Regressionsrechnung und Korrelationsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Regressionsrechnung und Korrelationsrechnung"

Transkript

1 Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache Regressosaalyse - multple Regressosaalyse Beschrebede Statstk

2 Modul : Probleme be der Abhäggketsaalyse Problem : Abhäggketsaalyse muß svoll se! (Korrelato Kausaltät) Kartoffelverbrauch Mrd. kwh 6kg 7kg 8kg 9kg kg kg kg Schekorrelato De Date stamme aus: Statstsche Jahrbücher der Budesrepublk Deutschlad ? Eergeverbrauch Mrd. kwh Mrd. kwh 8 Mrd. kwh 6 Mrd. kwh 4 Mrd. kwh Mrd. kwh - + Wohlstad Beschrebede Statstk 3 Modul : Kausaltät kausaler Zusammehag Ursache-Wrkugs-Bezehug Korrelato statstscher Zusammehag Eerge-Spare durch höhere Kartoffel-Verbrauch? Mrd. kwh Mrd. kwh 8 Mrd. kwh 6 Mrd. kwh 4 Mrd. kwh Mrd. kwh Mrd. kwh 6kg 7kg 8kg 9kg kg kg kg de sost köte ma de Eerge-Verbrauch durch Kartoffel- Verbrauch beeflusse Schekorrelato (ke kausaler Zusammehag) Eerge-Spare durch höhere Kartoffel-Verbrauch? Mrd. kwh De Date stamme aus: Statstsche Jahrbücher der Budesrepublk Deutschlad Mrd. kwh 8 Mrd. kwh 6 6 Mrd. kwh 4 4 Mrd. kwh Mrd. kwh Mrd. kwh 6kg 7kg 8kg 9kg kg kg kg Beschrebede Statstk De Date stamme aus: Statstsche Jahrbücher der Budesrepublk Deutschlad

3 Modul : Kausaltät kausaler Zusammehag Ursache-Wrkugs-Bezehug Korrelato statstscher Zusammehag Schekorrelato (ke kausaler Zusammehag) Statstker Beschrebede Statstk Fachwsseschaftler gesuder Mescheverstad 5 Modul : Überblck Regressosrechug ud Korrelatosrechug Iput: Beobachtugswertepaare (, y ),..., (, y ) Streuugsdagramm = Regressosrechug z.b. r = +,65 - r + formert über de - Stärke des leare Zusammehags - Rchtug des leare Zusammehags Beschrebede Statstk Output: Regressosfukto y= a+ b Streuugsdagramm = 6

4 Modul : Regressosrechug Voraussetzuge: - ud quattatve (metrsche) Merkmale - Vorberetede Arbete: - Überprüfug, ob Abhäggketsaalyse svoll - Erhebug vo Date für ud (,y ),, (,y ). Schrtt: Vsualserug Streuugsdagramm (qualtatve Abhäggketsaalyse). Schrtt: Auswahl ees Fuktostyps (her: Beschräkug auf leare Fuktoe) 3. Schrtt: Berechug der Regressosfukto (Methode der kleste Quadrate) Beschrebede Statstk 7 Modul : Bespel Regressosrechug (ud Korrelatosrechug) Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) Summe 6 Verkaufsfläche Flalumsatz Rchtug der Abhäggket (des Zusammehags) Form der Abhäggket (des Zusammehags) Stärke der Abhäggket (des Zusammehags) Beschrebede Statstk 8

5 Modul : 3. Schrtt (Bespel) Bestmmug der Regressosfukto ach der Methode der kleste Quadrate Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) Summe 6 Flalumsatz (Mo ) (, y ) ŷ = a+ b ŷ = a + b Verkaufsfläche (. qm) Beschrebede Statstk ˆ (,y ) 9 Modul : 3. Schrtt: Bestmmug der Regressosfukto ŷ = a+ b Bestmme de Regressoskoeffzete a ud b so, daß de Summe der Abwechugsquadrate ˆ = = = SAQ(a,b)= (y - y ) (y -(a + b )) mmal st. Methode der kleste Quadrate (OLS = ordary least squares) Beschrebede Statstk

6 Modul : Berechug der Regressosfukto (Bespel) Tabelle zur Berechug der Regressoskoeffzete a ud b ud des Korrelatoskoeffzete r Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) y Summe y y y = = = = ( ) = = a = = = = = y y b = = = = = = = = ( ) = = Beschrebede Statstk Modul : Iterpretato der Ergebsse Flalumsatz (Mo ) 5 Regressoskoeffzete a: 4 b: 3 ŷ = a+ b = Verkaufsfläche (. qm). Umsatzprogose für eue Flale mt 4.5 qm. Loht sch ee Erweterug eer Flale um. qm? Beschrebede Statstk

7 Modul : Progose auf der Bass eer Regressosfukto Flalumsatz (Mo ) 5 4 3? Umsatzprogose für Flale? mt 3.5 qm Verkaufsfläche: ,5 =,5 Mo mt. qm Verkaufsfläche: 5 + 5, =, Mo mt 8.5 qm Verkaufsfläche: ,5 = 47,5 Mo ŷ = a+ b = Verkaufsfläche (. qm) (Iterpolato) (Etrapolato) (Etrapolato) Beschrebede Statstk 3 Modul : Absatzmege Absatzmege p Pres ( ) p Pres ( ) Empre Realtät Theore Modell Modell = verefachtes Abbld der Realtät Beschrebede Statstk 4

8 Modul : Regressosrechug: ˆ(p) = a + b p = 5 p Absatzmege Spezfkato des Modells Schätzug der Parameter a, b p Pres ( ) Beschrebede Statstk 5 Modul : Regressos- ud Korrelatosrechug Regressosrechug: ˆ(p) = a + b p = 5 p Absatzmege Spezfkato des Modells Schätzug der Parameter a, b p Pres ( ) We gut beschrebt das Modell de Realtät? We gut wrd de Realtät durch das Modell wedergegebe? Wr brauche Gütemaße für de Schätzug der Parameter. We gut st de goodess of ft (Apassugsgüte) We gut beschrebt de Regressosfukto de Abhäggket? Beschrebede Statstk 6

9 Modul : Korrelatosrechug Zel: Statstsche Kezahl, de formert - über de Stärke des leare Zusammehags zwsche zwe Merkmale ud, - über de Rchtug des leare Zusammehags, - we gut de Regressosfukto de Abhäggket zwsche ud beschrebt. Korrelatoskoeffzet r - r + Beschrebede Statstk 7 Modul : Korrelatosrechug y Kovaraz y IV I COV(,) = ( ) (y y) ( ) (y y) III II = (,y ) Quadrat I II III IV Vorzeche vo ( ) (y y) Beschrebede Statstk 8

10 Modul : Korrelatosrechug Korrelatoskoeffzet r : - r + r = = ( ) (y y) COV(,) = = = s s ( ) (y y) = = = y y y y = = Beschrebede Statstk 9 Modul : Korrelatosrechug (Übug: Aufgabe.5) Korrelatoskoeffzet - r + Maßzahl für de Stärke des leare Zusammehags zwsche ud A D B E C F G H I Beschrebede Statstk Abbldug.6

11 Modul : Tabelle zur Berechug der Regressoskoeffzete a ud b ud des Korrelatoskoeffzete r Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) y Summe y r ( ) (y y) ( y) y COV(,) = r = = = = = s s s s ( ) ( y ) y = = Beschrebede Statstk Modul : Tabelle zur Berechug der Regressoskoeffzete a ud b ud des Korrelatoskoeffzete r Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) y Summe y = r = = ( ) ( y ) y = = ( y) y ,5,5,5 = = = =+,77,5 5,58,8 7,676 Beschrebede Statstk

12 Modul : Zur Iterpretato des Korrelatoskoeffzete mttlere Korrelato mttlere Korrelato - -,8 -,5 +,5 +,8 + starke Korrelato schwache Korrelato kee Korrelato schwache Korrelato Es kommt aber mmer auf das Problem a starke Korrelato Beschrebede Statstk 3 Modul : erklärede Varable Verkaufsfläche uterschedlch groß Flalumsätze uterschedlch hoch Warum??? We gut erkläre de Uterschede be de Verkaufsfläche de Uterschede be de Flalumsätze? We gut erklärt de Regressosfukto de Abhäggket zwsche Verkaufsfläche ud Flalumsatz? Beschrebede Statstk 4

13 Modul : Abwechugszerlegug (y y) = (y y ˆ ) + (yˆ y) Flalumsatz (Mo ) 5 4 ( ;y ) = (6;4) y yˆ 3 y = 5 ŷ y ˆ (,y ) = (6;35) ŷ = a+ b = Verkaufsfläche (. qm) Beschrebede Statstk 5 Modul : Abwechugszerlegug (y y) = (y y ˆ ) + (yˆ y) dese Abwechug ka cht erklärt werde durch de größere Verkaufsfläche; se hat adere Ursache. dese Abwechug ka erklärt werde durch de größere Verkaufsfläche Flale Nr. 3: (4 5) = (4 35) + (35 5) Mo 5 = 5 + Mo Beschrebede Statstk 6

14 Modul : Abwechugsaalyse: (y y) = (y y ˆ ) + (yˆ y) Resduum = u = (y y ˆ ) Streuugs(Varaz)zerlegug: ma ka bewese (y ˆ ˆ y) = (u u) + (y y) = = = s = s + s u ˆ Beschrebede Statstk 7 Modul : Flalumsatz (Mo ) y = 5 ŷ = a+ b = Verkaufsfläche (. qm) Beschrebede Statstk 8

15 Modul : Flalumsatz (Mo ) y = 5 ŷ = a+ b = Verkaufsfläche (. qm) Beschrebede Statstk 9 Modul : Tabelle zur Berechug der Regressoskoeffzete a ud b ud des Korrelatoskoeffzete r Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) y Summe y ŷ = 5+ 5 ŷ = = 4 = = = = = 4 = = = ˆ ˆ ˆ 4 = s ( y ) y s ( ) ,5 6,5 s = ( y ) y = ( ) 5 = 687,5 65 = 6,5 Beschrebede Statstk 3

16 Modul : Tabelle zur Berechug der Regressoskoeffzete a ud b ud des Korrelatoskoeffzete r Flale Nr. Verkaufsfläche (qm) y Flalumsatz (Mo ) y Summe y ŷ u = (y y ˆ ) Varaz der Resdue: s u ( u ) u 4 ( ( 5) 5 ( ) ) = 4 5 = 6,5 = = = Beschrebede Statstk 3 Modul : Bestmmthetsmaß Bestmmthetsmaß B = durch de Regresso erklärte Varaz des abhägge Merkmals Gesamtvaraz des abhägge Merkmals z.b. Kaufhauskozer A s, Ŷ 6 5 B = = =, s 5 5 Beschrebede Statstk 3

17 Modul : Bestmmthetsmaß Bestmmthetsmaß B = s s Ŷ Varaz der Regressoswerte = = r Varaz des abhägge Merkmals s = b s ˆ B = r : Atel der Varaz des abhägge Merkmals, der sch erkläre läßt durch de Varaz des uabhägge Merkmals. z.b. = Verkaufsfläche, = Flalumsatz r =,77 B = r =,5 bedeutet: 5% der Varaz der Flalumsätze lasse sch erkläre durch de Varaz der Verkaufsfläche. De adere 5% lasse sch ur durch adere Eflußfaktore erkläre. Beschrebede Statstk 33

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

1. Ökonometrische Modelle ohne Stochastik

1. Ökonometrische Modelle ohne Stochastik .. Ökoometrsche Modelle ohe Stochastk Emprsche Wrtschaftsforschug st otwedge Ergäzug der Wrtschaftstheore, dem se de Wahrhetsgehalt des theoretsche Hpothesegeäudes a der ökoomsche Wrklchket, d. h. a der

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert:

Der Korrelationskoeffizient ist ein Maß für den linearen Zusammenhang zwischen zwei Variablen X und Y. Er ist durch folgende Formel charakterisiert: Korrelatoskoeffzet Der Korrelatoskoeffzet st e Maß für de leare Zusammehag zwsche zwe Varable X ud Y. Er st durch folgede Formel charaktersert: r y corr XY Statstk für SozologIe y y y y y y y y Kozept

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Einführung in die Stochastik 3. Übungsblatt

Einführung in die Stochastik 3. Übungsblatt Eführug de Stochastk 3. Übugsblatt Fachberech Mathematk SS 0 M. Kohler 06.05.0 A. Fromkorth D. Furer Gruppe ud Hausübug Aufgabe 9 (4 Pukte) Der Mkrozesus st ee statstsche Erhebug. Herbe werde ach bestmmte

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Deskriptive Statistik und Explorative Datenanalyse

Deskriptive Statistik und Explorative Datenanalyse rger Gabler PLU Zusatzformatoe zu Mede vo rger Gabler Thomas Cleff Desrtve tatst ud Eloratve Dateaalse Ee comutergestützte Eführug mt Ecel, P ud TATA 05 3., überarbetete ud erweterte Auflage rger Gabler

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Formelzusammenstellung

Formelzusammenstellung Hochschule Müche Faultät Wrtschaftsgeeurwese Formelzusammestellug zugelasse für de Prüfug Dateaalyse der Faultät 09 für Wrtschaftsgeeurwese Prof. Dr. Voler Abel Formelsammlug Dateaalyse / Ihaltsverzechs

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF

Alternative Darstellung des 2-Stichprobentests für Anteile. Beobachtete Response No Response Total absolut DCF CF Alteratve Darstellug des -Stchprobetests für Atele DCF CF Total 111 11 3 Respose 43 6 69 Resp. Rate 0,387 0,3 0,309 Beobachtete Respose No Respose Total absolut DCF 43 68 111 CF 6 86 11 69 154 3 Be Gültgket

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practcal Numercal Trag UKNum Statstk, Datemodellerug PD. Dr. C. Mordas Ma-Plack-Isttute für Astroome, Hedelberg Programm: ) Repetto elemetare Statstk 2) Regressosaalyse 3) Leare Regresso 4) Ncht-leare

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik:

II. Beschreibende Statistik II.1 Merkmale und wichtige Begriffe. Aufgabe der beschreibenden Statistik: II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Statistische Kennzahlen für die Streuung

Statistische Kennzahlen für die Streuung Statstsche Kezahle für de Streuug Ordale Date,..., W X,,..., WX {(j) j,..., J} () < () < < (J) {(),...,(J)} (3) () 3 () Geordete Lste k X (k) () () 3 () Smpso s D ud H() sd awedbar, allerdgs wrd Iformato

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial

Test für Varianz. Test für Varianz. Test für Varianz. Die Kontingenztabelle. Statistik 2 4. Vorlesung. Wiederholung: zweidimensionales Datenmaterial Statstk 4. Vorlesug Test für Varaz Estchprobetest für de Varaz: Hat de Varaz ee bestmmte Wert, bzw. legt er eem bestmmte Berech? Etschedug basert auf dem Ergebs eer ezge Stchprobe. Zwestchprobetest für

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten

Hinweise zum Hochrechnungsverfahren für die Arbeit mit den Daten Kraftfahrzeugverkehr Deutschlad 2010 (KD 2010) Abschlussverastaltug am 24. Aprl 2012 bem BMVBS Bo Hwese zum Hochrechugsverfahre für de Arbet mt de Date Prof. Dr. Wlfred Stock IVT Isttut für agewadte Verkehrsud

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Induktion am Beispiel des Pascalschen Dreiecks

Induktion am Beispiel des Pascalschen Dreiecks Iduto am Bespel des Pascalsche Dreecs Alexader Rehold Coldtz 0.02.2005 Eletug vollstädge Iduto De vollstädge Iduto st ebe dem drete ud drete Bewesverfahre ees der wchtgste der Mathemat. Eher bespelhaft

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert)

Deskriptive Statistik2 Durchschnittswert (der arithmetische Mittelwert) Lagemasse, Lokatosmasse Lageparameter. Charakterserug das Zetrum der Date Deskrptve Statstk Durchschttswert (der arthmetsche Mttelwert) average(...) Mttelwert(...) K (Modalwert, Dchtemttel): der Wert mt

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

Regressions- und Korrelationsanalyse

Regressions- und Korrelationsanalyse Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme aus der deskrptve Statstk Regressos- ud Korrelatosaalyse Modellaufgabe Übuge Lösuge www.f-lere.de Was bedeutet Regressos-

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Testverfahren bei der linearen Einfachregression

Testverfahren bei der linearen Einfachregression Tetverfahre be der leare Efachregreo Tetverfahre zur Prüfug der Regreoparameter Tetverfahre zur Prüfug der Korrelatokoeffzete Tetverfahre zur Prüfug der etmmthet Prof. Kück / Dr. Rcabal Delgado Lehrtuhl

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen

Modul 10: Konzentrationsmesssung. Prof. Dr. W. Laufner Beschreibende Statistik. Konzentrationskurve. Visualisierung. statistische Kennzahlen Modul 0: Kozetratosmesssug Modul 0: Kozetratosmessug Kozetrato absolute Kozetrato (Kozetrato. e. S.) Kozetratoskurve - Kozetratosrate - Herfdahl sches Kozetratosmaß Vsualserug statstsche Kezahle relatve

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Schiefe-, Wölbungs- und Konzentrationsmaße

Schiefe-, Wölbungs- und Konzentrationsmaße Statstk für SozologIe Schefe-, Wölbugs- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen

( ) ( ) ) ( ) 1/ ( ) Beispiel: U = y1. 3. Ergänzungen zur Haushaltstheorie, insbesondere Dualität und Anwendungen Prof. Dr. Fredel Bolle 3. rgäzuge zur Haushaltstheore, sbesodere Dualtät ud Aweduge (Btte wederhole Se zuächst emal de Haushaltstheore aus Mkro I!!!) komme gegebe errechbare Idfferezkurve festgelegt Güterprese

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D:

Ein Maß für die Ungleichheit bzw. Heterogenität kategorialer Daten ist Simpsons normiertes D: Streuug omalkalerter Varable Streuug omalkalerter Varable: Smpo D Gültg WHITE BLACK OTHER Geamt RACE OF RESPODET Gültge Kumulerte Häufgket Prozet Prozete Prozete 483 83, 83, 83, 388 13, 13, 96, 11 4, 4,

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

Regression und Korrelation

Regression und Korrelation Regreo ud Korrelato regreo: Zurückführug, Rückchrete correlato: Wechelbezehug Praktche Aäherug (Bepel1) wevele Ewemoleküle d dem Blutplama? (Stück, mol, g, ) we gro t de Ewekozetrato de Blutplama? (St/L,

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr