Symmetrien. Transformationen. Affine und euklidische Räume

Größe: px
Ab Seite anzeigen:

Download "Symmetrien. Transformationen. Affine und euklidische Räume"

Transkript

1 Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie, Kunst, Architektur und Musik auf. Eine Transformation auf einer Menge X ist eine bijektive Abbildung T : X X. Zwei Transformationen S und T können hintereinander ausgeführt werden: S T : X X x (S T )(x) =S(T (x)). Die Identität I: X X, x I(x) =x ist eine Transformation. Sie besitzt die Eigenschaft, dass I T = T I = T für alle Transformationen T gilt. Transformationen können invertiert werden, d. h. zu jeder Transformation T gibt es eine Transformation T : X X mit T T = T T = I. Man schreibt T 1 für T. Die Komposition von Transformationen ist assoziativ, d. h. es gilt (S T ) U = S (T U) für alle Transformationen S, T, U. Dies sind gerade die definierenden Eigenschaften einer Gruppe. So heißt eine Menge von Transformationen auf einer Menge X eine Transformationsgruppe, falls sie die Identität I und mit T, T 1,T 2 auch T 1 sowie T 1 T 2 enthält. Die Gesamtheit aller Transformationen auf einer Menge X nennt man die symmetrische Gruppe oder auch Permutationsgruppe S(X) von X. Beispiel Ist X eine endliche Menge mit n Elementen, so ist S(X) = S n die übliche Gruppe der Permutationen; nach Wahl einer Bijektion zwischen X und der Menge {1,...,n} kann man X mit {1,...,n} identifizieren, und dann besteht die Permutationsgruppe S n aus der Menge der Bijektionen σ: {1,...,n} {1,...,n}. Dies ist die übliche Darstellungsweise der symmetrischen Gruppe S n, die für Rechnungen sehr geeignet ist. Beispiel Ist X ein Vektorraum V über einem Körper K, so ist die Menge der linearen bijektiven Abbildungen GL(V ) eine Transformationsgruppe. Beispiel Ist im vorherigen Beispiel K = R und, ein Skalarprodukt, so ist X =(V,, ) ein euklidischer Vektorraum, und man nennt eine lineare Abbildung ϕ GL(V ) orthogonal, falls ϕ(v),ϕ(w) = v, w für alle v, w V gilt. Die Menge der bijektiven orthogonalen Abbildungen O(V ) ist ebenfalls eine Transformationsgruppe. Affine und euklidische Räume Sehr häufig treten Transformationsgruppen als Bewegungsgruppen in affinen oder euklidischen Räumen auf. Wir wollen den Begriff eines affinen bzw. euklidischen G. Wüstholz, Algebra, Aufbaukurs Mathematik, DOI / _2, Springer Fachmedien Wiesbaden 2013

2 4 Symmetrien Raumes kurz präzisieren. Ein affiner Raum A =(V,P,v) besteht aus einem n- dimensionalen Vektorraum V, einer Menge P, deren Elemente Punkte genannt werden, und einer Abbildung v: P P V, die je zwei Elementen P, Q aus P einen Vektor v(p, Q) V zuordnet und folgende Eigenschaften besitzt: (a) Für alle Punkte P P und alle Vektoren v V existiert genau ein Punkt Q P mit v(p, Q) =v. (b) Für alle P, Q, R, P gilt v(p, R) =v(p, Q)+v(Q, R). Für v(p, Q) schreiben wir auch PQ und dann kurz Q = P + PQ. Aus (b) mit R = Q folgt v(p, Q) =v(p, Q) +v(q, Q) und somit v(q, Q) =0. Setzt man R = P, so erhält man v(p, Q) = v(q, P ) (1) Beispiel Wir setzen P = V und v(x, y) =x yfür x, y P. Dannist A =(P,V,v) ein affiner Raum. Beispiel Wir betrachten den Lösungsraum L eines inhomogenen linearen Gleichungssystems Ax = b. EsseiL 0 der Lösungsraum des zugehörigen homogenen Gleichungssystems Ax =0.Dannist(L, L 0,v) ein affiner Raum, wenn definiert ist als v(x, y) =y x. v : L L L 0 Die Dimension von A ist definiert als die Dimension von V. In einem affinen Raum gilt das Parallelogrammgesetz, d. h. es gilt v(p, Q) =v(p,q ) für Punkte P, P,Q, Q P genau dann, wenn v(p, P )=v(q, Q ). Q Q P P Wir identifizieren den affinen Raum A mit seinen Punkten P und schreiben P A für P P. Ein affiner Unterraum A von A ist eine Teilmenge von A mit der Eigenschaft, dass die Menge der v(p, Q) mit P, Q A einen Untervektorraum von V bildet. Affine Unterräume der Dimensionen 1, 2, n 1 heißen Geraden, Ebenen und Hyperebenen. Zwei affine Unterräume A 1, A 2 mit zugehörigen Vektorräumen V 1, V 2 heißen parallel, falls V 1 V 2 oder V 2 V 1 gilt. Eine Abbildung α: P P

3 Die Bewegungsgruppe in der euklidischen Ebene 5 nennt man eine affine Abbildung, falls sie auf dem zugehörigen Vektorraum V eine wohldefinierte und lineare Abbildung induziert, d. h. falls aus P 1 Q 1 = P 2 Q 2 α(p 1 )α(q 1 )= α(p 2 )α(q 2 ) folgt und die durch α( PQ)= α(p )α(q) gegebene Fortsetzung von α auf V linear ist. Eine bijektive affine Abbildung heißt affine Transformation. Die Menge der affinen Transformationen eines affinen Raumes bildet eine Transformationsgruppe. Ist der Vektorraum V in der Definition eines affinen Raumes sogar ein euklidischer Vektorraum, so erhält man einen euklidischen Raum. Hier ist dann zusätzlich der Abstand ρ(p, Q) zweier Punkte P und Q erklärt durch ρ(p, Q) = PQ, PQ. Ist α eine affine Transformation in einem euklidischen Raum, die auf V eine orthogonale Abbildung induziert, so nennt man α eine euklidische Transformation und eine Bewegung, falls die induzierte lineare Abbildung orientierungserhaltend ist. Die Gesamtheit der euklidischen Transformationen und der Bewegungen ist jeweils eine Transformationsgruppe. Die Bewegungsgruppe in der euklidischen Ebene Es sei nun E eine euklidische Ebene, d. h. dim E =2. Dann gibt es neben der Identität I noch drei weitere Typen von euklidischen Transformationen, nämlich Translationen, Drehungen, Spiegelungen. Die drei Typen können dadurch charakterisiert werden, dass Translationen keine Fixpunkte haben, Drehungen genau einen, und es bei Spiegelungen eine Gerade gibt, die festgehalten wird. Jedes w V definiert eine Translation T w : E E, da es für P E genau ein Q E gibt mit PQ = w. Wir setzen Tw (P )=Q, oder anders ausgedrückt Q = P + w, und erhalten eine affine Transformation, die im Fall eines euklidischen Raumes sogar eine Bewegung ist. Solch eine ebene affine Transformation ist dadurch charakterisiert, dass gilt. PT w (P )=w

4 6 Symmetrien Satz Jede ebene euklidische Transformation ist eine Translation oder die Hintereinanderschaltung einer Translation und einer Drehung oder Spiegelung. Beweis Wir wählen einen festen Punkt P 0 und setzen v 0 = P 0 α(p 0 ),wennα die gegebene euklidische Transformation bezeichnet. Dann besitzt die Transformation β = T v0 α den Fixpunkt P 0.Dennesgilt β(p 0 ) = (T v0 α)(p 0 ) = T v0 (α(p 0 )) = T v0 (P 0 + P 0 α(p 0 )) = P 0 + α(p 0 )P 0 + P 0 α(p 0 ) = P 0 P 0 α(p 0 )+ P 0 α(p 0 ) = P 0 unter Beachtung von (1) auf Seite 4. Eine euklidische Transformation mit Fixpunkt ist aber eine Drehung oder Spiegelung [Kn], [Cox, Kap. 3.13]. In ähnlicher Weise kann man die Bewegungen des dreidimensionalen euklidischen Raums beschreiben. Hier setzt sich eine solche Bewegung aus Translationen, Drehungen um eine Achse, Spiegelungen an einer Ebene sowie Punktspiegelungen zusammen. Symmetrie von Objekten In einer euklidischen Ebene betrachten wir nun ein Dreieck. Die Bewegungen, die das Dreieck fest lassen, bilden die Symmetriegruppe des Dreiecks. Es gibt drei mögliche Gestalten für das Dreieck: (i) gleichseitig (ii) gleichschenklig, aber nicht gleichseitig (iii) allgemeine Lage, d. h. weder (i) noch (ii). Im Fall (i) erhält man als Symmetrien die Identität, die Drehung S um den Schwerpunkt um 120 und die Drehung S 2 um 240. Daneben erhält man die drei Spiegelungen an den drei Winkelhalbierenden, die mit T 1, T 2, T 3 bezeichnet werden. Die Symmetriegruppe ist dann gegeben durch D 3 = {I, S, S 2,T,ST,S 2 T }, wo T {T 1,T 2,T 3 } beliebig sein darf. Dies ist eine sogenannte Diedergruppe. Sie ist in diesem Fall isomorph zur Gruppe S 3, die auf den drei Winkelhalbierenden operiert und diese permutiert. Im Fall (ii) erhält man die zyklische Gruppe {I,T}, wobeit die Spiegelung an der von den gleichen Schenkeln definierten Winkelhalbierenden ist. Es gilt {I,T} Z/2Z. Im Fall (iii) ist die Symmetriegruppe die triviale Gruppe {I}.

5 Symmetrie von Objekten 7 Allgemein fassen wir die Gesamtheit der Transformationen einer Menge X, die ein Objekt, d. h. eine Teilmenge M X festhalten, als die Menge der Symmetrien des Objekts auf. Ist G eine Transformationsgruppe von X, so ist die Menge S(M) der Symmetrien von M bezüglich der Transformationsgruppe G gegeben durch S(M) ={T G; T (M) =M}. Es ist klar, dass die Identität I in S(M) liegt und dass mit S, S 1, S 2 auch S 1 und S 1 S 2 in S(M) liegen. Wir nennen S(M) die Symmetriegruppe von M. Beispiel Objekte Ist X = E die euklidische Ebene, so können wir die geometrischen auf Symmetrie hin untersuchen. Man findet die eingezeichneten Symmetrieachsen bzw. Drehpunkte. Beispiel Symmetriegruppen von regulären Polyedern im euklidischen Raum, insbesondere der platonischen Körper Tetraeder Würfel Oktaeder Dodekaeder Ikosaeder sind ein schönes Beispiel für diese Sichtweise von Symmetrien. Wir werden dies später noch eingehend studieren. Beispiel In neuerer Zeit hat sich eine neue Klasse von symmetrischen konvexen Körpern herausgebildet. Sie entstammen ursprünglich der Architektur und werden Fullerene genannt: Das sind regelmäßige Polyeder, die in der Kohlenstoffchemie Bedeutung haben. Beispiel Kristallographische Gruppen sind diskrete Gruppen G von Transformationen im euklidischen Raum A, die Kristalle invariant lassen. Sie können ganz abstrakt definiert werden als Gruppen von solchen Transformationen, für die der Raum G\A der Linksnebenklassen kompakt ist. Ein Beispiel hierfür ist das Kochsalz NaCl (siehe Abbildung 1). Seine Symmetrien sind

6 8 Symmetrien Abbildung 1: Kristallstruktur von Kochsalz Permutationen der Koordinatenachsen, Spiegelung an den Koordinatenachsen, Translationen mit Vektoren mit ganzzahligen Koordinaten. Es stellt sich dann sofort die Frage nach der Anzahl der Symmetrien oder genauer nach der Ordnung der Symmetriegruppe. Diese ist manchmal endlich, wie bei den Platonischen Körpern, manchmal auch unendlich, wie bei den ebenen Pflasterungen. Als Beispiel für den ersten Fall erwähnen wir den folgenden grundlegenden Satz Raum. Es gibt nur endlich viele kristallographische Gruppen im euklidischen Im Fall der euklidischen Ebene kann dieses Ergebnis noch präzisiert werden kann. Denn hier gilt der folgende interessante Satz In der euklidischen Ebene gibt es genau 17 paarweise nicht-isomorphe kristallographische Gruppen. Etwas komplizierter wird es im dreidimensionalen euklidischen Raum. Hier gilt: Satz Im dreidimensionalen euklidischen Raum gibt es genau 219 nicht-isomorphe kristallographische Gruppen. Diese Gruppen können alle auch tatsächlich als Symmetriegruppen von echten, d. h. in der Natur vorkommenden Kristallen realisiert werden.

7

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 10 Bewegungen Wir haben schon mehrfach die Würfelgruppe betrachtet, also die Gruppe der eigentlichen Symmetrien an einem Würfel.

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Endliche Gruppen orthogonaler Transformationen in dreidimensionalen reellen Vektorräumen

Endliche Gruppen orthogonaler Transformationen in dreidimensionalen reellen Vektorräumen Endliche Gruppen orthogonaler Transformationen in dreidimensionalen reellen Vektorräumen Proseminar: Geometrie und Darstellungstheorie Fakultät für Mathematik Basierend auf Finite Reflection Groups von

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe,

2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Diskrete Geometrie (Version 3) 20. November 2011 c Rudolf Scharlau 133 2.5 Diskrete Bewegungsgruppen I: die Punktgruppe, Friesgruppen In diesem Abschnitt ist wie bisher ein euklidischer (Vektor-)Raum E

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 51 Numerische Bedingungen für endliche Symmetriegruppen im Raum Lemma 51.1. Es sei G SO 3 (R) eine endliche

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Symmetrische Figuren von Prof. Dr. Frank

Symmetrische Figuren von Prof. Dr. Frank Symmetrische Figuren von Prof. Dr. Frank Eckhard Großmann November 3, 2009 1 Mathematische Formeln und Darstellungen vorweggegriffen Dieses Kapitel soll nochmal alle notwendigen mathematischen Grundlagen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II Universität Bielefeld WS 2012/13 GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II DR. PHILIPP LAMPE Rat sucht man deshalb, weil man die einzige Lösung kennt, aber nichts davon wissen will. Erica Jong

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Reguläre Polyeder und ihre Symmetriegruppen. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin

Reguläre Polyeder und ihre Symmetriegruppen. Teilnehmer: Gruppenleiter: Humboldt-Universität zu Berlin Reguläre Polyeder und ihre Symmetriegruppen Teilnehmer: Anna Bobenko Aymara Fehéri Mehdi Hassan Hamzé Pascal Gussmann Tuyen Vu Xuan Herder-Oberschule Heinrich-Hertz-Oberschule Herder-Oberschule Heinrich-Hertz-Oberschule

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

4.3 Affine Punkträume

4.3 Affine Punkträume 4.3. AFFINE PUNKTRÄUME 185 4.3 Affine Punkträume Es wird jetzt der Übergang von der linearen Algebra zur analytischen Geometrie beschrieben. 4.3.1 Definition (affiner Punktraum) Sei V ein K-Vektorraum,

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Im Folgenden

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 39 Definitheit von Bilinearformen Wir möchten die symmetrischen Bilinearformen über den reellen Zahlen klassifizieren.

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

5 Analytische Geometrie

5 Analytische Geometrie 5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

10. Affine und euklidische Geometrie.

10. Affine und euklidische Geometrie. 10. Affine und euklidische Geometrie. In der analytischen Geometrie beschreibt man nach Wahl eines Koordinatensystems Punkte durch n-tupel von Zahlen (n = 2 für die Ebene, n = 3 für den 3-dimensionalen

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

Kapitel 6. Geometrie. 6.1 Affine Räume

Kapitel 6. Geometrie. 6.1 Affine Räume Kapitel 6 c M. Roczen und H. Wolter Preview zur aktuellen Fassung: Lineare Algebra individuell Online Ver. 0.52, 28.5.2005 Alle Rechte vorbehalten Geometrie Im weiten Feld der Geometrie befassen wir uns

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Hüllen und Kombinationen

Hüllen und Kombinationen Hüllen und Kombinationen 2 Die zulässigen Bereiche in der Linearen Optimierung sind Lösungen von linearen Ungleichungssystemen. Deswegen müssen wir die Werkzeuge der linearen Algebra um Elemente erweitern,

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 8 (SS 2011) Abgabetermin: Donnerstag, 9. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Hermitesche

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Deckabbildungen, Ornamente und Parkettierungen

Deckabbildungen, Ornamente und Parkettierungen 27. November 2014 Inhaltsverzeichnis Begrisklärung 1 Begrisklärung 2 3 4 5 6 Deckabbildungen Begrisklärung Deckabbildungen Ornamente Parkettierung Denition Sei h eine Kongruenzabbildung der Ebene E und

Mehr

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Semestralklausur Einführung in die Algebra für M, MCS, LaG Fachbereich Mathematik Prof. Dr. Jürgen Bokowski Dipl.-Math. Hasan Gündoğan Dr. Lars Schewe Wintersemester 2007/2008 4. Februar 2008 Semestralklausur Name in Druckschrift:......................... Vorname

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen?

Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? Gruppen, Graphen, Symmetrie Was sind negativ gekrümmte Gruppen? MNU-Landestagung. 02/2012. Regensburg Clara Löh Fakultät für Mathematik. Universität Regensburg Überblick Zwei Paradigmen der modernen (theoretischen)

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Symmetrie von Ornamenten

Symmetrie von Ornamenten Symmetrie von Ornamenten Teilnehmer: Theresa Lechner Alexey Loutchko Dennis Menge Simon Reinke Fynn Strohecker Thimo Wellner Gruppenleiter: Jürg Kramer Anna v. Pippich Gymnasium Ernestinum, Coburg Heinrich-Hertz-Oberschule,

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

Übungen zur Geometrie

Übungen zur Geometrie Aufgabe 1.1. Beweisen Sie die folgende Aussage: Die Diagonalen eines Parallelogrammes schneiden sich in ihren Mittelpunkten. Aufgabe 1.2. Beweis von: rechter Winkel = stumpfer Winkel D A E M F B C AB beliebige

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen.

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. 4. Symmetrien 25 4. Symmetrien 4.1 Gruppen Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. Eine Verknüpfung auf einer Menge M ist eine Abbildung, die zwei Elementen

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3 Strukturen aus der Algebra: Gruppe, Ringe, Körper 3.1 Gruppen Vergleicht man die Gesetze (A1 (A4 und (M1 (M4, so stellt man eine grosse Ähnlichkeit in den Strukturen fest. Man kann das zugrundeliegende

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen

9 Aus der linearen Algebra. Themen: Lineare Abbildungen Darstellung durch Matrizen 9 Aus der linearen Algebra Themen: Der à n Lineare Abbildungen Darstellung durch Matrizen Der à n besteht aus den n-tupeln mit x i Ã. x 1 x 2 x = (x 1, x 2,...,x n ) oder x =. x n Der à n besteht aus den

Mehr

g g 1 = g 1 g = e. (79)

g g 1 = g 1 g = e. (79) B Anhang B B.1 Kristallographische Symmetriegruppen B.1.1 Definition Eine Menge G = {g 1, g 2,...,g k,... } von Elementen g k nennt man eine Gruppe, wenn die Verknüpfung (Operator: ) der Elemente g k die

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum

6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum Kapitel II Lineare Algebra und analytische Geometrie 6 Affine Abbildungen Bei der Definition affiner Abbildungen gehen wir von der linearen Algebra aus und kommen aus guten Gründen erst danach zum geometrischen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt ITET Diskrete Mathematik WS 2/3 R. Suter. a) r s = r + )s + ). Assoziativität: Ist erfüllt, denn Musterlösung Serie 3 r s) t = r + )s + ) + ) t + ) = r + )s + )t + ) = r + ) s + )t + ) + ) = r s t) Neutrales

Mehr