Allgemeine Mechanik Musterlösung 11.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Allgemeine Mechanik Musterlösung 11."

Transkript

1 Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der Lenz-Runge Vector nur erhalten wenn ε = 0 (Kepler Problem. A = 1 α r p ( r p m r b Im potentiellen Feld des dreidimensionalen harmonischen Oszillators V ( r = 1 2 k r 2 ist die folgende Grösse erhalten: φ ij = p ip j m + kx ix j Lösung. a In a system with Hamiltonian H, a quantity A is conserved if ( A A [A, H] = 0 x i p i p i x i i (L.1 In our case H = T + V = p 2 2m α r 1+ε, A i = 1 m (x i p 2 p i ( r. p αx i r (L.2 The latter can be obtained writing the cross product as ( a b = ɛ ijka j b k i and using the relation ɛ ijk ɛ klm = δ il δ jm δ im δ jl In order to calculate the Poisson brackets of the two, we need the following quantities A i = 1 ( p 2 αδ ij δ ij p i p j x j m r + αx ix j r 3 A i p j = 1 m (2x ip j δ ij ( r. p p i x j p i = p i x i = α( 1 + εx i r 3+ε (L.3 (L.4 The Poisson brackets give us [A i, H] = α [ p i m r + x ] i( r. p r 3 + α m ( 1 + εr 3+ε (x i ( p. r p i r 2 (L.5 In order for A i to be conserved, this expression must be zero. This requirement is satisfied if the coefficients of the corresponding terms cancel out and the powers of r are equal which is equivalent to 1 = 1 + ε and 3 = 3 + ε, thus ε must be equal to 0. 1

2 b The Hamiltonian of the system is Using p i = p i H = p 2 2m + k r 2 2 x i = kx i (L.6 we obtain φ ij = δ ikp j m + δ jkp i φ ij [φ ij, H] = φ ij φ ij = δ ik x j k + δ jk x i k = k m (x jp i + x i p j p j x i p i x j = 0 (L.7 Übung 2. Poisson-Klammern 2 Eine Koordinatentransformation sei gegeben durch Q = ln (, P = 2 ( q 1 2 sin p. a Zeigen Sie mithilfe der Poisson-Klammern, dass diese Transformation kanonisch ist. b Zeigen Sie dass diese Transformation von folgender Funktion erzeugt wird: F 3 (p, Q, t = ( e Q 1 2 tan p. Lösung. a We have that [Q, Q] = 0, [P, P ] = 0 and [Q, P ] = Q P p Q p = q 1 2 cos p P + q 1 2 sin p ( q 1 2 cos p + q cos 2 p q sin 2 p = q 1 2 cos p sin 2 p + q 1 2 cos 3 p + 1 = 1. (q 1 2 sin p + 2 cos p sin p (L.8 Therefore the transformation is canonical. Then if q and p are canonical variables, so are Q and P. 2

3 b Since the transformation is canonical, there exists a generating function F 3 (p, Q such that q = F 3 p, P = F 3 Q. give the transformation equations. We write the transformation equations for q and P as functions of p, Q As q = (e Q 1 2 sec 2 p, P = 2e Q (e Q 1 tan p. df 3 = F 3 Q dq + F 3 dp = P dq qdp p = d[(e Q 1 2 ] tan p (e Q 1 2 d tan p = d[(e Q 1 2 tan p], we obtain F 3 (p, Q = ( e Q 1 2 tan p. Übung 3. Gedämpfte Schwingungen Ein Teilchen mit Masse m bewegt sich in einer Dimension q in einem potentiellen Feld V (q und unter Einfluss einer dämpfenden geschwindigkeitsabhängigen Kraft 2mγ q. a Zeigen Sie dass die Bewegungsgleichung aus der folgenden Lagrangefunktion hergeleitet werden kann: [ ] 1 L = e 2γt 2 m q2 V (q, und dass sich die Hamilton-Funktion ergibt, mit kanonischem Impuls p = m qe 2γt. b Finden Sie für die erzeugende Funktion H = p2 e 2γt 2m + V (qe2γt, F 2 (q, P, t = qp e γt, die transformierte Hamilton-Funktion K(Q, P, t. Für einen Oszillator mit Potential V (q = 1 2 mω2 q 2, zeigen Sie, dass die transformierte Hamilton-Funktion die folgende Erhaltungsgrösse ergibt: K = P 2 2m mω2 Q 2 + γqp. c Finden Sie mit Hilfe der obigen Erhaltungsgrösse die Lösung q(t für den gedämpften Oszillator für den Fall γ < ω. 3

4 Lösung. a Euler-Langrange equation gives d dt ( L L q = 0, m q = V 2mγ q. This describes the particle being subject to a potential force V/ and a damping force 2mγ q that is proportional to its speed. Hence this Lagrangian is suitable to describe the system. For the Hamiltonian we need p = L q = m qe2γt, which gives H = p q L = p2 e 2γt 2m + V (qe2γt. b For the generating function F 2 (q, P, t = qp e γt, we have Thus, the transformed Hamiltonian is p = F 2 = P eγt, Q = F 2 P = qeγt. K = H + F 2 t For an oscillator of potential = p2 e 2γt 2m + V (qe2γt + γqp e γt = P 2 2m + V (qe2γt + γqp. the transformed Hamiltonian is V (q = 1 2 mω2 q 2 = 1 2 mω2 Q 2 e 2γt, K = P 2 2m mω2 Q 2 + γqp, which does not explicitly depend on time, hence K is a constant of motion. c Hamilton s canonical equations are P = K Q = mω2 Q γp, Q = K P = P m + γq. Differentiating the second equation and substituting in the first equation, Q + (ω 2 γ 2 Q = 0. We are considering the underdamped case, γ < ω, and can set ω 1 = ω 2 γ 2, where ω 1 is real positive. We then have the solution Q = A sin(ω 1 t + φ, 4

5 where A and φ are constants. Now we can substitute P into K to solve for A. Hence K = 1 [( 2 m Q γq 2 + ω 2 Q 2 + 2γQ( Q ] γq = 1 2 m( Q 2 + ω1q 2 2 = 1 2 mω2 1A 2. leading to the full solution A = 1 ω 1 2K q(t = Qe γt = 1 ω 1 2K m e γt sin(ω 1 t + φ. 5

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Allgemeine Mechanik Musterlösung 7.

Allgemeine Mechanik Musterlösung 7. Allgemeine Mechanik Musterlösung 7. HS 204 Prof. Thomas Gehrmann Übung. Lagrange-Funktion eines geladenen Teilchens Die Lagrange-Funktion für ein Teilchen der Ladung q in elektrischen und magnetischen

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22 Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

Übungsblatt 6. Analysis 1, HS14

Übungsblatt 6. Analysis 1, HS14 Übungsblatt 6 Analysis, HS4 Ausgabe Donnerstag, 6. Oktober. Abgabe Donnerstag, 23. Oktober. Bitte Lösungen bis spätestens 7 Uhr in den Briefkasten des jeweiligen Übungsleiters am J- oder K-Geschoss von

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, 1D-Example home/lehre/vl-mhs-1-e/folien/vorlesung/3_fem_intro/cover_sheet.tex page 1 of 25. p.1/25 Table of contents 1D Example - Finite Element Method 1. 1D Setup Geometry 2. Governing

Mehr

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe

Musterlösung 3. D-MATH Algebra I HS 2015 Prof. Richard Pink. Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe D-MATH Algebra I HS 2015 Prof. Richard Pink Musterlösung 3 Faktorielle Ringe, Grösster gemeinsamer Teiler, Ideale, Faktorringe 1. Sei K ein Körper. Zeige, dass K[X 2, X 3 ] K[X] ein Integritätsbereich,

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 1. Ringe, Polynome, Potenzreihen. x(y z) = x(y + ( z)) = xy + x( z) = xy + ( xz) = xy xz.

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 1. Ringe, Polynome, Potenzreihen. x(y z) = x(y + ( z)) = xy + x( z) = xy + ( xz) = xy xz. D-MATH Algebra I HS 20 Prof. Richard Pink Musterlösung Ringe, Polynome, Potenzreihen. Zeige, dass in jedem Ring R die Distributivregel gilt. Lösung: Für alle x, y, z R gilt x, y, z R : x(y z = xy xz x(y

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 13 3101013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof Dr G Alber MSc Nenad Balanesković Levi-Civita Symbol, Poissonklammern und kanonische Transformationen 1 Das Levi-Civita Symbol

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer

Algorithm Theory 3 Fast Fourier Transformation Christian Schindelhauer Algorithm Theory 3 Fast Fourier Transformation Institut für Informatik Wintersemester 2007/08 Chapter 3 Fast Fourier Transformation 2 Polynomials Polynomials p over real numbers with a variable x p(x)

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Analysis III Serie 13 Musterlösung

Analysis III Serie 13 Musterlösung Ana-3 Hs 22 Analysis III Serie 3 Musterlösung Abgabe: Freitag, 2.2.22, Uhr, in der Vorlesung * Aufgabe Welche der folgenden Aussagen sind wahr und welche sind falsch? (Mit Begründung) (i) Sei A R 3 3 eine

Mehr

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 5. Euklidische Ringe, Polynomringe, Irreduzibilität in Polynomringe

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 5. Euklidische Ringe, Polynomringe, Irreduzibilität in Polynomringe D-MATH Algebra I HS 015 Prof. Richard Pink Musterlösung 5 Euklidische Ringe, Polynomringe, Irreduzibilität in Polynomringe 1. Betrachte den Ring R := Z[i] C mit der sogenannten Normabbildung N : R Z 0,

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

Automatentheorie und formale Sprachen reguläre Ausdrücke

Automatentheorie und formale Sprachen reguläre Ausdrücke Automatentheorie und formale Sprachen reguläre Ausdrücke Dozentin: Wiebke Petersen 6.5.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Formal language Denition A formal language L

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Sommersemester 013 Blatt 3 03.04.013 Übungen zur Analysis 3.1 Abstraktion des Beweises der Minkowskiungleichung. Es seien V ein K-Vektorraum

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Reguläre Ausdrücke und reguläre Grammatiken Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Regular expressions (1) Let Σ be an alphabet. The

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus II

4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus II 4. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie Lagrange-Formalismus II Aufgabe 10 Fliehkraftregler Als Modell eines Fliehkraftreglers betrachten wir zwei Punktmassen

Mehr

EPR, Verschränkung und die Bell schen Ungleichungen

EPR, Verschränkung und die Bell schen Ungleichungen Quantenphysik EPR, Verschränkung und die Bell schen Ungleichungen Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 If, without in any way disturbing a system, we can

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

EPR, Verschränkung und die Bell schen Ungleichungen

EPR, Verschränkung und die Bell schen Ungleichungen Quantenphysik EPR, Verschränkung und die Bell schen Ungleichungen Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 Einstein-Podolski-Rosen 1935 If, without in any way disturbing a system, we can

Mehr

a) Name and draw three typical input signals used in control technique.

a) Name and draw three typical input signals used in control technique. 12 minutes Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Problem 1 (2 points each) a) Name and draw three typical input signals used in control technique. b) What is a weight function? c) Define the eigen value

Mehr

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

v+s Output Quelle: Schotter, Microeconomics, , S. 412f The marginal cost function for a capacity-constrained firm At output levels that are lower than the firm s installed capacity of K, the marginal cost is merely the variable marginal cost of v. At higher

Mehr

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Dozentin: Wiebke Petersen Foliensatz 3 Wiebke Petersen Einführung CL 1 Describing formal languages by enumerating all words

Mehr

KLAUSUR THEORETISCHE MECHANIK

KLAUSUR THEORETISCHE MECHANIK KLAUSUR THEORETISCHE MECHANIK Univ. Potsdam Prof. A. Feldmeier Fr 30. Juli 00 4 bis 7 Uhr JEDE AUFGABE AUF EIN NEUES BLATT MIT NAME UND MATRIKEL Schein: mindest. halbe Punktzahl. Davon mindest. ein Drittel

Mehr

Einführung in die Finite Element Methode Projekt 2

Einführung in die Finite Element Methode Projekt 2 Einführung in die Finite Element Methode Projekt 2 Juri Schmelzer und Fred Brockstedt 17.7.2014 Juri Schmelzer und Fred Brockstedt Einführung in die Finite Element Methode Projekt 2 17.7.2014 1 / 29 Project

Mehr

3. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus I

3. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Lagrange-Formalismus I 3. Übungsblatt ur Theoretischen Physik I im SS16: Mechanik & Speielle Relativitätstheorie Lagrange-Formalismus I Aufgabe 7 Atwoodsche Fallmaschine Betrachten Sie das System aus wei Punktmassen und m 2

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016 ANWEISUNG: Diese Prüfung besteht aus 32 Seiten einschließlich dieser Titelseite und 9 Fragen die jeweils 10 Punkte wert sind. Stellen Sie sicher, dass Sie keine Frage übersehen. Bitte schreiben Sie Ihren

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Moderne Theoretische Physik III SS Master equation for a two-level atom ( = 40 Punkte, mündlich)

Moderne Theoretische Physik III SS Master equation for a two-level atom ( = 40 Punkte, mündlich) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Moderne Theoretische Physik III SS 205 Prof. Dr. A. Mirlin Blatt 2, 00 Punkte + 50 Bonuspunkte Dr. U. Karahasanovic, Dr. I. Protopopov Besprechung,

Mehr

DICO Dimension Coupling

DICO Dimension Coupling DICO Dimension Coupling 3D!" 1D and phase transition (liquid vapor) Jonathan Jung, Martina Friedrich, Claus-Dieter Munz, Jean-Marc Hérard, Philippe Helluy MAC days, Paris University of Stuttgart Institut

Mehr

Ultrakurze Lichtimpulse und THz Physik

Ultrakurze Lichtimpulse und THz Physik Ultrakurze Lichtimpulse und THz Physik. Einleitung 2. Darstellung ultrakurzer Lichtimpulse 2. Prinzip der Modenkopplung 2.2 Komplexe Darstellung ultrakurzer Lichtimpulse 2.2. Fourier Transformation 2.2.2

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Zum Relativgrad zeitvarianter Systeme

Zum Relativgrad zeitvarianter Systeme Elgersburg, 16. Februar 2006 Relative degree for linear time-invariant systems Definition n(s) d(s) = c(si n A) 1 b = cb s 1 + cab s 2 +... + ca r 2 b s r 1 + ca r 1 b s r +... : has relative degree r

Mehr

Ultrakurze Lichtimpulse und THz Physik

Ultrakurze Lichtimpulse und THz Physik Ultrakurze Lichtimpulse und THz Physik 1. Einleitung. Darstellung ultrakurzer Lichtimpulse.1 Prinzip der Modenkopplung. Komplexe Darstellung ultrakurzer Lichtimpulse..1 Fourier Transformation.. Zeitliche

Mehr

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Dozentin: Wiebke Petersen 03.11.2009 Wiebke Petersen Einführung CL (WiSe 09/10) 1 Formal language Denition Eine formale Sprache

Mehr

Ewald s Sphere/Problem 3.7

Ewald s Sphere/Problem 3.7 Ewald s Sphere/Problem 3.7 Studentproject/Molecular and Solid-State Physics Lisa Marx 831292 15.1.211, Graz Ewald s Sphere/Problem 3.7 Lisa Marx 831292 Inhaltsverzeichnis 1 General Information 3 1.1 Ewald

Mehr

Stirling numbers of the second kind and Bonferroni s inequalities

Stirling numbers of the second kind and Bonferroni s inequalities Eem. Math. 60 (2005) 124 129 0013-6018/05/030124-6 c Swiss Mathematica Society, 2005 Eemente der Mathematik Stiring numbers of the second kind and Bonferroni s inequaities Horst Wegner Horst Wegner studierte

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Word-CRM-Upload-Button. User manual

Word-CRM-Upload-Button. User manual Word-CRM-Upload-Button User manual Word-CRM-Upload for MS CRM 2011 Content 1. Preface... 3 2. Installation... 4 2.1. Requirements... 4 2.1.1. Clients... 4 2.2. Installation guidelines... 5 2.2.1. Client...

Mehr

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.:

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.: Gymnasium 2. Klassen MAR Code-Nr.: Schuljahr 2005/2006 Datum der Durchführung Donnerstag, 6.4.2006 ORIENTIERUNGSARBEIT (OA 11) Gymnasium Mathematics (M4) (English version) Lesen Sie zuerst Anleitung und

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ]. Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. Problem 1 (15 points) a) (1 point) A system description

Mehr

3. The proof of Theorem

3. The proof of Theorem 3. The proof of Theorem Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 31 (195) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: 19.9.217 Nutzungsbedingungen Die ETH-Bibliothek

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Grundlagen der analytischen Mechanik

Grundlagen der analytischen Mechanik Grundlagen der analytischen Mechanik Seminar: Theorie der komplexen Systeme Marcus Tassler Grundlagen der analytischen Mechanik p. Teil I: Lagrange Mechanik Grundlagen der analytischen Mechanik p. Überblick

Mehr

Vektor- und Tensorrechnung

Vektor- und Tensorrechnung Vektor- und Tensorrechnung Levi Civita Symbol (e-tensor) Autor: Harald Höller letzte Änderung: 20.10.08 ε = ε = ε = 1 123 231 312 ε = ε = ε = -1 132 213 321 ü Einige nützliche Beziehungen zwischen e-tensoren

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Übung 3: VHDL Darstellungen (Blockdiagramme)

Übung 3: VHDL Darstellungen (Blockdiagramme) Übung 3: VHDL Darstellungen (Blockdiagramme) Aufgabe 1 Multiplexer in VHDL. (a) Analysieren Sie den VHDL Code und zeichnen Sie den entsprechenden Schaltplan (mit Multiplexer). (b) Beschreiben Sie zwei

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

Future plans. Exercise 1: Read the text below.

Future plans. Exercise 1: Read the text below. Exercise 1: Read the text below. Future plans Nächstes Jahr werde ich die Schule verlassen, weil ich die Schule hasse. Mit 18 werde ich einen Job finden. Ich möchte in einem Büro arbeiten, weil ich als

Mehr

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Dozentin: Wiebke Petersen May 3, 2010 Wiebke Petersen Einführung CL (SoSe2010) 1 Operationen auf Sprachen Seien L Σ und K Σ

Mehr

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator Natur, Technik, Systeme Test, Dezember 00 Erstes Semester WI0 Erlaubte Hilfsmittel: Bücher und persönlich verfasste Zusammenfassung. Rechen- und Schreibzeugs. Antworten müssen begründet und nachvollziehbar

Mehr

Wie man heute die Liebe fürs Leben findet

Wie man heute die Liebe fürs Leben findet Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Click here if your download doesn"t start automatically Wie man heute die Liebe fürs Leben findet Sherrie Schneider Ellen Fein Wie

Mehr

Übungen zu Integrierter Kurs II - Festkörper und Statistische Physik Blatt 10 ( )

Übungen zu Integrierter Kurs II - Festkörper und Statistische Physik Blatt 10 ( ) Fakultät für Physik WS 2014/15 Prof. Milena Grifoni, Prof. Jascha Repp Übungen zu Integrierter Kurs II - Festkörper und Statistische Physik Blatt 10 (03.12.2014) Übungsleiter: Prof. Jascha Repp (1.1.24,

Mehr

Interpolation Functions for the Finite Elements

Interpolation Functions for the Finite Elements Interpolation Functions for the Finite Elements For the finite elements method, the following is valid: The global function of a sought function consists of a sum of local functions: GALERKIN method: the

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016

Name: Matrikelnummer: Ergänzungsprüfung January 29, 2016 ANWEISUNG: Diese Prüfung besteht aus 30 Seiten einschließlich dieser Titelseite und 9 Fragen die jeweils 10 Punkte wert sind. Stellen Sie sicher, dass Sie keine Frage übersehen. Bitte schreiben Sie Ihren

Mehr

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo Research Collection Doctoral Thesis Backward stochastic differential equations with super-quadratic growth Author(s): Bao, Xiaobo Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-005955736

Mehr

Level 2 German, 2015

Level 2 German, 2015 91126 911260 2SUPERVISOR S Level 2 German, 2015 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 2.00 p.m. Friday 4 December 2015 Credits: Five

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016

VGM. VGM information. HAMBURG SÜD VGM WEB PORTAL USER GUIDE June 2016 Overview The Hamburg Süd VGM Web portal is an application that enables you to submit VGM information directly to Hamburg Süd via our e-portal Web page. You can choose to enter VGM information directly,

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition

Mehr

Quantenmechanik II Musterlösung 8.

Quantenmechanik II Musterlösung 8. Quantenmechanik II Mustelösung 8. FS 7 Pof. Thomas Gehmann Übung. Vowätssteuung in Dipol-äheung Betachte die Amplitude fω) fü Vowätssteuung in Dipol-äheung: fω) = p ɛα k) A m E E A + ω) iγ / + p ɛα k)

Mehr

Mitglied der Leibniz-Gemeinschaft

Mitglied der Leibniz-Gemeinschaft Methods of research into dictionary use: online questionnaires Annette Klosa (Institut für Deutsche Sprache, Mannheim) 5. Arbeitstreffen Netzwerk Internetlexikografie, Leiden, 25./26. März 2013 Content

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6

Das Noether-Theorem. Philipp Arras, Jakob Moritz. 18. Juli Quellen 6 Das Noether-Theorem Philipp Arras, Jakob Moritz 18. Juli 013 Inhaltsverzeichnis 1 Herleitung des Noether-Theorems in der Feldtheorie 1 1.1 Voraussetzungen.......................................... 1 1.

Mehr

Algebra. Übungsblatt 2 (Lösungen)

Algebra. Übungsblatt 2 (Lösungen) Fakultät für Mathematik Sommersemester 2017 JProf. Dr. Christian Lehn Dr. Alberto Castaño Domínguez Algebra Übungsblatt 2 (Lösungen) Aufgabe 1. Es sei n 3. Zeigen Sie, dass S n von (1 2) und (1... n) erzeugt

Mehr

6. Hamiltonische Formulierung

6. Hamiltonische Formulierung monoton wächst) und es gilt xu) = f ) 1 u) 6.3) 6. Hamiltonische Formulierung 6.1 Kanonische Gleichungen Die Lagrange-Funktion Lq q t) ist eine Funktion der generalisierten Koordinaten q = q 1... q f )

Mehr

Mitschrift zur Vorlesung Analysis III

Mitschrift zur Vorlesung Analysis III Mitschrift zur Vorlesung Analysis III Prof. Dr. M. Röckner Universität Bielefeld Wintersemester 1996/97 ii Inhaltsverzeichnis I Measure Theory and Integration 1 1 Introduction 3 2 Systems of sets, measures

Mehr

Can I use an older device with a new GSD file? It is always the best to use the latest GSD file since this is downward compatible to older versions.

Can I use an older device with a new GSD file? It is always the best to use the latest GSD file since this is downward compatible to older versions. EUCHNER GmbH + Co. KG Postfach 10 01 52 D-70745 Leinfelden-Echterdingen MGB PROFINET You will require the corresponding GSD file in GSDML format in order to integrate the MGB system: GSDML-Vx.x-EUCHNER-MGB_xxxxxx-YYYYMMDD.xml

Mehr

After sales product list After Sales Geräteliste

After sales product list After Sales Geräteliste GMC-I Service GmbH Thomas-Mann-Str. 20 90471 Nürnberg e-mail:service@gossenmetrawatt.com After sales product list After Sales Geräteliste Ladies and Gentlemen, (deutsche Übersetzung am Ende des Schreibens)

Mehr

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6 Unit 1 Motivation and Basics of Classical Logic Fuzzy Logic I 6 Motivation In our everyday life, we use vague, qualitative, imprecise linguistic terms like small, hot, around two o clock Even very complex

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Allgemeine Mechanik Musterlösung 6.

Allgemeine Mechanik Musterlösung 6. llgemeine Mechanik Musterlösung 6. HS 2017 Prof. Thomas Gehrmann Übung 1. Brachistochrone Ein Teilchen rutscht reibungslos auf einer Kurve im Gravitationsfeld. Start- und Endpunkte der Kurve sind gegeben

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Allgemeine Mechanik Musterlösung Klausur Winter 2015.

Allgemeine Mechanik Musterlösung Klausur Winter 2015. Allgemeine Mechanik Musterlösung Klausur Winter 2015. HS 2014 Prof. Thomas Gehrmann Datum: 02. Februar 2015 Kurzfragen. [20 Punkte] (a) Entscheiden Sie für die folgenden Symmetrien, ob das Noether-Theorem

Mehr

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85 Unit 5 Mathematical Morphology Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85 Introduction to Mathematical Morphology Use of algebraic analysis for detecting

Mehr

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume

Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Theorie des Algorithmischen Lernens Sommersemester 2006 Teil 2.2: Lernen formaler Sprachen: Hypothesenräume Version 1.1 Gliederung der LV Teil 1: Motivation 1. Was ist Lernen 2. Das Szenario der Induktiven

Mehr

3.2 $L_p(s,\tau;\lambda)$ FOR $\tau \in C_p$, $ \tau _p \leq 1$

3.2 $L_p(s,\tau;\lambda)$ FOR $\tau \in C_p$, $ \tau _p \leq 1$ 3.2 $L_p(s,\tau;\lambda)$ FOR $\tau \in C_p$, $ \tau _p \leq 1$ Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 46 (2000) Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am:

Mehr

Level 2 German, 2013

Level 2 German, 2013 91126 911260 2SUPERVISOR S Level 2 German, 2013 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 9.30 am Monday 11 November 2013 Credits: Five

Mehr