Teil I (Richtzeit: 30 Minuten)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Teil I (Richtzeit: 30 Minuten)"

Transkript

1 Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2012 Kurzgymnasium (Anschluss 2. Sekundarklasse, NLM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt die in Klammern angegebene Punkteverteilung. Schreibe die Resultate bitte in die rechte Spalte. Beachte dabei eine Richtzeit von etwa 30 Minuten. Im zweiten Teil ist der Lösungsweg wesentlich. Die Aufgaben können in beliebiger Reihenfolge, müssen aber alle direkt nach der Aufgabe auf diese Blätter gelöst werden. Der Rechenweg muss in der Darstellung ersichtlich sein. Schreibe bitte Zwischenresultate auf. Zeichne und konstruiere sorgfältig! Parallelen und Senkrechte dürfen mit dem Geodreieck gezeichnet werden. Bezeichne die Lösungsfigur bitte sorgfältig. Gesamtzeit für beide Teile: 90 Minuten. Teil I II Total Aufgabe Punkte = = = = = 4 30 erreicht Teil I (Richtzeit: 30 Minuten) Resultate 1 Vereinfache soweit wie möglich: (1 Pt) 2 5 : 2 25m 7m 8 21 = 2 Berechne das kleinste gemeinsame Vielfache der drei Zahlen 56, 182 und 252. (1 Pt) = 3 Einem Quadrat ist ein gleichschenkliges Dreieck so eingeschrieben, dass zwei Eckpunkte des Dreiecks mit zwei

2 Gymnasium Unterstrass Zürich Seite 2 Eckpunkten des Quadrats und die Basis des Dreiecks mit einer Seite des Quadrats zusammenfallen. Die Fläche des Quadrats beträgt cm 2. Berechne die Länge der Basis und eines Schenkels des Dreiecks. Gib deine Ergebnisse in cm an. Genauigkeit: 1 Dezimale. (1.5 Pte) Basis: Schenkel: 4 Bestimme a: (1.5 Pte) 12a a = a = 5 Auf einer Weltausstellung wird eine Nachbildung des Matterhorns gezeigt, welches in Wirklichkeit 4478 m hoch ist. Die Höhe der Nachbildung beträgt m. Wie hoch müsste in diesem Modell der Üetliberg erscheinen? (Höhe des Üetlibergs: 869 m) Gib dein Ergebnis in cm an. Genauigkeit: 2 Dezimalen. (1 Pt) Höhe:

3 Gymnasium Unterstrass Zürich Seite 3 6 In der Klassenkasse befinden sich Franken. Die Klasse mit 23 Schülerinnen und Schülern plant eine Reise nach Amsterdam. Die Bahnfahrt und der Aufenthalt werden pro Person 145 Euro kosten. Wie viele Franken werden sich nach der Reise noch in der Kasse befinden, wenn der Verkaufskurs für 1 Euro 1.25 Fr. beträgt? (2 Pte) Betrag: 7 Die Skizze zeigt den Querschnitt eines Baumstamms als Kreis und den Querschnitt eines Balkens, den man aus dem Baumstamm aussägen kann, als dunkles Rechteck. Welchen Radius muss ein Baumstamm mindestens haben, damit man einen Balken dessen Querschnitt die Abmessungen 18 cm mal 10 cm hat, daraus aussägen kann? Berechne den Radius in cm und runde dein Ergebnis auf zwei Dezimalen. (1 Pt) Der Durchmesser des Baumes nimmt innerhalb von fünf Jahren um 3.5 cm zu. Wie alt muss der Baum mindestens sein, um den Balken aussägen zu können? Runde dein Ergebnis auf eine ganze Zahl. (1 Pt) Radius: Alter:

4 Gymnasium Unterstrass Zürich Seite 4 Teil II (Richtzeit: 60 Minuten) 1 Anna, Beata und Clara haben eine SchülerInnenzeitung gegründet. Um die anfallenden Kosten bezahlen zu können, hat Anna Fr , Beata Fr und Clara Fr in die Kasse gezahlt. a) Mit dem Verkauf von Inseraten in ihrer Zeitung erhalten die drei Mädchen einen Betrag im Umfang von drei Vierteln ihrer gesamten eigenen Einzahlungen. Ein Drittel des gesamten Vermögens wird nun für einen Drucker ausgegeben. Die Hälfte des restlichen Geldes wird für Verbrauchsmaterial ausgegeben. Wie viel Geld ist danach noch in der Kasse der drei Mädchen? b) Die Zeitung hat grossen Erfolg. Sie verkaufen 185 Exemplare zum Preis von Fr. 3.- und erhalten Spenden von verschiedenen Lehrpersonen im Betrag von Fr Diese Einnahmen teilen sie im Verhältnis ihrer geleisteten Einzahlungen in die Kasse auf. Wie viel erhält jedes der drei Mädchen?

5 Gymnasium Unterstrass Zürich Seite 5 2 Annik und Boris spielen mit zwei Tetraederwürfeln, d.h. vierseitige Würfel (siehe Bild). Einer der Würfel ist normal angeschrieben, d.h. mit 1, 2, 3 und 4, der andere Würfel enthält nur die Zahlen 1, 2, 2, 2. a) Beide Würfel werden gleichzeitig geworfen. Wie gross ist die Wahrscheinlichkeit, dass zweimal die gleiche Zahl gewürfelt wird? b) Beide Würfel werden gleichzeitig geworfen. Wenn die Summe der beiden Augenzahlen gerade ist, erhält Annik einen Punkt. Wenn sie ungerade ist, erhält Boris einen Punkt. Boris sagt, das sei ungerecht. Beim zweiten Würfel ist die Chance grösser eine gerade Zahl zu würfeln. Darum habe Annik die grössere Chance einen Punkt zu machen. Stimmt das? Beantworte die Frage, indem du die Wahrscheinlichkeit für einen Punkt für Annik und die Wahrscheinlichkeit für einen Punkt für Boris berechnest.

6 Gymnasium Unterstrass Zürich Seite 6 3 Ein Werkstück hat nebenstehende Form. Berechne das Volumen des Werkstücks a) mit der Variablen a, b) für a = 6 cm.

7 Gymnasium Unterstrass Zürich Seite 7 4 Jede Punktspiegelung ist eine «doppelte» Achsenspiegelung. In der folgenden Darstellung ist das Bild das Resultat einer Punktspiegelung des Originals. Diese Punktspiegelung lässt sich gemäss obiger Aussage durch zwei hintereinander ausgeführte Achsenspiegelungen ersetzen. Eine der beiden Spiegelachsen siehst du bereits eingezeichnet (s 1 ). a) Konstruiere die zweite Spiegelachse s 2 so, dass die nacheinander ausgeführte Spiegelung des Originals an s 1 und s 2 das Bild ergibt. Gib eine kurze Konstruktionsbeschreibung: b) Was ist das Spezielle an den Lagen der beiden Spiegelachsen s 1 und s 2?

8 Gymnasium Unterstrass Zürich Seite 8 5 Die Graphik ist das Resultat einer Untersuchung über die mittlere Dauer des Nachtschlafes bei Säuglingen und Kleinkindern bis 6 Jahren. 100% entsprechen allen untersuchten Kindern. Lesebeispiel: 3% der Kinder schlafen mit 24 Monaten maximal 10 Stunden. a) Hans ist 15 Monate alt und schläft etwa 12 Stunden pro Nacht. Elvira ist fünfeinhalb Jahre alt und schläft etwa 13 Stunden pro Nacht. Bitte zeichne die Daten von Hans mit einem Punkt H und die Daten von Elvira mit einem Punkt E in das Koordinatensystem ein. b) Ist das Schlafverhalten von Hans und Elvira normal? Oder schlafen die Kinder überdurchschnittlich viel oder unterdurchschnittlich wenig? Begründe deine Antwort für beide Kinder! c) Was kann man aus dem Verlauf der mittleren Kurve für Informationen ablesen? Formuliere bitte eine wahre Aussage.

9 Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2012 Mathematik Lösungen 2. Sek: - neues Lehrmittel TEIL 1 1) (1 Punkt für die richtige Lösung) 2) 6552 (1 Punkt für die richtige Lösung) 3) Basis: 4.5 cm; Schenkel: 5.0 cm (je 1 Punkt für die richtige Lösung; je 0.5 Punkte Abzug, wenn die Einheit fehlt) 4) L = {-3.5} oder { } (1.5 Punkte für die richtige Lösung; 1 Punkt, wenn eine Bruchzahl als Lösung angegeben wird, welche noch nicht vollständig gekürzt ist) 5) 43 cm (1 Punkt für die richtige Lösung) 6) Fr. (2 Punkte für die richtige Lösung) 7) Radius: cm (oder 10.3 cm); Alter: 29 Jahre (je 1 Punkt für jede richtige Lösung) TEIL 2 1 a) In der Kasse verbleiben Fr b) Anna erhält Fr , Beata erhält Fr , Clara erhält Fr a) Baum mit zwei Pfaden: (1 Punkt) b) Baum mit 4 Pfaden (wenn man auf der ersten Stufe alle 4 Zahlen aufzeichnet: Boris hat also nicht recht. Da er gewinnt, wenn sie nicht gewinnt, sind beide Gewinnchancen ½ = 50%. Den Baum kann man auch mit zwei Pfaden erledigen, wenn man nur gerade und ungerade unterscheidet. (3 Punkte) 3 a) V=V(Quaders)+V(Prisma)=2a*1,5a*7a+0,5a*0,5a*2a=21a 3 +0,5 a 3 =21,5a 3 b) V=21,5*(6cm) 3 =4644 cm 3 4 a) Konstruktion von s 2 auf verschiedene Weisen möglich, z.b.: (3 Punkte) Spiegelung des Originals an s 1. Schnittpunkte des Zwischenbildes mit dem Bild sind die Fixpunkte der zweiten Spiegelung, müssen also auf s 2 liegen. Vorwissen: beide Spiegelachsen stehen senkrecht zueinander und verlaufen durch den Spiegelpunkt der direkten Punktspiegelung. Verbinden zweier korrespondierender Ecken von Original und Bild liefert als Schnittpunkt mit s 1 den Spiegelungspunkt direkt bestimmen. s 2 ist die Senkrechte zu s 1 durch den Spiegelungspunkt. b) Die beiden Spiegelungsachsen stehen senkrecht zueinander. (1 Punkt) 5 a) Punkte H( ) und E(66 13) richtig einzeichnen b) Hans schläft eher unterdurchschnittlich viel, sein Punkt liegt unter der 50% Kurve, wenn auch nicht massiv. Elvira hingegen schläft überdurchschnittlich viel. Ihr Punkt liegt über der obersten Kurve, so viel wie Elvira schlafen weniger als 3% der Kinder. c) Beispiel: 50% der Kinder schlafen mit 36 Monaten maximal 12 Stunden.

10 Gymnasium Unterstrass Zürich Seite 2 Aufnahmeprüfung 2012 Mathematik Lösungen 3. Sek: - neues Lehrmittel TEIL 1 1) oder (1 Punkt für die richtige Lösung) 2) 525 (1 Punkt für die richtige Lösung) 3) Schenkel: 5.0 cm; Differenz: 0.5 cm (je 1 Punkt für jede richtige Lösung) 4) a = 3.5 oder (1.5 Punkte für die richtige Lösung; 1 Punkt, wenn eine Bruchzahl als Lösung angegeben wird, welche noch nicht vollständig gekürzt ist) 5) Nick: 800 Schritte; Andreas: 1200 Schritte (1 Punkt für die erste richtige Lösung; 0.5 Punkte für die zweite richtige Lösung) 6) Aussage b ist falsch 7) Radius: cm (oder 10.3 cm); Alter: 27 Jahre (je 1 Punkt für jede richtige Lösung; wenn die Gleichung zur Berechnung des Alters fehlerhaft aufgestellt wurde, werden 0.5 Punkte abgezogen) TEIL 2 1 a) In der Kasse verbleiben Fr b) Anna erhält Fr , Beata erhält Fr , Clara erhält Fr a) Baum mit zwei Pfaden: (1 Punkt) b) Baum mit 4 Pfaden (wenn man auf der ersten Stufe alle 4 Zahlen aufzeichnet: Boris hat also nicht recht. Da er gewinnt, wenn sie nicht gewinnt, sind beide Gewinnchancen ½ = 50%. Den Baum kann man auch mit zwei Pfaden erledigen, wenn man nur gerade und ungerade unterscheidet. (3 Punkte) 3 a) V=V(Quaders)+V(Prisma)=2a*1,5a*7a+0,5a*0,5a*2a=21a 3 +0,5 a 3 =21,5a 3 b) V=21,5*(6cm) 3 =4644 cm 3 4 a) Hypotenuse des ersten Dreiecks: = 5 (0.5 Punkte) Streckungsfaktor: k = 5 4 (0.5 Punkte) Hypotenuse des letzten Dreiecks: =15.26 (1 Punkt) b) Folgende Konstruktionsschritte müssen ersichtlich sein: (2 Punkte) Gerade h durch Z und M Senkrechte zu g durch M schneidet den Kreis auf der dem Punkt Z zugewandten Seite im Punkt A Gerade durch Z und A schneidet g im Punkt A Senkrechte zu g durch A schneidet h im Punkt M A M in den Zirkel nehmen und rund um M den Kreis abtragen 5 a) Punkte H( ) und E(66 13) richtig einzeichnen b) Hans schläft eher unterdurchschnittlich viel, sein Punkt liegt unter der 50% Kurve, wenn auch nicht massiv. Elvira hingegen schläft überdurchschnittlich viel. Ihr Punkt liegt über der obersten Kurve, so viel wie Elvira schlafen weniger als 3% der Kinder. c) Beispiel: 50% der Kinder schlafen mit 36 Monaten maximal 12 Stunden.

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2012 Kurzgymnasium (Anschluss 3. Sekundarklasse, NLM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2011 Kurzgymnasium (Neues Lehrmittel) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt folgende

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2013 Kurzgymnasium (Anschluss 2. Sekundarklasse, neues LM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)

Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten

Mehr

Aufnahmeprüfung Mathematik

Aufnahmeprüfung Mathematik Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Informatikmittelschule

Informatikmittelschule Kantonsschulen Hottingen (Zürich) und Büelrain (Winterthur) Informatikmittelschule Aufnahmeprüfung 2016 für das Schuljahr 2017/18 Mathematik Name:................................... Nummer:...................................

Mehr

Lösungen und definitive Korrekturanweisung

Lösungen und definitive Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2013 Kurzgymnasium (Anschluss 3. Sekundarklasse, neues LM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2015 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Mathematik, 2. Sekundarschule

Mathematik, 2. Sekundarschule Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Mathematik, 3. Sekundarschule

Mathematik, 3. Sekundarschule Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite Aufnahmeprüfung 00 Mathematik (. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 00 Kurzgymnasium (Anschluss. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Aufgabe Nr.: Summe Punktzahl: Die Benützung eines Taschenrechners ist nicht gestattet.

Aufgabe Nr.: Summe Punktzahl: Die Benützung eines Taschenrechners ist nicht gestattet. Aufnahmeprüfung 016 Mathematik FMS / HMS Erster Teil - ohne Taschenrechner Name:........................ Kandidatennummer/ Gruppennummer Vorname:........................ Aufgabe Nr.: 1 4 5 6 Summe Punktzahl:

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

5v ( 3) ( 6v)+ 6 9v ] (5a) 2 +8a 2 9ab 2 : = 5v [18v +2 3v] = 5v 15v 2 20v 2. = 33a2 9ab 2 ab

5v ( 3) ( 6v)+ 6 9v ] (5a) 2 +8a 2 9ab 2 : = 5v [18v +2 3v] = 5v 15v 2 20v 2. = 33a2 9ab 2 ab Mathematik Aufnahmeprüfung 016 Lösungen Aufgabe 1 (a) Vereinfache so weit wie möglich: (b) Vereinfache so weit wie möglich: [ 5v ( 3) ( 6v)+ 6 9v ] 3 (5a) +8a 9ab : 3 ab =? =? (a) [ 5v ( 3) ( 6v)+ 6 9v

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Aufgaben. Prüfungsteil 1: Aufgabe 1

Aufgaben. Prüfungsteil 1: Aufgabe 1 Aufgaben Prüfungsteil 1: Aufgabe 1 a) In einer Klasse sind doppelt so viele Mädchen wie Jungen. Gib den Anteil der Jungen und Mädchen als Bruchzahl an. b) Der abgebildete Kegel hat die Maße r = 20 cm und

Mehr

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium

BEISPIELARBEIT. erstmalig 2017 ZENTRALE KLASSENARBEIT MATHEMATIK. Schuljahrgang 6. Gymnasium ARBEIT erstmalig 2017 ZENTRALE KLASSENARBEIT Schuljahrgang 6 Gymnasium Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen,

Mehr

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse

Mathematik I - Prüfung für den Übertritt aus der 9. Klasse su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60

Mehr

Name:... Vorname:...

Name:... Vorname:... Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Bisheriges Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)

Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:

Mehr

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 5 5 5 4 31 Die Prüfung dauert

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung

- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2016 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert 45 Minuten.

Mehr

Tag der Mathematik 2010

Tag der Mathematik 2010 Zentrum für Mathematik Tag der Mathematik 2010 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt

Mehr

Mathematik mathbu.ch

Mathematik mathbu.ch Mathematik mathbu.ch 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 10 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner. Jede richtig gelöste Aufgabe wird mit Punkten bewertet.

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note:

St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note: Kand.-Nummer St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium Mathematik ohne Taschenrechner Dauer 90 Minuten Name: Vorname: Bisherige Schule: Klasse: Schwerpunktfach: Aufgabe 2 3 4 5 6 7 8 9

Mehr

Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden.

Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden. Mathematik Zeit: 120 Minuten Löse jede Aufgabe auf dem dafür vorgesehenen Platz auf den Prüfungsblättern. Wenn zu wenig Platz vorhanden ist, kannst du die Rückseite benutzen. Zeige dies mit einem Pfeil

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Von einer Baustelle soll Schutt abgefahren werden. Der Lkw einer Firma fährt jeweils zweimal am Tag. a) Am ersten Tag transportierte er insgesamt 9500 kg. Bei der ersten Fahrt waren

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe Aufnahmeprüfung 2012 Mathematik FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 4 5 6 7 Summe

Mehr

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2014 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Institut zur Qualitätsentwicklung im Bildungswesen. Name, Vorname: Klasse: Schule:

Institut zur Qualitätsentwicklung im Bildungswesen. Name, Vorname: Klasse: Schule: Institut zur Qualitätsentwicklung im Bildungswesen Name, Vorname: Klasse: Schule: ANWEISUNGEN In diesem Aufgabenheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie E Alle Kopfübungen der Serie E beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

Übertrittsprüfung 2014

Übertrittsprüfung 2014 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an: G = Z. a) (x + 7) 2 = 100 b) (x + 7) 2 > 18 c) (2x 4) 2 (2x + 4) 2 < 64

Mehr

4. Jgst. 1. Tag. Name Vorname Note:

4. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 4. Jgst. 1. Tag 1. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Mathematik Aufnahmeprüfung Teil 1

Mathematik Aufnahmeprüfung Teil 1 Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,

Mehr

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500

MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe. Note Punktzahl: Davon erreicht:

Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe. Note Punktzahl: Davon erreicht: Aufnahmerüfung 201 Mathematik FMS 3 / HMS 3 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruennummer Vorname:....................... Aufgabe Nr.: 1 2 3 5 6 Summe Note

Mehr

Gymnasium Liestal Maturitätsprüfungen 2004

Gymnasium Liestal Maturitätsprüfungen 2004 Gymnasium Liestal Maturitätsprüfungen 2004 Mathematik Klasse 4LM Bemerkungen: Hilfsmittel: Punkteverteilung: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Zentrale Aufnahmeprüfung 2014 für die Handelsmittelschulen des Kantons Zürich

Zentrale Aufnahmeprüfung 2014 für die Handelsmittelschulen des Kantons Zürich Zentrale Aufnahmeprüfung 2014 für die Handelsmittelschulen des Kantons Zürich Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle deine Lösungen in dieses Heft schreiben. Wenn

Mehr

Kopfübungen für die Oberstufe

Kopfübungen für die Oberstufe Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

Kantonale Fachmittelschulen Aufnahmeprüfung Mathematik

Kantonale Fachmittelschulen Aufnahmeprüfung Mathematik Kantonale Fachmittelschulen Aufnahmeprüfung 010 Beachten Sie bitte: Mathematik Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Prüfungsnummer. Zum Lösen der Aufgaben stehen 10 Minuten zur Verfügung.

Mehr

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total

Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Ø Die Algebra 2-Prüfung umfasst 6 Aufgaben. Ø Als Hilfsmittel ist ein nicht algebrafähiger und

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2015 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2016 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2016 REALSCHULABSCHLUSS MATHEMATIK. Pflichtteil 2 und Wahlpflichtteil. Arbeitszeit: 160 Minuten Pflichtteil 2 und Wahlpflichtteil Arbeitszeit: 160 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Kreuzen Sie die Wahlpflichtaufgabe, die bewertet werden soll, an. Wahlpflichtaufgabe

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. 27. Mai 2009

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik. 27. Mai 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2009 im Fach Mathematik 27. Mai 2009 Arbeitsbeginn: 10.00 Uhr Bearbeitungszeit: 120 Minuten

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr

SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 75 68 Pte. = Note 6 Erreichte Punktzahl: Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Dienstag, 9. Mai 01 1:10-14:40 Uhr Allgemeines Diese Prüfung hat 14 Seiten

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Ferienaufgaben Mathematik 8. Klasse

Ferienaufgaben Mathematik 8. Klasse Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet.

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse

Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:

Mehr

Lösungen FMS-Aufnahmeprüfung 2016 Mathematik

Lösungen FMS-Aufnahmeprüfung 2016 Mathematik Lösungen FMS-Aufnahmeprüfung 016 Mathematik 1. Löse die Gleichungen nach x auf und schreibe die Lösung als ganze Zahl oder als gekürzten Bruch: a) x 4x + 9 5 = 3 9 x + 11 15 45 15 5x 5 (4x + 9) = 3 (x

Mehr

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note

Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 5 6 4 5 4 6 30 Die Prüfung dauert 45 Minuten.

Mehr

Realschulabschluss/Sekundarabschluss I 2013 Mathematik

Realschulabschluss/Sekundarabschluss I 2013 Mathematik Hauptteil Wichtiger Hinweis für alle Aufgaben: Runde Endergebnisse auf 2 Stellen hinter dem Komma! Schreibe jeden deiner Lösungswege auf! Aufgaben 1. Die Abbildung zeigt den Grundriss eines Swimmingpools.

Mehr

Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra. Korrekturanweisung

Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra. Korrekturanweisung Bündner Mittelschulen Einheitsprüfung 2015 Arithmetik und Algebra Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. 1-Punkteaufgaben werden nur richtig (1

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Aufnahme in das 1. Ausbildungsjahr. Mathematik

Aufnahme in das 1. Ausbildungsjahr. Mathematik Kantonale Fachmittelschulen Aufnahmeprüfung 04 Aufnahme in das. Ausbildungsjahr Mathematik Beachten Sie bitte: Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Prüfungsnummer. Zum Lösen der Aufgaben

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!

MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst

Mehr

Mathematik Aufnahmeprüfung 2016

Mathematik Aufnahmeprüfung 2016 Mathematik Aufnahmeprüfung 2016 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr