNISCHE UNIVERSITÄT BERLIN Institut für Strömungsmechanik und Technische Akustik AKUSTIK-PRÜFSTELLE Einsteinufer 25 10587 Berlin Telefon: 030 / 314-224 28 Fax: 030 / 314-251 35 Amtlich anerkannte Prüfstelle

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

2 Störeinflüsse und Schutzmaßnahmen

2 Störeinflüsse und Schutzmaßnahmen 2 Störeinflüsse und Schutzmaßnahmen 2.1 Modulation und Demodulation 2.2 Störeinflüsse 2.2.1 Netzstörungen 2.2.2 Schaltstörungen 2.2.3 Hochfrequenzstörungen 2.2.4 Rauschen 2.3 Schutzmaßnahmen 2.3.1 Schutzerde

Mehr

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB

MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

FFT- Praxis in NI DIAdem

FFT- Praxis in NI DIAdem FFT- Praxis in NI DIAdem Inhalt Was Sie schon immer über FFT wissen wollten... FFT-Grundlagen Ein einfaches Beispiel 3 Die FFT unter der Lupe 4 FFT mit vielen Stützstellen 4 Ein exaktes Ergebnis Signal

Mehr

Diese Funktion ist mein Typ!

Diese Funktion ist mein Typ! Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

IHK Arbeitsgruppe Arbeitssicherheit

IHK Arbeitsgruppe Arbeitssicherheit Durch EG Richtlinie zum Arbeitslärm ab 15.02.2006 neue Anforderungen IHK Arbeitsgruppe Arbeitssicherheit Referat Johann Storr, BEKON Lärmschutz und Akustik GmbH Mirko Ginovski, BEKON Lärmschutz und Akustik

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Sarah Ottersbach. Masterarbeit. am Fachbereich Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main. vorgelegt von

Sarah Ottersbach. Masterarbeit. am Fachbereich Physik der Johann Wolfgang Goethe-Universität Frankfurt am Main. vorgelegt von Fluktuationsspektroskopie mittels schneller Datenerfassung und softwaregestützter Datenanalyse - Anwendung auf den Ladungsordnungsübergang in Nickelaten Masterarbeit am Fachbereich Physik der Johann Wolfgang

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

14. Polarpunktberechnung und Polygonzug

14. Polarpunktberechnung und Polygonzug 14. Polarpunktberechnung und Polygonzug An dieser Stelle sei noch einmal auf das Vorwort zu Kapitel 13 hinsichtlich der gekürzten Koordinatenwerte hingewiesen. 14.1. Berechnungen bei der Polaraufnahme

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Metering. Version 0.9. c 2008 Holger Stolzenburg

Metering. Version 0.9. c 2008 Holger Stolzenburg Metering Metering Version 0.9 c 2008 Holger Stolzenburg 1 von 8 Inhaltsverzeichnis 1 Aussteuerungsmessgeräte 3 1.1 Normpegel............................................. 3 1.2 VU (Volume Unit)-Meter....................................

Mehr

Wir basteln uns ein Glockenspiel

Wir basteln uns ein Glockenspiel So soll es aussehen Wir basteln uns ein Glockenspiel Wie entstehen die Töne? Würde das Glockenspiel am Kopfende angestoßen, so würden damit Logitudinalschwingungen erzeugt. Diese Schwingungen sind allerdings

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28. Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3

Mehr

Einfluß von Wind bei Maximalfolgenmessungen

Einfluß von Wind bei Maximalfolgenmessungen 1 von 5 05.02.2010 11:10 Der Einfluß von Wind bei Maximalfolgenmessungen M. KOB, M. VORLÄNDER Physikalisch-Technische Bundesanstalt, Braunschweig 1 Einleitung Die Maximalfolgenmeßtechnik ist eine spezielle

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale

Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Signale und Systeme Reaktion linearer Systeme auf stationäre stochastische Signale Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Technische Faculty of Engineering Fakultät Elektrotechnik Institute

Mehr

Messung & Darstellung von Schallwellen

Messung & Darstellung von Schallwellen Messung Digitalisierung Darstellung Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Messung Digitalisierung Darstellung Überblick Messung

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Lärm- und Schwingungsmessung

Lärm- und Schwingungsmessung Lärm- und Kapitel 3 im Praktikum-Skript 1 Lärmmessung 2 Theorie Versuch Bedeutung von Lärm Schall/Schalldruck Schalldruckpegel Folgen von Lärm Maßnahmen gegen Lärm Agenda Messung von Industrielärm im Labor

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Fehlerrechnung und Statistik (FR) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 12 Fehlerrechnung und Statistik

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Anfänge in der Antike

Anfänge in der Antike Akustik Eine wesentliche Grundlage der Musik ist der Schall. Seine Eigenschaften erforscht die Akustik (griechisch: ακουειν = hören). Physikalisch ist Schall definiert als mechanische Schwingungen und

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Zusammenfassung Mit Hilfe von 1D 1 H- und 13 C-NMR-Spektren und gegebener Summenformel wird die Primärstruktur eines unbekannten

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme.

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme. Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz DSS Diskrete Signale und Systeme Teampartner: Praktikum Versuch 1 Laborplatz: Name: Vorname: Studiengang /-richtung

Mehr

2. Der Phasenregelkreis (PLL = Phase Locked Loop)

2. Der Phasenregelkreis (PLL = Phase Locked Loop) . Der Phasenregelkreis (PLL = Phase Locked Loop). PLL-Grundlagen. Stationäres Verhalten.3 Nachführverhalten hrverhalten.4 Rauschverhalten.5 Phasendetektoren: Realisierungsaspekte W. Koch: Synchronisationsverfahren,,

Mehr

Infraschall und tieffrequente Geräusche an Windenergieanlagen (WEA) Dipl.-Geophys. Bernd Dörries

Infraschall und tieffrequente Geräusche an Windenergieanlagen (WEA) Dipl.-Geophys. Bernd Dörries Infraschall und tieffrequente Geräusche an Windenergieanlagen (WEA) Dipl.-Geophys. Bernd Dörries INGENIEURBÜRO FÜR AKUSTIK BUSCH GmbH Eckernförder Straße 315 24119 Kronshagen Gliederung 1) Einleitung 2)

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski Operationsverstärker OPV-Kenndaten und Grundschaltungen Inhaltsverzeichnis 1 Eigenschaften von Operationsverstärkern 3 1.1 Offsetspannung..........................................

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Sinneswahrnehmungen des Menschen

Sinneswahrnehmungen des Menschen Sinneswahrnehmungen des Menschen Tastsinn Gleichgewicht Geruch Sehen Gehör Sprache Aktion Multimedia - Kanäle des Menschen Techniken für Medien im Wandel Multimediale Kommunikation Text : Bücher, Zeitschriften

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Raumakustik III. FHNW HABG CAS Akustik 4 h. Version: 26. Februar 2009

Raumakustik III. FHNW HABG CAS Akustik 4 h. Version: 26. Februar 2009 Raumakustik III FHNW HABG CAS Akustik 4 h Version: 6. Februar 9 Inhalt Logatome STI CATT () Logatome Um die Sprachverständlichkeit in Räumen zu messen, wurde früher (und auch heute noch) sog. Logatome

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

2 Das Skalarprodukt und die Winkelberechnung

2 Das Skalarprodukt und die Winkelberechnung Das Skalarprodukt und die Winkelberechnung von Frank Schumann (Fortsetzung) Wir wissen: Die Prüfung, ob zwei Vektoren aufeinander senkrecht stehen oder nicht, kann mithilfe der Eigenschaft skor für skalare

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Versuch E5 Frequenzverhalten von RC-Gliedern. I. Zielsetzung des Versuchs. Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL. a) allgemeine Vorkenntnisse

Versuch E5 Frequenzverhalten von RC-Gliedern. I. Zielsetzung des Versuchs. Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL. a) allgemeine Vorkenntnisse BERGISCHE UNIVERSITÄT WUPPERTAL Versuch E5 Frequenzverhalten von RC-Gliedern I. Zielsetzung des Versuchs 6.06/9.08/9.09 Das RC-Glied, das Sie bereits in E4 kennengelernt haben, soll in diesem Versuch als

Mehr