-Q 1 Nach Aufladen C 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "-Q 1 Nach Aufladen C 1"

Transkript

1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich

2 b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken Kapazitäten addieren sich

3 2.2 Der Ohm sche Widerstand Wirkung (j) ist der Ursache (E) proportional: Materialgleichung des Leiters (statt D = : Leitfähigkeit (Materialparameter) 0 E für Dielektrikum) Ohne Strom: E=0 im Leiter Mit Strom: homogenes Feld

4 Homog. Stromröhre L A j R: Widerstand, geometrieabhängig = -1 : spezifischer Widerstand, Materialparameter [R] = 1 Ohm = 1 = 1 V A -1,[ ] = 1 m Ohm sches Verhalten: Spannung und Stromstärke sind einander proportional. U--Kennlinie U Anstieg: R Gilt nicht immer! Gegenbeispiele: Gasentladung, HL-Bauelemente

5

6 Verschaltung Ohm scher Widerstände Lösung mit Maschen- und Knotensatz. (i) Reihenschaltung R 1 R 2 Die Widerstände addieren sich: U (ii) Parallelschaltung 2 R 2 1 R 1 Die reziproken Widerstände (Leitwerte) addieren sich: U

7 2.2 Leistung von Strömen (Joule sche Wärme) Betrachten: Teilchen mit Masse m und Ladung q im homogenen E-Feld. Erfährt ständige Beschleunigung durch Kraft F = q E. Stationärer Strom bedeutet aber v = const.!? Zeitliche Änderung der mechanischen Energie des Teilchens: Mit r = r(t) : Energie pro Zeiteinheit = Leistung, die das Teilchen abgibt.

8 Kontinuierliche Ladungsdichte: q Leistungsdichte des Stromes [p S ]= C m -3 m s -1 N C -1 = J s -1 m -3 = W m -3 Homog. Stromröhre: V = AL, j = /A, U=E L Gesamtleistung des Stromes: Die Leistung des Stromes ist das Produkt von Spannung und Stromstärke. [P] = 1 W, 1 W = 1 A V = 1 C s -1 1 Nm C -1 = 1 J s -1

9 Ohm scher Leiter bzw. Diese Leistung kann in Verbrauchern (mechanisch, chemisch,...) nutzbar gemacht werden. m einfachen Leiter wird sie praktisch vollständig in (Joule sche) Wärme umgesetzt. P = U ist dann die Heizleistung.

10 2.4 Beispiele elementarer Schaltungen (Spannungs- und Strommessgeräte: meistens durch nduktion später) (i) Wheatstone-Meßbrücke Ziel: Bestimmung eines unbekannten Widerstandes R X! Einfache -U-Messung ist durch nnenwiderstände der Messgeräte ungenau. Brückenschaltung: Bestimmung von R X aus drei bekannten Widertänden R 1, R 2 und R 3, von denen mindestens einer (R 3 ) verstellbar sein muss.

11 R 2 2 R X Stromlose Messung: R 3 wird so lange variiert bis =0 R 1 R 3 1 Praktische Realisierung: Schleifdraht

12 (ii) Kompensationsmethode Ziel: Stromlose Messung einer unbekannten Spannung U X! Referenzspannung U gegeben. U X X U r R-r Für r X =0: R-r R Prinzip des unbelasteten Potentiometers Messautomatisierung: Strommessgerät wird durch Motor ersetzt, der Potentiometer solange verstellt bis Strom =0.

13 (iii) nnenwiderstand einer Spannungsquelle Ziel: Leistungsanpassung! Leerlaufspannung U 0, bei Belastung U < U 0 R i Ersatzschaltbild U 0 R U R i : nnenwiderstand (Zuleitungen, Wicklungen, Elektrolytwiderstand, ) R: Widerstand des Verbrauchers Klemmspannung bei Stromfluss

14 Fallende Spannung-Strom-Kennlinie U U 0 Neigung: -R i Maximalstrom: max =U 0 /R i Leistungsabnahme des Verbrauchers P P max = U 02 /4R i U<<U 0 <<max Leistungsanpassung: P max bei R=R i 1 R/Ri

15 2.5 Metallische Leitung dominanter Leitungstyp in Festkörpern bewegliche Elektronen mit effektiver Masse m* m 0 feste Atomrümpfe unelastische Stöße mit Rümpfen bremsen Elektronen thermischer Transport (Gegenteil: ballistischer T.) Elektronendichte n µ = /en: Beweglichkeit des Einzelelektrons

16 Einfaches Modell mit Reibungskraft : charak. Zeit (im exponentiellen Sinn), mit der Reibung das Elektron zur Ruhe bringt (mittl. Stoßzeit) stationärer Strom: v=const.

17 Zahlenbeispiel für Cu: m* = 1.4 m 0 Raumtemperatur µ = m 2 /Vs e/m 0 = C/ Kg = µ m*/e = Kg m 2 / C V s 1V = 1 Nm/C = 1 Kg m 2 /Cs 2 = s = 20 fs E = 1 V/m v = 3 mm/s Warum muss man nicht warten, bis das Licht angeht? Berechnen Sie den spez. Widerstand von Cu (n = m 3 ).

18 Temperatur-Abhängigkeit der Leitfähigkeit Supraleiter: = bzw, =0 für T< T c (Strom ohne Joule-Wärme) Metalle: fällt mit T, da µ wegen zunehmender Wärmebewegung der Atomrümpfe sinkt. Halbleiter: steigt mit T, da n exponentiell anwächst.

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Elektrodynamik I Elektrische Schaltkreise

Elektrodynamik I Elektrische Schaltkreise Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Elektrischer Strom. Strommessung

Elektrischer Strom. Strommessung Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A 1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus

17. Vorlesung EP. III. Elektrizität und Magnetismus 17. Vorlesung EP III. Elektrizität und Magnetismus 17. Elektrostatik (Fortsetzung) Spannung U Kondensator, Kapazität C Influenz 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen) Stromkreise

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 PHYSK B SS3 SS4 SS5 nhalt der Vorlesung B 3. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Beziehung zwischen Strom und Spannung

Beziehung zwischen Strom und Spannung Beziehung zwischen Strom und Spannung Explizit kein Ohm sches Verhalten; keine elektrische Leitfähigkeit im üblichen Sinne Beschleunigte Elektronen im Vakuum (Kathodenstrahlröhre) Elektronentransfer in

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise nhalt 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter

Mehr

2 Der elektrische Strom

2 Der elektrische Strom 2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke Stromstärke: I dq dt Einheit: 1 Ampere = C/s PTB Auf dem Weg zum Quantennormal für die Stromstärke Als Ladungsträger kommen vor:

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 von Wolf-Ewald Büttner Oldenbourg Verlag München Wien Vorwort V VII 1 Einleitung 1 2 Grundbegriffe 3 2.1 Elektrische Ladung 3 2.2 Leiter und Nichtleiter 4 2.3 Elektrischer

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

2. Elektrostatik und Ströme

2. Elektrostatik und Ströme 2. Elektrostatik und Ströme 2.1. elektrische Ladung, ionische Lösungen Wir haben letztes Semester angeschnitten, dass die meisten Wechselwirkungen elektrischer Natur sind. Jetzt wollen wir elektrische

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Dielektrika - auf atomarem Niveau lektrischer Strom Stromdichte Driftgeschwindigkeit i i = dq dt = JdA J = nev D Widerstand

Mehr

2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche Regeln

2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche Regeln 2.. ENFACHE SCHALTUNGEN,KCHHOFF 03 2.2 Einfache Schaltungen mit Ohmschen Widerständen; Kirchhoffsche egeln Netzwerke aus Widerständen (aber auch anderen Bauelementen) können sehr gut mittels den Kirchhoffschen

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlagen der Elektrotechnik Kapitel : Wichtige Schaltungen der Elektrotechnik Wichtige Schaltungen der Elektrotechnik.1 Belasteter Spannungsteiler. Messschaltungen 4..1 Wheatstone-Messbrücke 4.. Kompensationsschaltung

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis

Inhaltsverzeichnis Elektrischer Strom Der unverzweigte Gleichstromkreis Lineare Bauelemente im Gleichstromkreis 1 Elektrischer Strom................................... 1 1.1 Grundwissen kurz und bündig........................ 1 1.1.1 Stoffe................................... 1 1.1.2 Atombau, elektrischer Strom....................

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Versuch 1 zu Physikalisches Praktikum für Mediziner

Versuch 1 zu Physikalisches Praktikum für Mediziner Versuch 1 zu Physikalisches Praktikum für Mediziner......... c Claus Pegel 7. November 2007 1 VERSUCH 1 1 LADUNGEN sind gequantelt, d.h. sie kommen nur in ganzen Vielfachen der ELEMENTARLADUNG vor. Der

Mehr

Physikepoche Klasse 11. Elektrizitätslehre

Physikepoche Klasse 11. Elektrizitätslehre Physikepoche Klasse 11 Elektrizitätslehre Der elektrische Gleichstromkreis Nur in einem geschlossenen Stromkreis können die elektrischen Ladungsträger vom negativen Pol der Spannungsquelle zum positiven

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz:

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz: Schnellkurs Ohmsches Gesetz eihen- und Parallelschaltung von Widerständen Jeder kennt aus der Schule das Ohmsche Gesetz: = Aber was bedeutet es? Strom (el. Stromstärke) Spannung Widerstand Vorbemerkung:

Mehr

PHYSIK. 2. Klausur - Lösung

PHYSIK. 2. Klausur - Lösung EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,

Mehr

Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-Ing. M. Gilbert

Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-Ing. M. Gilbert Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-ng. M. Gilbert 6.08.008 Ohmsches Gesetz & nnenwiderstand ersuch Nr.: E0 (Pr_E_E0_nnenwiderstand) Praktikum: FB 0 Plätze: 3. Ziel n diesem

Mehr

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog Diplomvorprüfung für Maschinenwesen SS 2009 Technische Elektrizitätslehre I Prof. Dr.-Ing. H.-G. Herzog am 07.09.2009 Name:.. Vorname: Matrikelnummer:... 1. Korrektur 2. Korrektur 3. Korrektur Seite 1

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF 6 VERSUCH TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF Oft ist es notwendig, Strom-, Spannungs- und Leistungsaufnahme eines Gerätes regelbar einzustellen.ein solches "Stellen"

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik. Elektrizität SS 16.Semester BSc. Oec. und BSc. CH 4.016 Tutorium Physik Elektrizität Großmann Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 1. Radioaktivität

Mehr

Stromstärke. STROM und SPANNUNG. Driftgeschwindigkeit. Stromträger. Ladungstransport pro Zeiteinheit. Dimension: 1 A = 1 Ampere = 1 C/s.

Stromstärke. STROM und SPANNUNG. Driftgeschwindigkeit. Stromträger. Ladungstransport pro Zeiteinheit. Dimension: 1 A = 1 Ampere = 1 C/s. Stromstärke STROM und SPNNUNG Ladungstransport pro Zeiteinheit Dimension: = mpere = C/s EX-II SS200 I = dq dt = j d S Stromdichte : /cm 2 Stromträger Elektronen bzw. positiv oder negativ geladene Ionen

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

3. Elektrischer Strom. 3.1 Stromstärke und Ampere

3. Elektrischer Strom. 3.1 Stromstärke und Ampere 3. Elektrischer Strom 3.1 Stromstärke und Ampere Prof. Dr. H. Podlech 1 Einführung in die Physik 2 In der Elektrostatik wurden ruhende Ladungen betrachtet Jetzt betrachten wir bewegte elektrische Ladungen

Mehr

Auf- und Entladung eines Kondensators

Auf- und Entladung eines Kondensators Klasse 12 Physik Praktikum 10.12.2005 Auf- und Entladung eines Kondensators 1. Aufladen eines Kondensators Versuchsdurchführung: Wir bauten die Schaltung auf einem Brett nach folgender Skizze auf: Wir

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

METTLER TOLEDO Prozessanalytik. Online-Prozessund Reinwassersysteme. Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis

METTLER TOLEDO Prozessanalytik. Online-Prozessund Reinwassersysteme. Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis Leitfaden Schulexperimente Leitfähigkeit METTLER TOLEDO Prozessanalytik Online-Prozessund Reinwassersysteme Leitfaden für Online-Leitfähigkeitsmessungen Theorie und Praxis Inhaltsverzeichnis 1 Einleitung

Mehr

Elektrischer Widerstand von Metallen und Halbleitern

Elektrischer Widerstand von Metallen und Halbleitern - C01.1 - Versuch C1: Elektrischer Widerstand von Metallen und Halbleitern 1. Literatur: Demtröder, Experimentalphysik, Bd. II Bergmann-Schaefer, Experimentalphysik, Bd. II Walcher, Praktikum der Physik

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Leiterkennlinien elektrischer Widerstand

Leiterkennlinien elektrischer Widerstand Leiterkennlinien elektrischer Widerstand Experiment: Wir untersuchen den Zusammenhang zwischen der anliegenden Spannung und der Stromstärke I bei verschiedenen elektrischen Leitern. Als elektrische Leiter

Mehr

Thema 2: Elektrische Kennlinien verschiedener Leiter

Thema 2: Elektrische Kennlinien verschiedener Leiter Version vom 26. April 2015 Thema 2: Elektrische Kennlinien verschiedener Leiter Abbildung 2.1: Der Versuchsaufbau in der Übersicht 1 Grundlagen 1.1 Metallische Leiter, Halbleiter und Isolatoren In einem

Mehr

Elektrischer Widerstand von Metallen und Halbleitern

Elektrischer Widerstand von Metallen und Halbleitern Versuch C1: I, jda dq A dt - C1.1 - Elektrischer Widerstand von Metallen und Halbleitern 1. Literatur: Bergmann-Schaefer, Experimentalphysik, Bd. II Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09

Vorlesung Physik für Pharmazeuten PPh - 09 Vorlesung Physik für Pharmazeuten PPh - 09 Elektrizitätslehre 08.01.2007 Entdeckung der Elektrizität Erscheinungen elektrischer Anziehung wurde schon von den Griechen am Bernstein (griech. ηλεκτρον) beobachtet

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)

Mehr

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung: Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

PW10 Wechselstrom I. Temperaturkoeffizient des elektrischen Widerstandes; Transformator Andreas Allacher Tobias Krieger

PW10 Wechselstrom I. Temperaturkoeffizient des elektrischen Widerstandes; Transformator Andreas Allacher Tobias Krieger PW10 Wechselstrom I Temperaturkoeffizient des elektrischen Widerstandes; Transformator 10. 01. 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr. Markowitsch Anfängerpraktikum

Mehr

E-Lehre I Elektrostatik und Stromkreise

E-Lehre I Elektrostatik und Stromkreise E-Lehre I Elektrostatik und Stromkreise Mittwoch 12.04.17 und 19.04.17 Raum 108 Gruppe B (Freihand) Eigenschaften elektrischer Ladung; elektrostatisches Feld; Feldstärke; Kondensator; elektrischer Strom;

Mehr

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

Grundlagen der Elektrotechnik. Übungsaufgaben

Grundlagen der Elektrotechnik. Übungsaufgaben Grundlagen der Elektrotechnik Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Grundlagen der Elektrotechnik, WiSe 2009/2010 Aufgabe 1: Beantworten Sie folgende Fragen: a) Wie viele Elektronen

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Elektro výuková prezentace. Střední průmyslová škola Ostrov

Elektro výuková prezentace. Střední průmyslová škola Ostrov Elektro výuková prezentace Střední průmyslová škola Ostrov 1. r Strom 2. r Widderstand 3. e Ladung 4. e Spannung 5. e Stromstärke 6. e Stromrichtung 7. s Feld 8. e Stromquelle 9. s Gesetz náboj proud pole

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik 2017/2018 Prof. Dr. A. Strey DHBW Stuttgart, Informatik Email: strey@lehre.dhbw-stuttgart.de Inhalt 1 Physikalische Größen Elektrischer Strom und Stromdichte Elektrische Spannung Widerstand und Leitfähigkeit

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Elektrotechnik für MB

Elektrotechnik für MB Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:

Mehr

Versuch E01a Grundlegende elektrische Schaltungen

Versuch E01a Grundlegende elektrische Schaltungen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E01a Grundlegende elektrische Schaltungen Aufgaben 1. Bauen Sie eine Reihenschaltung bestehend aus drei Widerständen mit

Mehr

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung Elektrizitätslehre und Schaltungen Versuch 14 ELS-14-1 Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre.

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand d 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter und

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Schule für die Region. Schuleigenen Arbeitsplan - Sekundarstufe I. Fachbereich Physik

Schule für die Region. Schuleigenen Arbeitsplan - Sekundarstufe I. Fachbereich Physik Schule für die Region Schuleigenen Arbeitsplan - Sekundarstufe I Fachbereich Physik 5. November 2015 1 Übersicht 1.1 Themen Klasse Stunden Themen 5 1 Magnete, Stromkreise 6 1 Optik 7 1 Energie qualitativ

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Patrick Christ und Daniel Biedermann

Patrick Christ und Daniel Biedermann TECHNISCHE UNIVERSITÄT MÜNCHEN Brückenschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 10.10.2009 0. INHALTSVERZEICHNIS 0. INHALTSVERZEICHNIS... 2 1. EINLEITUNG... 2 2. BESCHREIBUNG DER VERWENDETEN

Mehr

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen und Durchgeführt am: 13 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Hall-Effekt.............................

Mehr

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung

1 Mechanik geradlinige gleichförmige Kinematik. Bewegung 1 Mechanik geradlinige gleichförmige Kinematik Bewegung 2 Mechanik Durchschnittsgeschwindigkeit/Intervallgeschwindigkeit Kinematik 3 Mechanik geradlinig gleichmäßig Kinematik beschleunigte Bewegung 4 Mechanik

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Klausur 2 Kurs 11Ph1e Physik

Klausur 2 Kurs 11Ph1e Physik 2-2-06 Klausur 2 Kurs Phe Physik Lösung Ein stromdurchflossener Leiter ist so in einem Magnetfeld mit konstanter Feldstärke B aufgehängt, dass der Strom überall senkrecht zu den magnetischen Feldlinien

Mehr

ET Messtechnik. Wasserzähler. 1 Wie heißt das Messgerät, mit dem man die in einem Haus verbrauchte Wassermenge misst?

ET Messtechnik. Wasserzähler. 1 Wie heißt das Messgerät, mit dem man die in einem Haus verbrauchte Wassermenge misst? 1 Wie heißt das Messgerät, mit dem man die in einem Haus verbrauchte Wassermenge misst? Wasserzähler Volumen-Strom-Messgerät 2 Wie heißt das Messgerät, mit dem man die Größe des momentanen Wasserflusses

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr