Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011"

Transkript

1 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg

2 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen, bestimme deren Schnitt. + = Regionen sind Polygone Polygone sind Streckenmengen berechne alle Streckenschnittpunkte berechne induzierte Regionen Flächennutzung Niederschlag Kombination beider Themen

3 Problemstellung Geg: Ges: Def: Menge S = {s 1,..., s n } von Strecken in der Ebene alle Schnittpunkte von zwei oder mehr Strecken für jeden Schnittpunkt die beteiligten Strecken Strecken sind abgeschlossene Mengen Diskussion: Wie kann man das Problem naiv lösen? Ist das evtl. schon optimal? Seht ihr Verbesserungsansätze?

4 Das Sweep-Line Verfahren: Beispiel

5 Datenstrukturen 1.) Event Queue Q definiere p q def. y p > y q (y p = y q x p < x q ) l speichere Events sortiert nach in balanciertem binärem Suchbaum AVL-Baum, Rot-Schwarz-Baum,... Operationen insert, delete und nextevent in O(log Q ) Zeit p q 2.) Sweep-Line Status T l speichere von l geschnittene Strecken geordnet von links nach rechts benötigte Operationen insert, delete, findneighbor ebenfalls balancierter binärer Suchbaum mit Strecken in den Blättern!

6 Algorithmus FindIntersections(S) Input: Menge S von Strecken Output: Menge aller Schnittpunkte mit zugeh. Strecken Q ; T foreach s S do Q.insert(upperEndPoint(s)) Q.insert(lowerEndPoint(s)) Was passiert mit Duplikaten? while Q do p Q.nextEvent() Q.deleteEvent(p) handleevent(p) Hier versteckt sich der Kern des Algorithmus!

7 Algorithmus handleevent(p) U(p) Strecken mit p oberer Endpunkt L(p) Strecken mit p unterer Endpunkt C(p) Strecken mit p innerer Punkt if U(p) L(p) C(p) 2 then gebe p und U(p) L(p) C(p) aus entferne L(p) C(p) aus T füge U(p) C(p) in T ein if U(p) C(p) = then mit p in Q gespeichert Nachbarn in T Entfernen und Einfügen dreht C(p) um //s l und s r Nachbarn von p in T Q prüfe s l und s r auf Schnitt unterhalb p else //s und s linkeste und rechteste Strecke in U(p) C(p) Q prüfe s l und s auf Schnitt unterhalb p Q prüfe s r und s auf Schnitt unterhalb p

8 Was passiert genau? S s 6 s 4 s 5 s 1 p p s 3 T s 1 s 5 s 3 s 6 s 4 s 3 s 7 s 7 s 6 s 5 s 4 s 1 s 2 s 2 U(p) = {s 2 } L(p) = {s 4, s 5 } C(p) = {s 1, s 3 } Füge Event p = s 1 s 7 in Q ein s 6 s l s 3 s 6 s 3 s 2 s 1 s 1 s 7 s s s r

9 Korrektheit Lemma: Algorithmus FindIntersections findet alle Schnittpunkte und die beteiligten Strecken. Beweis: Induktion über die Reihenfolge der Events. Sei p ein Schnittpunkt und alle Schnittpunkte q p seien bereits korrekt berechnet. Fall 1: p ist Streckenendpunkt p wurde am Anfang in Q eingefügt U(p) an p gespeichert L(p) und C(p) in T vorhanden Fall 2: p ist kein Streckenendpunkt Überlege warum p in Q sein muss!

10 Laufzeitanalyse FindIntersections(S) Input: Menge S von Strecken Output: Menge aller Schnittpunkte mit zugeh. Strecken Q ; T O(1) foreach s S do Q.insert(upperEndPoint(s)) O(n log n) Q.insert(lowerEndPoint(s)) while Q do p Q.nextEvent() Q.deleteEvent(p) handleevent(p) O(log Q )?

11 Laufzeitanalyse handleevent(p) U(p) Strecken mit p oberer Endpunkt L(p) Strecken mit p unterer Endpunkt C(p) Strecken mit p innerer Punkt if U(p) L(p) C(p) 2 then gebe p und U(p) L(p) C(p) aus entferne L(p) C(p) aus T füge U(p) C(p) in T ein if U(p) C(p) = then //s l und s r Nachbarn von p in T Q prüfe s l und s r auf Schnitt unterhalb p else //s und s linkeste und rechteste Strecke in U(p) C(p) Q prüfe s l und s auf Schnitt unterhalb p Q prüfe s r und s auf Schnitt unterhalb p Lemma: Algorithmus FindIntersections hat eine Laufzeit von O(n log n + I log n), wobei I die Anzahl der Schnittpunkte ist.

12 Zusammenfassung Satz: Sei S eine Menge von n Strecken in der Ebene. Dann können alle Schnittpunkte in S zusammen mit den beteiligten Strecken in O((n + I) log n) Zeit und O(n) Platz ausgegeben werden. Beweis: Korrektheit Laufzeit Speicherplatz Überlege wie viel Platz die Datenstrukturen benötigen! T maximal n Elemente Q maximal O(n + I) Elemente Reduktion von Q auf O(n) Platz: s. Übung

13 Diskussion Ist der Sweep-Line Algorithmus immer besser als der naive? Nein, denn falls I Ω(n 2 ) hat der Algorithmus eine Laufzeit von O(n 2 log n). Geht es noch besser? Ja, in Θ(n log n + I) Zeit und Θ(n) Platz [Balaban, 1995]. Wie löst man damit das Kartenüberlagerungs-Problem? Unter Verwendung einer geeigneten Datenstruktur (doppelt-verkettete Kantenliste) für planare Graphen lässt sich in ebenfalls O((n + I) log n) Zeit die überlagerte Unterteilung der Karte berechnen. (Details s. Buch) Bonus: und dynamische Punktbeschriftung Dynamic One-Sided Boundary Labeling, N., Polishchuk, Sysikaski, 2010

14 Motivation Boundary (external) labels and leaders avoid conflicts and occlusions Label 5 Label 4 Label 3 Label 2 Label 1 But what about zooming?

15 Motivation Label 5 Label 4 Label 3 Label 2 But what about zooming? Label 1

16 Motivation Labels are too large Label 5 Label 4 Label 3 Label 2 Label 1

17 Motivation Label 5 Label 4 Label 3 Labels have unnecessary spacing Label 2 Label 1

18 Motivation Leader lengths not minimal Label 5 Label 4 Label 3 Label 2 Label 1

19 Motivation Label 5 Label 4 Label 3 Label 2 Label 1 Label stack not optimal

20 Motivation Optimal solution Label 5 Label 4 Label 3 Label 2 Label 1 Goal: dynamically maintain minimal leader lengths and optimal label stacks during zooming

21 Model Select rectangular viewport of given aspect ratio scale it by 1/z and display it on screen 1 z zoom viewport region z [1, ] is called zoom level

22 Label placement and zooming Objectives constant label size on screen labels grow linearly in z due to scaling with 1/z z = 1 1 z z = z

23 Label placement and zooming Objectives constant label size on screen labels grow linearly in z due to scaling with 1/z minimize total leader length it suffices to minimize vertical length

24 Label placement and zooming Objectives constant label size on screen labels grow linearly in z due to scaling with 1/z minimize total leader length optimal label placement as a function of z z 0 z 1 z

25 Label placement and zooming Objectives constant label size on screen labels grow linearly in z due to scaling with 1/z minimize total leader length optimal label placement as a function of z Two variants single-stack labeling clustered labeling

26 Dynamic clustering clusters form as z increases 5 clusters 3 clusters Individual clusters behaves like single stacks with median leaders 1 cluster zoom level z

27 Cluster merging Observation Two adjacent clusters collide when the distance between the two medians y j y i equals the height (j i) z of the labels between them. This is the intersection point of the lines y = y i iz and y = y j jz! y y 4 4z y 4 y 3 y 1 y 2 y 3 3z y 2 2z y 1 z z

28 Cluster merging Observation Two adjacent clusters collide when the distance between the two medians y j y i equals the height (j i) z of the labels between them. This is the intersection point of the lines y = y i iz and y = y j jz! y 4 y 3 y 1 y 2 y kurze Demo y 3 3z y 2 2z y 1 z y 4 4z z

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften 2.7.4 Schnittprobleme 1 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften

Mehr

Algorithmische Geometrie: Schnittpunkte von Strecken

Algorithmische Geometrie: Schnittpunkte von Strecken Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009 December 1, 2009 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Gesucht:

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

Voronoi-Diagramme und Delaunay-Triangulierungen

Voronoi-Diagramme und Delaunay-Triangulierungen Vorlesung Algorithmische Geometrie Voronoi-Diagramme & Delaunay-Triangulierungen LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 07.06.2011 Erinnerung:

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie Übung Algorithmische Geometrie Sichtbarkeitsgraph LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 19.07.2012 Ablauf Nachtrag Sichtbarkeitsgraph WSPD

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.04.2012 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 14.04.2014 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu Raum 319 Sprechzeiten:

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Kapitel Andere dynamische Datenstrukturen

Kapitel Andere dynamische Datenstrukturen Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2017/2018 Vorlesung#13, 12.12.2017

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 43 Punkt-in-Polygon-Suche Übersicht! Praxisbeispiel/Problemstellung! Zählen von Schnittpunkten " Schnitt einer Halbgerade mit der Masche " Aufwandsbetrachtung! Streifenkarte " Vorgehen und

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Seminar Komplexe Objekte in Datenbanken

Seminar Komplexe Objekte in Datenbanken Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern Datenstrukturen und Algorithmen 7. Suchen in linearen Feldern VO 708.031 Suchen in linearen Feldern robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Geometrische Datenstrukturen

Geometrische Datenstrukturen Geometrische Datenstrukturen 1. Rechteckschnitt 2. Segment Bäume 3. Intervall Bäume 4. Prioritätssuchbäume 1. Rechteckschnitt - Schwenke horizontale Scan-Line von oben nach unten. - Speichere die Schnitte

Mehr

Suchbäume balancieren

Suchbäume balancieren Suchbäume balancieren Perfekte Balance: schwer aufrechtzuerhalten Flexible Höhe O(log n): balancierte binäre Suchbäume. Nicht hier (Variantenzoo). Flexibler Knotengrad: (a,b)-bäume. Grad zwischen a und

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 04.06.2013 Was ist eine Landkarte? r e d o Dr. Martin No

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Geometrische Algorithmen Segmentschnitt

Geometrische Algorithmen Segmentschnitt Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Mergeable Heaps. C. Komusiewicz 7.1 Fibonacci-Heaps: Überblick 117

Mergeable Heaps. C. Komusiewicz 7.1 Fibonacci-Heaps: Überblick 117 C. Komusiewicz 7.1 Fibonacci-Heaps: Überblick 117 Mergeable Heaps Erweiterung von Standardheaps, die die folgenden fünf Operationen unterstützen. Make-Heappq liefert neuen, leeren Heap. InsertpH, xq fügt

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Dies ist gerade der konstruktive Schritt beim Aufbau von Binomialbäumen.

Dies ist gerade der konstruktive Schritt beim Aufbau von Binomialbäumen. Linken von Bäumen: Zwei Bäume desselben Wurzel-Rangs werden unter Einhaltung der Heap-Bedingung verbunden. Sind k 1 und k 2 die Wurzeln der zwei zu linkenden Bäume, so wird ein neuer Baum aufgebaut, dessen

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n)

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) .6 Ausgeglichene Mehrweg-Suchbäume Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) Methoden: lokale Transformationen (AVL-Baum) Stochastische

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Lehrstuhl fu r Informatik I Algorithmische Geometrie Wintersemester 2013/14 Vorlesung: U bung: Alexander Wolff (E29) Philipp Kindermann (E12) Konvexe Hu lle oder Mischungsverha ltnisse 1. Vorlesung Prof.

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen. Organisatorisches. Christian Komusiewicz Ernst-Abbe-Platz 2, R3315

Algorithmen und Datenstrukturen. Organisatorisches. Christian Komusiewicz Ernst-Abbe-Platz 2, R3315 Algorithmen und Datenstrukturen Christian Komusiewicz Ernst-Abbe-Platz 2, R3315 christian.komusiewicz@uni-jena.de Friedrich-Schiller-Universität Jena Institut für Informatik http://users.fmi.uni-jena.de/

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie Teil 2 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 11.06.2013 Die Ära der dynamischen Karten Die meisten

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 30.05.2016 Radix-Sort, Abschluss Sortieren Prioritätslisten: Warteschlange mit Prioritäten deletemin: kleinstes Element rausnehmen insert: Element einfügen Binäre Heaps als Implementierung

Mehr