5 Erwartungswerte, Varianzen und Kovarianzen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5 Erwartungswerte, Varianzen und Kovarianzen"

Transkript

1 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion, d. h. wahrscheinlichster Wert) Median (0, 5-Quantil : mindestens 50 % der Wahrscheinlichkeitsmasse liegt über diesem Punkt, und 50 % darunter; schwer zu berechnen und nicht eindeutig) und Streuungsparameter: Varianz (mittlere quadratische Abweichung) Standardabweichung (Wurzel aus der Varianz) mittlere absolute Abweichung Am einfachsten mathematisch zu handhaben, sind Erwartungswerte und Varianzen, da diese immer eindeutig sind meist leicht zu berechnen sind

2 48 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN 5. Der Erwartungswert einer diskreten Zufallsvariable Definition 5. Der Erwartungswert E(X) EX einer diskreten Zufallsvariable X mit Träger T ist definiert als E(X) x T x P (X x) x T x f(x) wenn diese Summe absolut konvergent ist. Den Erwartungswert eines Zufallsvektors definiert man als den Vektor der Erwartungswerte der einzelnen Komponenten. Man könnte die Summe in obiger Definition auch über alle x R laufen lassen, da für x / T gilt: f(x) 0, also letztlich nur abzählbar viele Summanden ungleich Null sind. Beispiel 5. (Erwartungswert der Bernoulliverteilung) Für X B(π) gilt: { π für x 0 f(x) π für x Daher gilt für den Erwartungswert: E(X) π + 0 ( π) π Beispiel 5.2 (Erwartungswert der Poissonverteilung) Für X P(λ) gilt: Der Erwartungswert lautet daher E(X) λ f(x) λx x! exp( λ) für x N 0 x λx λ x exp ( λ) exp ( λ) x! x0 }{{} (x )! x f(x) ( λ (x+) ) λ x exp ( λ) λ exp ( λ) x! x! x0 x0 }{{} exp (λ)

3 5. Der Erwartungswert einer diskreten Zufallsvariable 49 Eigenschaften des Erwartungswertes:. Sei X a mit Wahrscheinlichkeit, d.h. P (X a). Dann heißt X deterministische Zufallsvariable. Es gilt: EX a 2. Linearität des Erwartungswertes Seien a, b R und X, Y beliebige Zufallsvariablen. Dann gilt: Allgemeiner gilt dann auch: n n E( a i X i ) a i E(X i ) i i E(a X + b Y ) a EX + b EY für a i R und beliebige Zufallsvariablen X i Natürlich gilt auch E(aX + b) ae(x) + b, denn man kann Y als deterministische Zufallsvariable mit Wert Y auffassen. Anwendung für die Linearität des Erwartungswertes: Der Erwartungswert einer binomialverteilten Zufallsvariable X, d.h. X B(n, π), muss EX n π sein, da X darstellbar ist als Summe von n unabhängigen bernoulliverteilten Zufallsvariable X i B(π) (mit i,..., n), wobei jede Zufallsvariable den Erwartungswert E(X i ) π hat: ( n ) n n E X i E(X i ) π n π i i Satz 5. (Erwartungswert von Zufallsvariablen mit Träger N) Hat X den Träger T N, so gilt: E(X) P (X k) Beweis: k P (X k) k k tk t i P (X t) t P (X t) k t P (X t) t EX

4 50 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN Beispiel 5.3 (Erwartungswert der geometrischen Verteilung) Sei X G(π), dann gilt f(x) π ( π) x für x N und damit P (X k) ( π) k Unter Anwendung von Satz 5. kann man den Erwartungswert ausrechnen: E(X) geom.reihe P (X k) k ( π) k k ( π) k k0 ( π) Satz 5.2 (Transformationsregel für Erwartungswerte) Sei X eine diskrete Zufallsvariable und g(x) eine reelle Funktion. Dann gilt für Y g(x): E(Y ) E(g(X)) g(x) f(x) x T Sei (X, Y ) ein Zufallsvektor aus den Zufallsvariablen X und Y mit gemeinsamer Wahrscheinlichkeitsfunktion f XY (x, y) und sei g(x, y) eine reellwertige Funktion. Dann gilt für Z g(x, Y ) : E(Z) E(g(X, Y )) x π g(x, y) f X,Y (x, y) y Speziell gilt daher: E(X Y ) x x y f X,Y (x, y) y Man beachte, dass im Allgemeinen nur bei linearen Funktionen g E(g(X)) g(e(x)) gilt.

5 5. Der Erwartungswert einer diskreten Zufallsvariable 5 Beispiel 5.4 Sei X eine Zufallsvariable mit Wahrscheinlichkeitsfunktion /4 für x 2 /8 für x f(x) /4 für x 3/8 für x 3 Dann ergibt sich der Erwartungswert von E(X 2 ) zu: E(X 2 ) x T x x 2 f(x) ( 2) ( ) Alternativ könnte man zunächst die Wahrscheinlichkeitsfunktion von Y X 2 berechnen, (/4 + /8) 3/8 für x f(y) /4 für x 4 3/8 für x 9 und dann den Erwartungswert von Y direkt bestimmen: E(Y ) y T y y f(y) Man beachte dass E(X2 ) E(X) 2 ( )

6 52 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN 5.2 Varianz und Standardabweichung Definition 5.2 Die Varianz V (X), auch Var(X), einer diskreten Zufallsvariable ist definiert als: Var(X) E[(X EX) 2 ] Erwartete quadratische Abweichung vom Erwartungswert Satz 5.3 (Verschiebungssatz) Zur einfacheren Berechnung der Varianz kann der Verschiebungssatz angewendet werden: Var(X) E(X 2 ) [E(X)] 2 Beweis: Var(X) E[(X EX) 2 ] Eigenschaften von Varianzen: E[X 2 2XEX + (EX) 2 ] EX 2 E(2XEX) + E((EX) 2 ) EX 2 2EXEX + (EX) 2 EX 2 (EX) 2. Var(aX + b) a 2 Var(X) für alle a, b R Dies gilt weil: Var(aX + b) E [ ((ax + b) E(aX + b)) 2] E [ (a(x EX)) 2] E [ a 2 (X EX) 2] a 2 E [ (X EX) 2] a 2 Var(X) 2. Sind X und Y unabhängig, so gilt: Var(X + Y ) Var(X) + Var(Y ) (4) Die Varianz der Summe entspricht der Summe der Varianzen Als Streuungsparameter sind Varianzen noch nicht auf der richtigen Skala, denn sie geben ja die mittlere quadratische Abweichung wieder! Daher definiert man die Standardabweichung:

7 5.2 Varianz und Standardabweichung 53 Definition 5.3 Die Standardabweichung einer diskreten Zufallsvariable X ist definiert als die Wurzel aus der Varianz: σ σ(x) Var(X) Im Gegensatz zur Varianz gilt für die Standardabweichung: σ(ax + b) a σ(x) für alle a, b R Bemerkung: Die mittlere absolute Abweichung E( X EX ) erscheint intuitiver, ist aber deutlich schwerer mathematisch zu handhaben. Beispiel 5.5 (Varianz der Bernoulli-Verteilung) Sei X B(π). Wir wissen EX π. Ferner ist Daher: E(X 2 ) 0 2 f(0) + 2 f() 0 ( π) + π π Var(X) EX 2 (EX) 2 π π 2 π( π) Daher lautet die Varianz für eine binomialverteilte Zufallsvariable Y B(n, π): Var(Y ) n π ( π), da sie ja die Summe von n unabhängigen Bernoulliverteilten Zufallsvariablen Y,..., Y n, jeweils mit Var(Y i ) π( π), ist. Verwende dazu die Gleichung (4). Als Maß für die Streuung einer Verteilung ist die Varianz bzw. Standardabweichung einer Zufallsvariable X schwer direkt zu interpretieren. Es gilt aber folgender Satz: Satz 5.4 (Ungleichung von Tschebyscheff) P ( X E(X) c) Var(X) c 2

8 54 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN Beispiel 5.6 Sei E(X) beliebig und Var(X). Dann ist P ( X E(X) ) P ( X E(X) 2) 4 P ( X E(X) 3) 9

9 5.3 Kovarianz und Korrelation Kovarianz und Korrelation Definition 5.4 Als Maß für die lineare stochastische Abhängigkeit von zwei Zufallsvariablen X und Y definiert man die Kovarianz: und die Korrelation Cov(X, Y ) E[(X EX)(Y EY )] ρ(x, Y ) Cov(X, Y ) VarX VarY unter der Voraussetzung, dass Var(X) > 0 und Var(Y ) > 0 gilt. Für die einfachere Berechnung der Kovarianz kann man auch den Verschiebungssatz anwenden: Satz 5.5 (Verschiebungssatz für die Kovarianz) Beweis: Cov(X, Y ) E(XY ) EX EY Cov(X, Y ) E[(X EX)(Y EY )] E[XY XEY Y EX + EXEY ] E(XY ) EX EY Beachte: E(XY ) kann mit dem Transformationssatz für Erwartungswerte leicht über die gemeinsame Wahrscheinlichkeitsfunktion f XY (x, y) von X und Y berechnet werden. Beispiel 5.7 Die vorliegende Wahrscheinlichkeitsfunktion ist die gleiche wie im Beispiel 4.0. Es wurde festgestellt, dass die Zufallsvariablen X und Y stochastisch abhängig sind. Nun soll die Kovarianz Cov(X, Y ) und die Korrelation ρ berechnet werden. f X,Y (x, y) y y 0 y 2 f X (x) x /8 3/8 2/8 6/8 x 2 2/8 0 3/8 5/8 x 3 0 4/8 3/8 7/8 f Y (y) 3/8 7/8 8/8

10 56 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN Für die Berechnung der Kovarianz werden folgende Werte benötigt: ( ) ( ) 3 E(X Y ) ( ) E(X) E(Y ) ( ) Es ergibt sich: Cov(X, Y ) Für die Korrelation benötigt man noch woraus sich E(X 2 ) E(Y 2 ) Var(X) E(X 2 ) E(X) Var(Y ) E(Y 2 ) E(Y ) und schließlich ρ ergibt. Definition 5.5 Zwei Zufallsvariablen X und Y heißen unkorreliert, wenn d.h. wenn gilt: Cov(X, Y ) 0 bzw. ρ(x, Y ) 0 E(X Y ) EX EY X und Y sind positiv/negativ korreliert, falls gilt: ρ(x, Y ) > 0 bzw. ρ(x, Y ) < 0 Das heißt für größere Werte von X erhält man eher größere/kleinere Werte von Y.

11 5.3 Kovarianz und Korrelation 57 Aus der Unabhängigkeit zweier Zufallsvariablen folgt deren Unkorreliertheit aber der Umkehrschluss gilt i. A. nicht! Beweis: E(XY ) x unabh. x x x y f X,Y (x, y) y x y f X (x) f Y (y) y x f X (x) y f Y (y) y EX EY Gegenbeispiel: Seien X B(π ) und Y B(π ) unabhängig. 2 2 Betrachte: Z X + Y Z 2 X Y 0 mit W keit 4 mit W keit 2 2 mit W keit 4 mit W keit 4 0 mit W keit 2 mit W keit 4 Die gemeinsame Wahrscheinlichkeitsfunktion von Z und Z 2 lautet: Klarerweise gilt nicht: f Z,Z 2 (z, z 2 ) z 0 z z 2 f Z2 (z 2 ) z 2 0 /4 0 /4 z 2 0 /4 0 /4 /2 z 2 0 /4 0 /4 f Z (z ) /4 /2 /4 f(z, z 2 ) f(z ) f(z 2 ) für alle z und z 2, d. h. Z, Z 2 sind nicht unabhängig.

12 58 5 ERWARTUNGSWERTE, VARIANZEN UND KOVARIANZEN Aber E(Z ) E(Z 2 ) 0 E(Z Z 2 ) 0 Cov(Z, Z 2 ) 0 E(Z ) E(Z 2 ) Also sind Z und Z 2 unkorreliert. Während die Kovarianz nicht leicht zu interpretieren ist, ist dies leichter für die Korrelation, da für alle Zufallsvariablenn X, Y gilt: ρ(x, Y ) Dies folgt aus der Cauchy-Schwarzschen Ungleichung: [E(XY )] 2 E(X 2 ) E(Y 2 ) Das heißt, dass die Korrelation in gewisser Weise normiert ist. ρ(x, Y ) gilt genau dann, wenn perfekte lineare Abhängigkeit zwischen X und Y besteht: Y a + b X für bestimmte a und b R mit b 0. Ist b > 0 so ist ρ(x, Y ). Ist b < 0 so ist ρ(x, Y ). Eigenschaften von Kovarianzen: Seien X, Y beliebige Zufallsvariablen und a, b, c, d R, wobei b d > 0. Dann gilt:. Cov(a + bx, c + dy ) b d Cov(X, Y ) Daher: ρ(a + bx, c + dy ) b d Cov(X, Y ) b2 VarX d 2 VarY Cov(X, Y ) VarX VarY ρ(x, Y ) d.h. die Korrelation ist invariant bzgl. linearer Transformationen 2. Cov(X, X) Var(X)

13 5.3 Kovarianz und Korrelation Schließlich gilt für X + Y : Var(X + Y ) E((X + Y ) E(X + Y )) 2 lin. EW ert E(X EX + Y EY ) 2 E(X EX) 2 + E(Y EY ) 2 +2 E [(X EX)(Y EY )] }{{}}{{}}{{} Var(X) Var(Y ) Cov(X,Y ) Insgesamt : Var(X + Y ) Var(X) + Var(Y ) + 2 Cov(X, Y ) Wie bereits erwähnt, gilt für unabhängige X und Y : Var(X + Y ) Var(X) + Var(Y )

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Kapitel 8: Zufallsvektoren

Kapitel 8: Zufallsvektoren Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 03.12.2015 Kapitel 8: Zufallsvektoren Statt einem Merkmal werden häufig mehrere Merkmale gleichzeitig betrachtet, z.b. Körpergröße und

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2

Y = g 2 (U 1,U 2 ) = 2 ln U 1 sin 2πU 2 Bsp. 72 (BOX MÜLLER Transformation) Es seien U 1 und U 2 zwei unabhängige, über dem Intervall [0, 1[ gleichverteilte Zufallsgrößen (U i R(0, 1), i = 1, 2), U = (U 1,U 2 ) T ein zufälliger Vektor. Wir betrachten

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

4.1 Grundlagen: Diskrete & Stetige Zufallsvariablen. 4. Zufallsvariablen. Diskrete Zufallsvariablen (ZVn) Eine diskrete Zufallsvariable

4.1 Grundlagen: Diskrete & Stetige Zufallsvariablen. 4. Zufallsvariablen. Diskrete Zufallsvariablen (ZVn) Eine diskrete Zufallsvariable 4. Zufallsvariablen 4.1 Grundlagen: Diskrete & Stetige Zufallsvariablen Fabian Scheipl, Bernd Bischl Stochastik und Statistik SoSe 2016 1 / 143 Diskrete Zufallsvariablen (ZVn) Fabian Scheipl, Bernd Bischl

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Martin Hutzenthaler & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 27./29.

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

FORMELSAMMLUNG STATISTIK B

FORMELSAMMLUNG STATISTIK B Somersemester 2012 FORMELSAMMLUNG STATISTIK B Prof. Kneip / Dr. Scheer / Dr. Arns Version vom April 2012 Inhaltsverzeichnis 1 Wahrscheinlichkeitsrechnung 2 2 Diskrete Zufallsvariablen 5 3 Stetige Zufallsvariablen

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Hilfsmittel aus Mathematik und Statistik - Materialien zu Investition und Finanzierung -

Hilfsmittel aus Mathematik und Statistik - Materialien zu Investition und Finanzierung - Hilfsmittel aus Mathematik und Statistik - Materialien zu Investition und Finanzierung - Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Finanzierung Universität Passau 2006 Inhaltsverzeichnis Statistik

Mehr

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016

Übungen zu bedingten Erwartungswerten. Tutorium Stochastische Prozesse 13. Dezember 2016 Übungen zu bedingten Erwartungswerten Tutorium Stochastische Prozesse 13. Dezember 2016 Bedingter Erwartungswert Definition Sei X eine reellwertige Zufallsvariable auf (Ω, A, P), so dass E[ X ]

Mehr

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Stochastik für Wirtschaftswissenschaftler

Stochastik für Wirtschaftswissenschaftler Stochastik für Wirtschaftswissenschaftler Hartmut Lanzinger Wintersemester 0/ Inhaltsverzeichnis Wahrscheinlichkeiten Einführung.......................................... Laplacesche Wahrscheinlichkeitsräume...........................

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

2 Zufallsvariablen. 2.1 Induzierter Raum und Verteilung

2 Zufallsvariablen. 2.1 Induzierter Raum und Verteilung 2 Zufallsvariablen 2.1 Induzierter Raum und Verteilung Wir kommen zum wichtigsten Begriff der W-Theorie. In den meisten Situationen sind wir nicht an der gesamten Verteilung interessiert, sondern nur an

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Martin Hutzenthaler & Dirk Metzler 11. Mai 2011 Inhaltsverzeichnis 1 Deterministische und zufällige

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr