PTBS Belastung unterschiedlicher Populationen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "PTBS Belastung unterschiedlicher Populationen"

Transkript

1 Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ Ö Ô Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÀÙÑ Ò Ò ÈÖÓ ËÙÑÑ Ö Ë ÓÓÐ ¾¼½

2 Ò ½ ¾ ÎÓÖ Ø ÐÐÙÒ Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ ÖÐ ÙÒ Ò À Ö Ù ÓÖ ÖÙÒ Ò ÙÒ ÁÑÔÐ Ñ ÒØ ÖÙÒ Ò Ï Ò ØÐ ÖÐ ÙÒ Ò

3 Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ Ö Ò Ï Î Ö ÓÒ Ò Ø Ú Ö Ö

4 ÃÓÑÔÐ Ü ÌÖ ÙÑ ÓÐ Ø ÖÙÒ Ò Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ PTBS Belastung unterschiedlicher Populationen Dichte IES R Summenscore

5 ÃÓÑÔÐ Ü ÌÖ ÙÑ ÓÐ Ø ÖÙÒ Ò Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ PTBS Belastung unterschiedlicher Populationen Dichte IES R Summenscore

6 Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ Ù Ñ Ö ÌÖ ÙÑ Ø ÖÙÒ Ò Ö Ã Ò Ø Ìɵ

7 Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ Ò ÐÙÒ ÓÒÞ ÔØ Ð Ê Ð ÖÙÒ Ò Ö Ö ÈÖ ÒÞ Ô Ò Ù Û Ðµ Ë Ô Ø Ðº ¾¼½½µ ËØ Ð ØØ Ò ÙÒ Ò ËØ Ø ÓÒ Ð Ö Ö ÇÖØ ÈÖ Ñ Ð ËØ Ø ÓÒ Ú Ö ÑÑÐÙÒ Ð Ö Ê ÐÒ Ø Ð ÖÙÒ ÌÖ ÙÑ ÓÒ ÖÓÒØ Ø ÓÒ Ñ ØØ Ð Å Ê ÊÓÐÐ Ò Ô Ð ÜÔÓ Ø ÓÒ ÃÓÒØÖÓÐÐÔ Ö Ñ Ø Ö ÓÑÑ ØÑ ÒØ Ö Ø Ê ÓÙÖ Ò Ø Ú ÖÙÒ ÐÓÖ ÒØ ÖÙÒ Á ÒØ Ø ÓÒ ÚÓÒ ÅÙ Ø ÖÒ Ñ ËÝ Ø Ñ Î Ö ÐØ Ò Ò ÐÝ Ò Ã ØØ Ò Ò ÐÝ Ò È Ý Ó ÝÒ Ñ ÒÒ Ö Ä Ò ÖØ Ú Ò Ö À ÖØ Æ Ò Ù ² ËØ Ð ¾¼¼ µ Ð ÓÖÑ Ó Ö Ô Ö ËÝ Ø ÑÑÓ ÐÐ ÖÙÒ Ë Ô ËØ Ö¹Ë Ñ Ò Ö ÓÖÒ Ë ÐÐ Ö ² ¾¼½ Ë Ô ½ µ

8 ËÝ Ø Ñ Ò Ò Ò Ö ÌÖ ÙÑ Ø Ö Ô Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ ÐÐ Ô Ð ÓÐØ ÖÓÔ Ö Û Ò ÔÖÓ Ø ØÙ ÖØ Ö Ö Ö ØÐ Ò ËÓÞ ÐÛÓ ÒÙÒ Î Ö Ò ÑÙÒ Ö ÒØÙÒ ËØ ÑÑ Ò Ö Ò Ò Ø ÖÙÒ Ù ÔÖ Ø Á ¹ËØ ÖÙÒ Ò È Ù Ó ÐÐÙÞ Ò Ø ÓÒ Ò Ð Ë Ñ ÖÞ Ò ÖÓÒ ËÙ Þ Ð ØØ ÙÒ Û Ö ÓÐØ ËÙ Þ Ú Ö Ù Ù Û Ö Ò Ò ÐÙÒ ÓÞ Ø Ú Á ÒØ ØØ Ø ÖÙÒ Á ½¼ º ½ ÈÓ ØØÖ ÙÑ Ø Ð ØÙÒ Ø ÖÙÒ Á ½¼ º½ Ê Þ Ú Ö Ò ÔÖ Ú ËØ ÖÙÒ Ûº Û Ö Ô Ó Á ½¼ º¾ ËÓÑ Ø ÖÙÒ Ø ÖÙÒ Á ½¼ º¼ ÓÖ Ô Ó Ñ Ø È Ò Ø ÖÙÒ Á ½¼ ¼º¼½ Û Ò Ø ÖÙÒ ÚÓÖÛ Ò Û Ò Ò ÐÙÒ Ò Á ½¼ ¾º½ ÒÞÓ Þ Ô Ò Ò Ø Á ½¼ ½ º¾ ØÝÔ Ø ÖÙÒ Á ½¼ ¼º

9 ËÝ Ø Ñ Ò Ò Ò Ö ÌÖ ÙÑ Ø Ö Ô Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ

10 ËÝ Ø Ñ Ò Ò Ò Ö ÌÖ ÙÑ Ø Ö Ô Ò Û Ò Ö Ø Ø Ò ÓØ Ø Ø ÓÒÖ Ö ÌÖ ÙÑ Ø Ö Ô Ò ÐÙÒ ÓÒÞ ÔØ Ò Ò Ô ÙÒ ÔÙÒ Ø Ò ÐÙÒ ÓÒÞ ÔØ Ò ËÝÒ Ö Ø ÈÖÓÞ Ñ Ò Ñ ÒØ ÚÓÒ Ë Ô ÖØ ÙÒ ÃÖ Ú Ò ¾¼½ µ Ö Ö ØÙÒ Ò Ö ÒÒ Ö Ò Ä Ò ÖØ Ð Ô Þ ÓÖÑ Ó Ö Ô Ö ËÝ Ø ÑÑÓ ÐÐ ÖÙÒ Ê ÓÙÖ ÒÓÖ ÒØ ÖÙÒ Ï Ø Ö ÖÙÒ ÈÖÓÞ ÑÓÒ ØÓÖ Ò Ö Ò ÐÙÒ Þ ØÖ ÙÑ Ò Ù ÁÒØ ÖÚ ÐÐØ Ö Ô Ê Ñ Ð ÙÒ Òµ Ø Ð ÈÖÓÞ ÑÓÒ ØÓÖ Ò ÖÝ Ö µ Ì Ö Ô ÔÖ Ù ÅÓÒ ØÓÖ Ò ÞÙ Ò Ñ Ò

11 Ï ÖÙÑ ËÆË ÖÝ Ö ÙÒ Ø ÓÒ ½ Ï Ò Ø ÓÙ ÙÖÒ Ò ÝÓÙ ÓÒ³Ø Û Ó ³ Ø Ö Ø Øº À Ö Ö ÖÙÒ Ö Ì Ö Ô Ó Ñ Ø Ó ÓÖØ Ö Ì Ñ Ø ÖÙÒ ÚÓÒ Ø Ö Ô Ö Ò Ò Î Ö ÐØ Ò Û Ò À ÒÞ ² È ØÞ Ö ¾¼½ µ ÖÝ Ö ÙÒ Ø ÓÒ ¾ Ë Ð Ø Ó ØÙÒ Ð ÎÓÖ Ù ØÞÙÒ ÚÓÒ Ë Ð ØÖ ÙÐ Ø ÓÒ Ã Ò Öµ ÈÖÓÞ ÑÓÒ ØÓÖ Ò ÙÒ Ø ÓÒ ËÆË Ð ÅÓÒ ØÓÖ Ù Ö ÁÒØ Ò Ú Ø Ø ÓÒ Ò ÓÒ Ö Û Ö Ò ÌÖ ÙÑ ÓÒ ÖÓÒØ Ø ÓÒµ Î Ö ÐØ Ò Ò ÐÝ ÙÒ Ø ÓÒ Ä Ò Òµ Á ÒØ Ø ÓÒ Û Ö Ö Ò Ö ÅÙ Ø Ö ÊÙ ÓÐ µ ÙÒ Ø ÓÒ» Å ÒØ Ð ÖÙÒ ÙÒ Ø ÓÒ ÓÒ Ýµ

12 À Ö Ù ÓÖ ÖÙÒ Ò Ö Ë ØØ Ò Ú Ö Ð Ò ËØ Ø ÓÒ Ð ÖÙÖ Ð Ö ÒÓØ Û ÐÐ ÖÚ Ý Û Ö Ð Ò ØÛÓÖ ÌÖÙÐÐ ² Ò Ö¹ÈÖ Ñ Ö ¾¼½ µ È Ø ÒØ ÒÚ Ö Ð Ò ÆÙØÞÙÒ ËÆË Ð Ö Ð ÒÙÖ Ò Î Ö ÙÒ È ÒÓÑ Ò Î Ö Ò Ð Ò Ø Ö ÓÑÑ ØÑ ÒØ Ö Ø Ì Ö Ô ÙØ ÒÚ Ö Ð Ò Å Ò È Ø ÒØ Ò ÒÒ Ò Øº Ú Ö Ù Ï ÒÒ È Ø ÒØ Ò Ò Ø Ñ Ø ÒÒ ººº ÃÐ Ö Ö ÓÖ ÖÐ Ò Ì Ö Ô Ð Ò ÚÓÒ ËØ Ò Ö ÙÒ ÊÓÙØ Ò Ò Ò ØÐ Ú ÖÒ ÖÙÒ Ò Ø Ú Ö Ú Ð Ö ÙÒ Ö Ð Ð Ö Ë ÑÔÐ Ò ¹ÈÖÓØÓ ÓÐÐ Ò Ö¹ÈÖ Ñ Ö ² ÌÖÙÐÐ ¾¼¼ µ ÖÔÖÓ ÙÒ Ò Ö Ò Ò ÖÝ Ö» Ô ÐÓØ Ø Ø Ò

13 Ë ÙÐ ÖÙÒ Ï ÒØÐ ÈÀÉ ÔÖ ÓÒµ Ö Ô Ð À ÖÞÓ ² Ä Û ¾¼¼ µ Ï ÒØÐ ÓÖ ÖÐ Ò ËÝÑÔØÓÑÐ Ø ¾ Ó Ù Ø Ðº ¾¼¼ µ Ï ÒØÐ Á Ë Ê Å Ö Ö ² Ë ØÞÛÓ Ð ½ µ ÁÒØÖÙ ÓÒ Ò Î ÖÑ ÙÒ ÀÝÔ Ö ÖÓÙ Ð Ì Ð ÌÈ Ê Ë Ô Ø Ðº ÙÒÚ Ö ÒØРص Ì Ð ÖÝ Ö Ñ Ø ½¾ ÁØ Ñ Þº º Á Ñ ÙØ Ð Ø Ú ÖÐ ØÞغ À ÙØ Ð Ú Ö ÔÖ Öغ

14 ÅÓÒ ØÓÖ Ò ÌÖ ÙÑ ÓÒ ÖÓÒØ Ø ÓÒ ¼¹ Ö È Øº Ñ Ø Û Ö Ñ ÑÓØ ÓÒ Ð Ñ ÖÔ ÖÐ Ñ ÙÒ ÜÙ ÐÐ Ñ Å Ö Ù Ò Ö Ã Ò Ø Þ ÐÖ Ò Ê Ú Ø Ñ ÖÙÒ Ò Ò Ø Ò ÒÐ Ò ËØÖÙ ØÙÖ Ò Ñ Ö Ö ÀÓ Ô Ø Ð ÖÙÒ ¼ Ê ÒØ Û Ö Ö ÙÐ Ñ Ö ËÝÑÔØÓÑ Ø Ë Ð ØÚ ÖÐ ØÞÙÒ Ò ÃÓÔ Ò Ï Ò Ð Ò Ò ÖÑ Ø ÐÐÓÑ Ò ÁÒØ Ñ Ö µ ÈÓ ØØÖ ÙÑ Ø Ð ØÙÒ Ø ÖÙÒ ÑÓØ ÓÒ Ð¹ Ò Ø Ð È Ö ÒÐ Ø Ø ÖÙÒ ÚÓÑ ÓÖ ÖÐ Ò ¹ÌÝÔ ØÝÔ ÙÐ Ñ Æ ÖÚÓ ÃÓÑÔÐ Ü ÓÞ Ø Ú ËØ ÖÙÒ ÆÇ˵ ÓÖ Ô Ó Ñ Ø È Ò Ø ÖÙÒ Ê Þ Ú Ö Ò ÔÖ Ú ËØ ÖÙÒ Ûº Û Ö Ô Ó Û Ò Ò Ò ÙÒ ¹ Ò ÐÙÒ Ò Ñ Ø Ê ÒØ Ö Ð Ó ÓÐ ÓÒ ÙÑ Ûº Ø Ò ÒØ ÙÒØ Ö ¾¹ÃÓÒØÖÓÐÐ Ò

15 Suizidalität Suizidalität (0 5) Zeitverlauf (Tage)

16 Selbstverletzung Selbstverletzung (0 5) Zeitverlauf (Tage)

17 Dissoziation Dissoziation (0 5) Zeitverlauf (Tage)

18 PTBS Belastung (IES R) Score Intrusionen Vermeidung Hyperarousal Aufnahme 8 Wochen Entlassung Katamnese Zeitverlauf

19 Ì Ö Ô Ö Ò Á ÖÒ Ñ ØÞØ Î Ö ÒØÛÓÖØÙÒ Ö Ñ Ñ Ø ÌÖÓ Ø ÙÒ Ö ÓÖ º Á Û Ò Ø Û Ö Ö Ò Û Ø ØÞØ ÖØÖ Ð º ÍÑÞÙ Ö Þ Ø Ø Ú ØØ Ò ËÔÓÖØ Ê Ò Ö Û Ö Ò ÓÖ Ô Ó Ñ Ð ÔÖ Ú ËÝÑÔØÓÑ Ø ÈÀÉ ËÓÖ µ ÌÖ ÙÑ ÓÒ ÖÓÒØ Ø ÓÒ Ö ÓÖ ÖØ ËØ Ð ØØ Î Ö ÖÙÒ Ö ÈÌ Ë¹ Ð ØÙÒ ÙÑ ¾ Ë ÒØÐ ÙÒ µ ÞÛº Ë Ã Ø ÑÒ µ ÌÖ ÙÑ ÓÒ ÖÓÒØ Ø ÓÒ Ö Ò Ø ËØ Ð ØØ ËÄ ¾ ËÓÖ ØÙ ÐÐ ¾¼ ÈÊ ½ µ Ù Ò Ñ ÈÊ ¾µ ÒØÐ ÙÒ ½ ÈÊ ¾ µ Î Ö ÖÙÒ ÙÑ ¾ ÞÛº ¾ Ë

20 ËÆË Ð Ã ØØ Ò¹ ÙÒ Î Ö ÐØ Ò Ò ÐÝ ÃÐ Ò À Ö Ù ÓÖ ÖÙÒ Ï ÖÙÑ Ò Ë Ø ÖÒ ÞÛ ËØÙÒ Ò Ö ÖÓ Ò ÃÖ Ø ÁÒ Ø Ð ØØ ÃÁµ Á ÙØ Ò ÌÖ ÙÑ ÙÖ ÐÔØÖÙÑ Ð Ò Ò Ð Ö Ó Ö Ã ÖÔ Ö ÑÔ Ò ÙÒ Ò Û Ö ÖРغ ÃÁ À ÙØ Ð Ú Ö Ô Öغ ÃÁ Á ÙØ ÙÒ ÖØ Ö ÖÓ Ò Ó Ö ÖÓ Å Ò Ò Æ ÖÙÒ Ñ ØØ Ð Ú Ö ÐÙÒ Òº Ð Ø Ò ÙÞ ÖØ Ö Ö Òµ Ê Ü ÓÒ ÔÖ À Ù Ù Ù Ù ÚÓÒ ÑÓØ ÓÒ Ö ÙÐ Ø ÓÒ ÐÐ ÞÙ Ð Ó Ù µ Ñ Ø ÍÒØ Ö Ø ØÞÙÒ ÙÖ Ó Ì Ö Ô Ó Ò Ø Ú¹ Ñ Ò Ø Ú ÁÒØ ÖÚ ÒØ ÓÒ ÞÙ ØÖ ÙÑ ÓÞ ÖØ Ñ Ð ËØ Ðµ Ò Ö ÒÞ ÐØ Ö Ô

21 ËÆË Ð Ã ØØ Ò¹ ÙÒ Î Ö ÐØ Ò Ò ÐÝ ÃÐ Ò À Ö Ù ÓÖ ÖÙÒ Ï ÖÙÑ Ò Ë Ø ÖÒ ÞÛ ËØÙÒ Ò Ö ÖÓ Ò Ï Ò Øº ÃÖ Ø ÁÒ Ø Ð ØØ ÃÁµ Á ÙØ Ò ÌÖ ÙÑ ÙÖ ÐÔØÖÙÑ Ð Ò Ò Ð Ö Ó Ö Ã ÖÔ Ö ÑÔ Ò ÙÒ Ò Û Ö ÖРغ ÃÁ À ÙØ Ð Ú Ö Ô Öغ ÃÁ Á ÙØ ÙÒ ÖØ Ö ÖÓ Ò Ó Ö ÖÓ Å Ò Ò Æ ÖÙÒ Ñ ØØ Ð Ú Ö ÐÙÒ Òº Ð Ø Ò ÙÞ ÖØ Ö Ö Òµ Ê Ü ÓÒ ÔÖ À Ù Ù Ù Ù ÚÓÒ ÑÓØ ÓÒ Ö ÙÐ Ø ÓÒ ÐÐ ÞÙ Ð Ó Ù µ Ñ Ø ÍÒØ Ö Ø ØÞÙÒ ÙÖ Ó Ì Ö Ô Ó Ò Ø Ú¹ Ñ Ò Ø Ú ÁÒØ ÖÚ ÒØ ÓÒ ÞÙ ØÖ ÙÑ ÓÞ ÖØ Ñ Ð ËØ Ðµ Ò Ö ÒÞ ÐØ Ö Ô

22 ÔÖ ÞÙÖ Å ÒØ Ð ÖÙÒ Ö ÖÙÒ ÐÐ Ô Ð ÖÓÒ ÔÖ ÓÒ ØÙ Ð ÖØ Ö ÖÙÒ ÓÒ Ø Ö Ò ÙÒ Ù ÔÖ Ø Ù Ñ Ú¹ Ò Ð Ö Þ ÙÒ Ø Ð Ä Ø Ø ÒØØÙ ÙÒ ÛÙØ Ö Ò Ë Ð ØÛ Ö Ñ Ø Ó ÃÖÒ Ö Ø Ö Û Ö Â Ö ººº ÁÒØ ÐÐ ØÙ Ð ÖÙÒ Ò Å Ø Ñ Ò Ò Ñ ÃÓÒØ ÜØ Ò Ø Ú ÐÑ Ö Ó Ú Ö Ø Ò ººº µ Ê Ø ÓÒ Ð ÙÒ Ò Ø Û Ö Ð ØÓÐÐ Û Ë ÙÑ Ñ Ñ Òº µ Î ÖÐ Ù ÒÙÒ Á Ò Ò Ø Û Ø Ò µ ÃÐ Ö Þ Ö Ò ÃÓÒ ÖÓÒØ Ö Ò ÙØ Ò Ñ Ö Û Ö Ò Ø Ú Ê Ø ÓÒ Ò Ò Ø Ú Ö ÙÐ Ì Ö Ô ÙØ Ï Ö ÊÙ ÓÐ µ ÈÖ ÒÞ Ô ÒØÛÓÖØ À й Ú Ö µ ËÔ ÐÒ Ø ØØ ÙØ Ò Å ÒØ Ð Ö Ò ÓÒ Ýµ ÆÙØÞ Ò ËÆË ÞÙÖ Á ÒØ Ø ÓÒ Ý ÙÒ Ø ÓÒ Ð Ö ÅÙ Ø Ö

23 ÔÖ ÞÙÖ Å ÒØ Ð ÖÙÒ Ö ÖÙÒ

24 ÔÖ ÞÙÖ Å ÒØ Ð ÖÙÒ Ö ÖÙÒ

25 ÔÖ ÞÙÖ Å ÒØ Ð ÖÙÒ Ö ÖÙÒ ÐÐ Ô Ð ÖÓÒ ÔÖ ÓÒ Ê Ü ÓÒ Û Ö Ö Ò Ò ÅÙ Ø Ö ÚÓÒ ÏÙØ ÙÒ Ë ÙÐ Á Ò Ò Ñ Ò Ñ ÖÙ Ø Ó ÒÑ Ø Ù Ð Öغ Ï ÒÒ Ñ Û Ö Ú ÖÒ Ø Ø Ñ Ò Ö ÓÒº µ Ï Ö ÙÒ Ö ÆÓØÐ ÙÒ Ò ËÙ Ò ÐØ ÖÒ Ø Ú Ò Ò ÓÐ Ñ Ö ÛÙ Ø ÖÐ Ò ÚÓÒ Ö Ö Î Ö ÒØÛÓÖØ Ò Ø ØØ Ö Ò Ø Ò Ê ÒÛÙØ Ò Ñ Öº ÓÖÑ Ð ÓÔ Ö ØÓÖ Ò Ò» Ë Ð ØÛ Ö Ñ Ø Å Ò ÆÓØÐ ÙÒ Ò Ð Ò Ò Ö Ò Ñ ÞÙ ÖÙ ØÖ Ö Òº Á ÑÙ ØÛ Ò ÖÒº

26 Ù Ð ËÆË Ð ÖÙÒ Ð Ö ÍÒØ Ö Ø ØÞÙÒ Ñ ÌÖ Ò Ö Ò Ò ÐÐØ ÙÒ Ò ÓÒ Ö Ö ÒÛ Ò ÙÒ ÚÓÒ Ë ÐÐ Ê Ø ÓÒ Ò Ö Ð ÖÙÒ µ Ê ÞÚ Ñ Ë ÙØ ÖÖÓÐÐ ² Ä Ò Ò ¾¼½½ ËÓÐÞ Ö ØØ Ö Å ÑÑ Ñ Ö ÅÙ Ý ² Ê Ð ¾¼¼ ÆÓÖØÓÒ ÏÓÒ ÖÐ ÅÝ Ö Å Ø ÐÐ ² ÖÓ Ý ¾¼¼ µ Ã Ø ÑÒ Ø ÍÒØ Ö Ù ÙÒ Ò Ê ÐÐÚÓÖ Ö Ï Ö Ø Ðº ¾¼½¼µ Ê ÐÐÔÖÚ ÒØ ÓÒ âô Ò Ð Ø Ðº ¾¼¼ µ ÁÒ Ø ÓÒ ÔÖ ÙÒ Ö ÁÒØ ÖÚ ÐÐØ Ö Ô Ò

27 Ö ÒØ ÐÐ Î ÖÐÙ ÃÖ ØÞ Ö Ø Ðº ¾¼½ µ ÃÐ ½ d ¼º ¼ ± Ê ÃÐ ¾ d ¼º ± Ê ÃÐ d ¾º ± Ê Reliabilität der Veränderungen der IES R Scores IES R Score Entlassung IES R Score Aufnahme

28 ÈÖ ØÓÖ Ò Ö ÒØ ÐÐ Ö Î ÖÐÙ ÃÖ ØÞ Ö Ø Ðº ¾¼½ µ 1 Achtsamkeit < Interaktionelle.Schwierigkeiten < Dissoziation 34 < 34 7 Sexueller.Missbrauch 19.5 < Node 2 (n = 31) 1 Node 4 (n = 20) 1 Node 6 (n = 11) 1 Node 8 (n = 22) 1 Node 9 (n = 55)

29 Ø Ñ Ø ÙÒ ÓÞ Ø ÓÒ Ð Å ØÓÖ Ò Ö ÈÌ Ë Ð ØÙÒ ÃÖ ØÞ Ö Ø Ðº Ò ÎÓÖ Ö ØÙÒ µ

30 Ç Ò Ö Ò ÙÒ Ù Ð Ï ÒÒ Ò Û Ö Ô Þ Ò Ø Ú Ò ÝÒ Ñ Ò ÙÒ Ö Ö È Ø ÒØÁÒÒ Ò ÓÛ Ö Ò ÒØ Ø ÙÒ ÙÒ Ù Ö Ø Ö ÐØÙÒ Ö Ú Ö Ø Ò Ë ÒØ Ò ÐÓ Ø Ðº ¾¼½ µ à ÒÒ Ò Û Ö Ù ÑÑ Ò Ô Ð Ó Ò Ø Ú Ö ÙÒ Ú ÓÖ Ð Ö ÈÖÓÞ Ø Ø Ø ÑÓ ÐÐ Ö Ò ÀÓÐÐ Ø Ðº ¾¼½ µ Ï ÒÒ Ò Û Ö Ñ ØØ Ð Ó Ö ÕÙ ÒØ Ö Å ÙÒ Ò ÒÓ Ñ Ö Ö Ò Ú Ù ÐÐ Î ÖÐÙ ÙÒ ÃÐ Ò ÚÓÒ Î ÖÐÙ Ò Ð ÖÒ Ò Åŵ Ø Û Ö Ö Ò ÅÙ Ø Ö Ð ÈÖ ØÓÖ Ò Ö ÓÐ Ö Ö» ÐÓ Ö Ì Ö Ô Ú ÖÐÙ Ï Ð ÊÓÐÐ Ô Ð Ò Ù Ò Ò ÙÒ Ù Ò ÐÓ ÙÒØ Ö Ò ØÙÖ Ð Ø Ò Ò ÙÒ Ò ËØ Ò Ò Ù ÑÑ Ò Ò Ñ Ø Ô Þ Ò ÁÒØ ÖÚ ÒØ ÓÒ Ò Ï Ð ÊÓÐÐ Ô Ð Ö Ø ÁÒ Ø Ð ØØ Ò Ë Ô ² ËØÖÙÒ ¾¼½¼µ

31 Á Ó Ù Åº ÃÐ Ò Ò Ø Æº Ä Ñ Ö Ö Åº º ËØ Ð ØÞ Êº¹ º ÓÑ ÐРź ÔÑ Ò º ĺ ËØ Ð Êº È Ð Ô Ò º ² ÏÓРź ¾¼¼ µº Ì ÓÖØ Ú Ö ÓÒ Ó Ø ÓÖ ÖÐ Ò ËÝÑÔØÓÑ Ä Ø ËĹ¾ µ Ú ÐÓÔÑ ÒØ Ò Ò Ø Ð Ø ÓÒ Ô Ý ÓÑ ØÖ ÔÖÓÔ ÖØ º È Ý ÓÔ Ø ÓÐÓ Ý ¾ ½µ ¾ º Ò Ö¹ÈÖ Ñ Ö Íº Ϻ ² ÌÖÙÐР̺ º ¾¼¼ µº ÓÐÓ Ð ÑÓÑ ÒØ ÖÝ Ñ ÒØ Ó ÑÓÓ ÓÖ Ö Ò ÑÓÓ Ý Ö ÙÐ Ø ÓÒº È Ý ÓÐÓ Ð Ñ ÒØ ¾½ µ º Ö Ãº Ô Ð Ëº À ÖÞÓ Ïº ² Ä Û º ¾¼¼ µº ËÖ Ò Ò Ô Ý Ö ËØ ÖÙÒ Ò Ñ Ø Ñ ÙÒ Ø Ö Ó Ò Ö È Ø ÒØ Ò ÈÀɹ µ º ÒÓ Ø ¼ µ ½ ½ ½ ½º À ÒÞ Èº ² È ØÞ Ö º ¾¼½ µº ËØ ÖÙÒ Ô Þ Ø Ø ÓÒÖ Ò ÐÙÒ ÔÖÓ Ö ÑÑ Ö ÓÑÔÐ Ü ØÖ ÙÑ Ø ÖØ ÖÛ Ò ÃÓÒÞ ÔØ Ö ÌÖ ÙÑ Ø Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò ÈÖ Ò Ñ Ñ º ÌÖ ÙÑ ¹ Ø Ö Ø Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ÙÒ Ö ÒÛ Ò ÙÒ Ò ½ ½µ ¾ º ÀÓÐРº ÏÓР˺ Ë ÙÑ Ö Åº À Ö º Ö Ò º ËÔ Ò Ð Ö º ËØÓÔ Åº Ë Ó Âº À ÐÐ Ö Èº ÃÐ Ò Åº Ø Ðºº ¾¼½ µº ËÙ Ø Ò Ù ØÓ Ö ÙÐ Ø ÒØ Ò ÔÓ ØØÖ ÙÑ Ø Ñ Ò Ò Ú Ù Ð Û Ø Ð ÓÓ Ù Ò Ò Ð Øº Ú ÐÓÔÑ ÒØ Ò Ô Ý ÓÔ Ø ÓÐÓ Ý ½º

32 ÁÁ ÃÖ ØÞ Ö Äº À ÒÞ Èº ÂÓ Ø º Ë Äº ² È Ö º ¾¼½ µº Ï Ð ØÓÖ Ò ÔÖ Þ Ö Ò Ò Î ÖÐ Ù Ò Ö Ø Ø ÓÒÖ Ò ÌÖ ÙÑ Ø Ö Ô Ö Ò Ò Ö Ò ØÙÖ Ð Ø Ò ÍÒØ Ö Ù ÙÒ º ÁÒ ½ º Â Ö Ø ÙÒ Ö È̺ È Ý ÌÖ ÙÑ Ø ÖÙÒ ÃÓÑÔÐ Ü ÓÐ Ò Ö ÒÞ ÖØ Ò ÐÙÒ º ØÖ Ø Ò Ëº µº À Ñ ÙÖ ÖÑ ÒÝ ÃÐ Øع ÓØØ º ÃÖ ØÞ Ö Äº À ÒÞ Èº È ØÞ Ö º È Ö º ² Ë ÒÒ Êº Ò ÔÖ Ô Ö Ø ÓÒµº Å Ò ÙÐÒ Ò Ô Ø ÓÐÓ Ð Ó Ø ÓÒ ÙÐÐÝ Ñ Ø Ø Ó Ø ÓÒ Ó Ð ÓÓ ÜÙ Ð Ò Ô Ý Ð Ù Ò ÈÌË ÝÑÔØÓÑ ØÓÐÓ Ýº Å Ö Ö º ² Ë ØÞÛÓ Ð Åº ½ µº Ö ÙÒ ÚÓÒ Ô Ý Ò Ð ØÙÒ ÓÐ Ò ÁÑÔ Ø Ó Ú ÒØ Ë Ð ¹Ö Ú ÖØ Î Ö ÓÒº ÒÓ Ø ½ ¼ ½ ½º ÆÓÖØÓÒ Åº ÏÓÒ ÖР˺ º ÅÝ Ö Ìº Å Ø ÐРº º ² ÖÓ Ý Êº º ¾¼¼ µº Ì Ù Ó Ô ÐÑØÓÔ ÓÑÔÙØ Ö Ò Ø ØÖ ØÑ ÒØ Ó ÙÐ Ñ Ò ÖÚÓ º ÙÖÓÔ Ò Ø Ò ÓÖ Ö Ê Ú Û ½½ µ ¾ ½ ¾ ¾º Ê ÞÚ Ëº ĺ Ñ Äº º Ë ÙØ Âº ÖÖÓÐÐ º ² Ä Ò Ò Åº ź ¾¼½½µº Ô ÐÓØ ØÙ Ý Ó Ø Ì Ó Ò ÒØ Ö Ø Ú ÑÓ Ð Ô ÓÒ ÔÔÐ Ø ÓÒ ÓÖ Ò Ú Ù Ð Û Ø ÓÖ ÖÐ Ò Ô Ö ÓÒ Ð ØÝ ÓÖ Ö Ò Ù Ø Ò Ù ÓÖ Öº Ú ÓÖ Ø Ö ÔÝ ¾ µ ¼¼º

33 ÁÁÁ Ë ÒØ Ò ÐÓ Èº ˺ Ä Ñ Ö Ö Åº º ËØ ÐÑ ÝÖ º ÀÓÙ Ò Åº ÓÓ Ñ Ò Âº Î ÖÐ Ý Ò º ÃÙÔÔ Ò Èº ÌÙ ÖÐ Ò Ü º Î ÒÔ Ñ Ð Ïº ² Ò Ö¹ÈÖ Ñ Ö Íº Ϻ ¾¼½ µº Ò ÐÝÞ Ò Ù ÓÑÔÓÒ ÒØ Ó Ø Ú Ý Ö ÙÐ Ø ÓÒ Ò ÓÖ ÖÐ Ò Ô Ö ÓÒ Ð ØÝ ÓÖ Ö Ò ÓÑÔ Ö ÓÒ ØÓ ÓØ Ö Ð Ò Ð ÖÓÙÔ Ù Ò ÑÙÐØ ÔÐ ÖÝ Ø Ø º ÓÖ ÖÐ Ò È Ö ÓÒ Ð ØÝ ÓÖ Ö Ò ÑÓØ ÓÒ Ý Ö ÙÐ Ø ÓÒ º Ë Ô º ½ µº ËÝ Ø Ñ ÒÓ Ø Ò Ö ÃÐ Ò Ò È Ý ÓÐÓ º Ï Ò Ñ ÐØÞ»ÈÎͺ Ë Ô º ÖØ Àº ² ÃÖ Ú Ò º ¾¼½ µº ÖÙÒ Ð Ò Ý Ø Ñ Ö Ì Ö Ô ÙÒ Ö ØÙÒ º ØØ Ò Ò ÀÓ Ö º Ë Ô º À ÒÞ Ð Ëº ² Ã Ö Ëº ¾¼½½µº Ò ÙÖÓÛ Ò ØÐ Ö ÓÖ ÙÒ Ö È Ý ÓØ Ö Ô º ÁÒ º Ë Ô ÀÖ ºµ Æ ÙÖÓ ÓÐÓ Ö È Ý ÓØ Ö Ô Ëº ½ µº ËØÙØØ ÖØ Ë ØØ Ù Öº Ë Ô º ² ËØÖÙÒ º ¾¼½¼µº Ì ÒØ Ø ÓÒ Ó Ö Ø Ð ÙØÙ Ø ÓÒ Ò Ô ØÖ Ò Ø ÓÒ Ò ÓÖØ Ø ÖÑ Ò Ó Ö ¹ Ö Ò Ø Ñ Ö ä Ñ Ø Ó ÓÖ Ø Ö Ð¹Ø Ñ ÑÓÒ ØÓÖ Ò Ó ÙÑ Ò Ò ÔÖÓ º ÓÐÓ Ð Ý ÖÒ Ø ½¼¾ µ ½ ¾¼ º

34 ÁÎ Ë Ô º ú ËØ Ö¹Ë Ñ Ò Ö º ÓÖÒ Ïº Ë ÐÐ Ö Àº ² º ¾¼½ µº ËÝ Ø Ñ ÓÖÑÙÐ Ø ÓÒ ÁÒ Ú Ù Ð Þ ÈÖÓ ÅÓÒ ØÓÖ Ò Ò ËØ Ø ÝÒ Ñ Ò Ó Ó Ø Ú Á ÒØ ØÝ ÓÖ Öº ÖÓÒØ Ö Ò È Ý ÓÐÓ Ýº ËÓÐÞ Ö Ëº ØØ Ö º Å ÑÑ Ñ Ö Åº ÅÙ Ý Äº ² Ê Ð Àº ¾¼¼ µº ÁÑÔÖÓÚ Ò Ø Ò ÓÒ Ö ÙÐ Ø ÓÒ Ò Ô Ø ÒØ Û Ø Ô Ö ÓÒ Ð ØÝ ÓÖ Ö ÔÓ Ø¹ØÖ ÙÑ Ø ØÖ ÓÖ Ö Ò ÙÐ Ñ º ÁÒ Åº º ËÓÖ Àº Ê Ð ² ź º º Ö Ò ÀÖ ºµ ÖÓÒØ Ö Ò Ø ÔÔ Ö À ÐØ Å Ø Ó Ò Ú ÓÙÖ Ð Ò È Ý Ó ÓÑ Ø Å Ò Ëº ½½½ ½½ µº ÍØÖ Ø Æ Ø ÖÐ Ò ÍÒ Ú Ö ØÝ Ó ÍØÖ Øº âô Ò Ð º ÎÓ Ð Èº ÀÖ Ð Âº ÃÓö Ò Ý Âº ÆÓÚ Ìº ÅÓØÐÓÚ Äº ÖÑ Âº Ò Âº ÆÓÚ º ² À Ð º ¾¼¼ µº ÁÌ Ê ÈË Ò ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ Ý Ö Ð Ô ÔÖ Ú ÒØ ÓÒ ÔÖÓ Ö ÑÑ Ò ÞÓÔ Ö Ò º Ë ÞÓÔ Ö Ò Ö Ö ½µ ½¾ ½ º ÌÖÙÐР̺ º ² Ò Ö¹ÈÖ Ñ Ö Íº ¾¼½ µº Ñ ÙÐ ØÓÖÝ Ñ Òغ ÒÒÙ Ð Ö Ú Û Ó Ð Ò Ð Ô Ý ÓÐÓ Ý ½ ½ ½ º Ú Ò Ö À ÖØ Çº Æ Ò Ù º ʺ ˺ ² ËØ Ð Ãº ¾¼¼ µº Ì ÙÒØ Ð ¹ ËØÖÙØÙÖ Ð Ó Ø ÓÒ Ò Ø ØÖ ØÑ ÒØ Ó ÖÓÒ ØÖ ÙÑ Ø Þ Ø ÓÒº Æ Û ÓÖ ÆÓÖØÓÒ ÈÖÓ ÓÒ Ð ÓÓ º

35 Î Ï Ö Åº È Ø Ö º Û Ò Æº Â Ó Æº Ë ÑÓÒ º ÖÓÑ º Ì ÖÝ º Ð Ô ÙРȺ ² Î Ò Ç Âº ¾¼½¼µº ÍÒÚ Ð Ò Ô ØØ ÖÒ Ó Ø Ú Ö ÔÓÒ Ò ÐÝ Ð Ñ Ý ÑÔÖÓÚ ÓÙØÓÑ ÔÖ Ø ÓÒ Ò ÔÖ ÓÒ ÑÓÑ ÒØ ÖÝ Ñ ÒØ Ø٠ݺ ÂÓÙÖÒ Ð Ó Ø Ú ÓÖ Ö ½¾ ½µ ½ ½ ½ º

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø ÈÖÓ º Öº Ë Ö Â ØÞ Ä Ø Ö Î Ö ÒØÐ ÙÒ Ò ÎÓÖØÖ Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ ÜÔÓÒ Ø Ù Ù Ø ¾¼½½ ½ ½º½ Î Ö ÒØÐ ÙÒ Ò Ø Ö Ø Ò ½º ʺ À ÔÔÐ Ö Àº¹Âº ÀÙÑÔ ÖØ Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ Ò ÙÐ Ö ØÖ ÙØ ÓÒ Ó Ô ÓØÓ Ð ØÖÓÒ ÖÓÑ ÑÙÐØ Ô

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ Â Ö Ö Ø ¾¼¼½ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¾µ ½ ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ÈÓØ Ñ ¼ ÐÐ Ñ Ò ËØ ÖÒÛ ÖØ Ð Ö Ò Ö ËØ ÖÒÛ ÖØ ½ ¹½ ¾ ÈÓØ Ñ Ì Ð ÓÒ ¼ ½µ ¼ Ì Ð Ü ¼ ½µ ¾ ¹Å Ð Ö ØÓÖ Ôº ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛº Ôº Ù Ò Ø ÐÐ Ò

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ¼ Ì Ò Ò ÍÒ Ú Ö ØØ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ¼ ÐÐ Ñ Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ÛÙÖ Ñ º  ÒÙ Ö ½ Ö Ò Ø ÙÖ Ù ÑÑ ÒÐ ÙÒ Ö Ö Ò ÒÖ ØÙÒ Ò ØÖÓÒÓÑ ÁÒ Ø ØÙØ Ä Ö¹ ÙÒ ÓÖ¹

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

0 = 2x+2y 5 y = 4x+6

0 = 2x+2y 5 y = 4x+6 ÌÐ ÁÁ ÙÒÒ ÙÒ ½ ½º ÖÒ (((4/3+5/2) 6/5) 2/5) 5/2º 1 ¾º ÖÒ µ )) µ 1 ÙÒ µ (1 ( 2 2 ) ( 3 4 ( (2 3 ) 4 ) ( 3)º 4 º Î ÖÒ µ ( 4 xy + 3 yz )(4z xy 2 y ) µ x y z x 2 x + z y ÙÒ µ x º 1 1 1 x º Û 2 Ò Ö Ø ÓÒ Ð Ð

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2 Â Ö Ò ¾ À Ø Ë ÔØ Ñ Ö ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

ß Ð ¹ ÓÜ¹Ï ÖÚ ÖÛ Ò ÙÒ Î Ö ĐÙ Ö Ø ÚÓÒ Ú Ö Ò Ò Ö Ø ÒÙØÞ Ö ÃÐ Ò ÞÙÖ ÁÒ Ø ÒØ ÖÙÒ ÖĐ Ò Ø ÅĐÓ Ð Ø Ò ÞÙÖ ÒÔ ÙÒ Ö Ò Ö Ú ÖÛ Ò Ö ß Ï ÖÚ ÖÛ Ò ÙÒ ÚÓÒ ÃÓÑÔÓÒ ÒØ Ò Ò ÃÓÑÔÓÒ ÒØ Ò Ô Þ ÐÐ ËÛ¹Ì Ð Ò Ô Þ Î Ö ÐØ Ò Ù ¹ Û Ò

Mehr

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò ÒØÛ ÙÒ Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ñ Ø Ø Ò Ò Ò Ò ÙÒ ÙÒ Å Ò Ø Ò¹ Ø Û Ý Ö Ø Ò Ä Ò Ö Ø Òº Ò ¹Ó Ò ÖÙ º ¾ º ÂÙÒ ¾¼¼ Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

ÙÐØØ ÁÒ Ò ÙÖ Û Ò Ø Ò ÙÒ ÁÒ ÓÖÑ Ø ÔÐÓÑ Ö Ø Ö Ì Ñ ÃÓÒ ÓÐ ÖÙÒ Ò Á̹ËÝ Ø Ñ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ ÐÐ ÖØ Ö Ö Ö ËÓ ØÛ Ö Ò ØÐ ØÙÒ Ò ÚÓÖ Ð Ø ÙÖ ÌÓÖ Ø Ò ÁÖÐÒ Ö ¾¼¼ ÌÓÖ Ø Ò ÁÖÐÒ Ö ÓÑ Ö Ø Ö ÖÚ Ï Ö Ø ÙÒØ Ö Ö Ö Ø Ú ÓÑÑÓÒ

Mehr

Ù ØÓÑ Ö Ê Ð Ø ÓÒ Ô Å Ò Ñ ÒØ Ò ÇÖ Ò Ø ÓÒ Ò Ò ÅÓ ÐÐ Ö ËØÖÙ ØÙÖ ÖÙÒ ÒÒ ØØ È ØØÐÓ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö È ÐÓ ÓÔ Ò Ö Ö ØÙÒ ÁÒ ÓÖÑ Ø ÓÒ Û Ò Ø Ò Ö ÍÒ Ú Ö ØØ Ë ÖÐ Ò ÖÐ Ò Ñ ÂÙÒ ¾¼¼ ¾ ÙØ Ø Ö ÈÖÓ º

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò ÚÓÒ ÅÓ Ð ÁÈ ÞÙ Đ ØÞÐ Ñ ÃÓÒØ ÜØØÖ Ò Ö ËØ Ò Ê Ò ÓÖ ÙÒ ¹ ÙÒ Ä Ö Ò Ø ÁÒ ÓÖÑ Ø ÎÁÁÁ ÈÖÓ º Öº Â Ò Ê Ò Ö ÓÑÑÙÒ Ø ÓÒ Å Ò ÐÐ Ù Ø ÓÒ Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÎÓÐÐ ØĐ Ò Ö ÖÙ Ö ÚÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ

Mehr

Grundtypen von Lägern

Grundtypen von Lägern º Ä Ö Ý Ø Ñ Ñ Ö Î Á¹Ê ØÐ Ò ¾ ½½ Ø Ä ÖÒ ÔÐ ÒØ Ä Ò Ö Ø ¹ Ò Ø Ò Ñ Å Ø Ö Ð Ù º Ä Ö Ø Ò Ê ÙÑ ÞÛº Ò Ð ÞÙÑ Ù Û Ö Ò ÚÓÒ ËØ ¹ ÙÒ»Ó Ö Ë ØØ ÙØ Ò ÓÖÑ ÚÓÒ ÊÓ ØÓ Ò Û ¹ ÒÔÖÓ Ù Ø Ò Ó Ö ÖØ Û Ö Ò Ñ Ò Ò¹ ÙÒ»Ó Ö Û ÖØÑ Ö Ø

Mehr

JENAER SCHRIFTEN MATHEMATIK UND INFORMATIK

JENAER SCHRIFTEN MATHEMATIK UND INFORMATIK FRIEDRICH-SCHILLER- UNIVERSITÄT JENA JENAER SCHRIFTEN ZUR MATHEMATIK UND INFORMATIK Eingang: 05..04 Math/Inf/06/04 Als Manuskript gedruckt Papierfalten im Mathematikunterricht Bericht zum Kolloquium vom

Mehr

A BC T EF

A BC T EF ÇϹÈÖÓ Ø ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» Ç Ë ÓÛÒÐÓ Ý Ø Ñ ÇÏ Ñ Ä ÔÞ Ö ÓÖÑ Øµ ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» ÓÛÒÐÓ» Ò ÖÙÒ Ò Ï ÓÖÔÙ ¹ Ù Ë Ö Ò Ð Ù Ö ¾¼½ ØÓ ÔÔ Öµ ØØÔ»»ÛÛÛºÑÓÖ ÒÐ ÝÔÓÓкÓÑ»ØÓ» ÐØ»½»½ Ð Ü Ð Ù Ö ÙÒ ÊÓÐ Ò Ë Ö ÐÔ

Mehr

ÔÐÓÑ Ö Ø Ú ÀÓÖÒ Ö ½ ÌÀ ÖÑ Ø Ø Ö ÁÒ ÓÖÑ Ø ØÖ Ù Ö ÈÖÓ º Ϻ À Ò ÔÐ ÁÒ ÓÖÑ Ø ÈÖÓ º ĺ ÈÓÒ Ö ØÞ ÈĐ Ó Öº ź À Ö À ÖÙÒ ÞĐÙ Ö ÁÒ ÓÖÑ Ø Á ß Ø Ò ÐÝ ĐÍ ÙÒ ØÖ ß ÒÖ ÙÒ Ò ÞÙÖ Æ Ù ÓÒÞ ÔØ ÓÒº Ú ÖĐÓ«ÒØÐ Ø Ð À ¹ Ö Ø Ö Ø

Mehr

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø Ù Ó Ó ÖÙÒ ÙÖ ÑÙ Ð Ò Ö Ö ÔÐÓÑ Ö Ø ÌÓ ÅÙÖ ØÖ Ù Ö ÍÒ Úº º Á Öº ÐÓ ËÓÒØ ÙØ Ø Ö ÓºÍÒ Úº ÈÖÓ º Å º Á Öº ÊÓ ÖØ À Ð Ö ÁÒ Ø ØÙØ Ö Ð ØÖÓÒ ÅÙ ÙÒ Ù Ø ÍÒ Ú Ö ØØ Ö ÅÙ ÙÒ Ö Ø ÐÐ Ò ÃÙÒ Ø Ö Þ Ø ÖÖ Ë ÔØ Ñ Ö ¾¼¼ Ù ÑÑ Ò ÙÒ

Mehr

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M.

1 Die Invariantentechnik. Algorithmen mit Intervallen. s = 0; i = 0; // i <= M while (i < M) { s = s + f(i); i = i + 1 ; // i <= M. ĐÍ ÖÐ Ò Û Ö Ó ÈÖÓ Ö ÑÑ Ò Ò Ù ÖÙÒ Ò ÒĐÙ Ø Û Öº ÐØ ÙÒ ÒÓ Ë ÐÙ ÞÙ ÖÙÒ º Ë Û Ö ÒÙÖ ÒÒ ÆÙÒ 1 Die Invariantentechnik Algorithmen mit Intervallen Ò Û Ø Å Ø Ó ÞÙÑ Ö Ø ÐÐ Ò Ö ÒØ ÖØ ÓÖÖ Ø Ö ÈÖÓ Ö ÑÑ Ø ÁÒÚ Ö ÒØ ÒØ

Mehr

ËÓÑÑ Ö Ñ Ø Ö ¾¼¼½ ÝÒ Ñ ËÝ Ø Ñ ¾ ÎÓÖÐ ÙÒ Ö ÔØ Ñ Ø ÄĐÓ ÙÒ Òµ Í Ó Ù Þ ÒØÖ Ð Ò ËÝ Ø Ñ Ö ÎÓÖÐ ÙÒ Å Ò Ð ÖÓØÑ Ò ÂÙÐ Ñ Ò ÙÒ ÒÞÙ Ø ÈÓ Ð³ Ò Ê Ñ Ø ÍÒÛÙ Ø ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ÒÐ Ò Ä ÖÒÞ Ð Ú ½ ½ º ÔÖ Ð ¾¼¼½

Mehr

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse

Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Sven Mühlthaler Strategische Standortplanung in Reverse-Logistik-Netzwerken - Eine empirische und modellgestützte Analyse Dargestellt für die Amaturenaufarbeitung kassel university press Die vorliegende

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

Ò ÓÖ ÖÙÒ Ò Ò ÑÓ ÖÒ ÖÓÛ Ö¹ Ö Ò Ï ¹ ÔÔÐ Ø ÓÒ Ò ËØ Ò Ê Ù Ð ÅĐ ÖÞ ¾¼¼½ ÔÐÓÑ Ö Ø Ò Ì Ð Ñ Ø ÙÖ ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÓÒ Ú Ö Ö ØÙÒ ÙÒ ÓÑÔÙØ Ö ØĐÙØÞØ Æ Ù Å Ò Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ö Þ ÙØ Ø Ö ØÖ Ù Ö ÇºÍÒ

Mehr

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ Â Ö Ö Ø ¾¼¼ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼ µ ¾¾ ¾ ½ Ö ÙÖ º Öº Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ò ØÖ ½¼ Ö ÙÖ Ì Ðº ¼ ½µ ½ ¹¼ Ü ¼ ½µ ½ ¹½½½ ¹Å Ð Ö ºÙÒ ¹ Ö ÙÖ º ÏÏÏ ØØÔ»»ÛÛÛº ºÙÒ ¹ Ö ÙÖ º Ù Ò Ø ÐÐ Ñ Ç ÖÚ ØÓÖ

Mehr

Ð ØÛÓÖØ Ó ØÓÖÚ Ø Ö Ñ Î Ö Ð ÚÓÒ ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ Ò ÙÒ Đ Ò ÚÓÒ Ò Ò Ö ÒØÛ ÐØ ÛÙÖ Ò ØĐÓ Ø Ñ Ò ÑÑ Ö Û Ö Ù È Đ ÒÓÑ Ò Ø Ò Ò Ö ÁÒ ÓÖÑ Ø ÓÒ ÕÙ ÐÐ ÐØ Ò ÓÑÔ Ø Ð Ò Ñ Ø Ò Ò Ò Ö ÞÛ Ø Ò Ð Ø Û ÒÒ ÙÑ Ð ÒÛ Ò ÙÒ Ò Ðغ À

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ

Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ º ËÙÚÖÖÒ º (a,b) ¹ ÙÑ º ÂÙÒ Ð ÀÐØ ÐÐ ØØÖ Ù Ñ ÐÒ ÄÚÐ ÙÒ ÔÖ ØÒ Ò Ò ÐØØÖÒº ÞÙ ÖÐÙ ÑÖ Ð ÒÒ ËÐ Ð Ò ÒÑ ÒÒÖÒ ÃÒÓØÒ ÞÙ ÔÖÒº ÀØ Ò ÒÒÖÖ ÃÒÓØÒ x ÒÙ m ÃÒÖ Ó ÒÐØØ x ÒÙ m ËРк ËÐ Ð Ò ÒÑ ÌÐÙÑ T i ÔÖØ Ò Ò ÐÐ ÐÒÖ Ð Ù

Mehr

À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ

À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ ½ À Ö Ø ÐÐÙÒ ÚÓÒ ÝÔ ÖÔÓÐ Ö ÖØ Ñ ÒÓÒ¹½¾ ÙÒ ÒÛ Ò ÙÒ Ò Ò Ö Ð Ø ¹ÆÅʹËÔ ØÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ö Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ ÁÁÁ ¹ ÓÐÓ ÙÒ ÎÓÖ Ð Ò Å Þ Ò Ö ÍÒ Ú Ö ØØ Ê Ò ÙÖ ÚÓÖ

Mehr

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø ÖÐØÙÒ Ö ÖØÒÚÐÐØ ÙÖ ÅÖØÓÒ ÒØÓÒÓ ËØÒÖ ÙÒ ÅÖØÒ Âº ÒÖ ØÖØ Ï ÒÚ ØØ Ø Ò ÙÒ Ó ÑÖØÓÒ ÓÒ Ø ÚÓÐÙØÓÒ Ó ÓÒ Ò ØÛÓ Ô ÐÚÒ Ò ÖÓÒ ÙÒÖ ÙÒØÒ ÓÒØÓÒ Û Ô Ø ØÓØÐ ÒÙÑÖ Ó ÒÚÙÐ ÓÒ ØÒغ ÁÒÚÙÐ ÑÖØ ÖÓÑ Ò Ö ÛØ ØØÖ ÐÚÒ ÓÒØÓÒ ØÓ Ò Ö

Mehr

ËØ Ø Ø Ò ÐÝ ÚÓÒ Î Ö Ö Ø Ò ÙÒ ÅÓ ÐÐ ÖÙÒ ÚÓÒ Î Ö Ö Ù Ñ ØØ Ð Þ ÐÐÙÐ Ö Ö ÙØÓÑ Ø Ò ÎÓÑ Ö È Ý ß Ì ÒÓÐÓ Ö Ö Ö ¹Å Ö ØÓÖ¹ÍÒ Ú Ö ØĐ Ø Ù ÙÖ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ ÄÙØÞ Æ Ù ÖØ Ù

Mehr

ÁÈÄÇÅ Ê ÁÌ Î Ö Ð Ú Ö Ò Ö ÊÓØÓÖ ØÖÙ ØÙÖ Ò Ò Ô Þ Ø Ú Ò Ö ÑÓÑ ÒØ Ò ÓÖ Ù ĐÙ ÖØ Ñ ÁÒ Ø ØÙØ ĐÙÖ Ò Û Ò Ø Ð ØÖÓÒ ÙÒ ÉÙ ÒØ Ò Ð ØÖÓÒ Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø Ï Ò ÙÒØ Ö ÒÐ ØÙÒ ÚÓÒ ÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º ÖºØ Òº ÓÖ Ö ÙÖ Ôк¹ÁÒ

Mehr

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼

¾ Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ã Ö Ø Ò ÒÞÑ ÒÒ Ì Ö ÈÖÓÑÓØ ÓÒ ¾ º ÆÓÚ Ñ Ö ¾¼¼ Ó ÒÐ Ö Ñ Ø À ÖØÞ¹Ä Ò Ò Ö Ø ĐÙÖ Ò ÓÔØ Ð Ùѹ Ö ÕÙ ÒÞÒÓÖÑ Ð ÎÓÑ Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øº Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º À Ö Ó ËØÓ Ö ÓÖ Ò Ñ ½ º¼ º½ ½ Ò À Ð

Mehr

Ò ÖØ Ö ÑÙÐØ Ñ Ð ÒÛ Ò ÙÒ Ò Ö Ø Ã Ö Ð ÓÖÒÖ Ò ¼ Ø ØØ Ò Ö Ø Ö ÐºÒ Ø ¾ º Å ¾¼¼½ Ù ÑÑ Ò ÙÒ Ö Ø Ñ Ø Ò Ò Ö Ð Ö ÒÓÖÑ Ò ÓØ Ò ÑÙÐØ Ñ Ð Ò Ò ÖØ Ò Ò ÙÒ Ò ÒØ Ö ÒØ ÙÒ Ò Ù Ì ÒÓÐÓ Ò ÙÖ ÔÖ Ø ¹ Ì Ø Ò Ù Ö ÙÒØ Ö ÄÙÔ Ò Ñ Òº

Mehr

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML

TUM INSTITUT FÜR INFORMATIK. Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML TUM INSTITUT FÜR INFORMATIK Internet -Buchhandel Eine Fallstudie für die Anwendung von Softwareentwicklungstechniken mit der UML Gerhard Popp, Franz Huber, Ingolf Krüger, Bernhard Rumpe, Wolfgang Schwerin

Mehr

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

ËÚ Ò Æ ÙÑ ÒÒ À Ò Ä Ò Ö È Ö Ò Ò Ò ĐÙ ÖÙÒ Ò Ñ Ò ÐÐ Ò ÐÝ Ò ØĐÙÖÐ Ö ËÔÖ Ú ÎÓÖÛÓÖØ Ð Û Ö Ò Ö ¼ Ö Â Ö ÞÙÑ Ö Ø ÒÑ Ð Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÚÓÖ Ö Ø Ø Ò Ò Ò ĐÍ Ö Ð ĐÙ Ö Ù Ë Ø Ö ÓÑÔÙØ ÖÐ Ò Ù Ø Û Ø Ø Ò È Ö¹ Ò Ð ÓÖ Ø Ñ

Mehr

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz

Stefan Michaelis E S. Lehrstuhl für Elektronische Systeme und Vermittlungstechnik. Lehrstuhl für Künstliche Intelligenz ß ÔÐÓÑ Ö Ø ß Ì Ò Ò Ø Å Ò Ò ÞÙÖ Ò ÐÝ ÚÓÒ Ì Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞÛ Ö Ò Stefan Michaelis Þ Ñ Ö ¾¼¼¼ E S V Lehrstuhl für Künstliche Intelligenz Lehrstuhl für Elektronische Systeme und Vermittlungstechnik Prof.

Mehr

Sectoral Adjustment of Employment: The Impact of Outsourcing and Trade at the Micro Level

Sectoral Adjustment of Employment: The Impact of Outsourcing and Trade at the Micro Level 145 Reihe Ökonomie Economics Series Sectoral Adjustment of Employment: The Impact of Outsourcing and Trade at the Micro Level Peter Egger, Michael Pfaffermayr, Andrea Weber 145 Reihe Ökonomie Economics

Mehr

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series in Human Cognitive and Brain Sciences; 42) Æ ÙÖÓÒ Ð

Mehr

Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen

Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen Promotionskolloquium: Reinforcement Lernen mit Regularisierungsnetzen Tobias Jung Betreuer: Prof. Dr. Thomas Uthmann Prof. Dr. Elmar Schömer Dr. Daniel Polani Fachbereich Physik, Mathematik & Informatik

Mehr

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

ØÛ ÎØÓÒÐÝ ÐØÒ ÓÐÒÒ ÊÒÐÒ µ µ ¼ ¼ ¼ µ µ ¼ ¼ ¼ µ ¼ ¼ ¼ Û Ò ÐÐÑÒ Ú Úµ µ ÓÒ Øº µ ¼ Û µ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ µ ¼ ¼ ¼ ¼ ¼ ¼ ¼ Ø ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ÀÐØÙÒ ÃÔÐ ØÞ Ù Ñ ÚØØÓÒ ØÞ Ò ÀÒ ÊÓØ ËØÒ ÒÙÔÔÒ Ã ÌÑÒØ ØÓÒÓÑ ÇÐÐ Ð ÎÐ µ º ØÛ ÎØÓÒÐÝ º ÒÒ Ò ÞÒØÐÒ ÃØÐÒ Ò Ò º ÐÒ ØÞ º ÑØÒ º Ò ÒØÞÐ ÒØ ÚØÓ º ÒØ Ò ÁÒÚÒØ º ÒÒ Ò ¹ÃØÐÒ Ò ÃÐ ÒØØ º ÜÞÒØÞØØ ÙÒ ÑØÒ º ØØ ØÞ ÚÓÒ ÃÔÐ

Mehr

ÐÙÑ Ò ÙÑÒ ØÖ ¹Ë ÙØÞ Ø Ò Ù ÐÐ ÙÑÒ ØÖ À Ö Ø ÐÐÙÒ ÙÒ Ö Ø Ö ÖÙÒ ÚÓÒ Å ÐØ Ã Ö ÔÐÓÑ Ö Ø Ò È Ý Ò ÖØ Ø Ñ ÁÒ Ø ØÙØ ĐÙÖ ËØÖ Ð Ò¹ ÙÒ Ã ÖÒÔ Ý ÚÓÖ Ð Ø Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØĐ Ø Ö Ê Ò Ò Ö Ö ¹Ï Ð ÐÑ ¹ÍÒ Ú Ö ØĐ

Mehr

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6740 Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½º½ ØÝÓ Ø Ð ÙÑ Ó ÙÑ Ð ÅÓ ÐÐÓÖ Ò ÑÙ º º º º º º º º º º º º º º º ½º¾ ÝØÓ Ð ØØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º Ø Ò Ò Ò ÈÖÓØ Ò Ò ØÝÓ Ø Ð ÙÑ Ó ÙÑ

Mehr

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen

Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Wirtschaftlichkeit und optimaler Betrieb von KWK-Anlagen unter den neuen energiewirtschaftlichen Rahmenbedingungen Bearbeitet durch Lambert Schneider Berlin, März 2000 Geschäftsstelle Freiburg Büro Berlin

Mehr

Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ Ò Ò Û Ö Ò Î ÖÞ Ò ÚÓÒ ØÛ ¼ Ò ØĐ ØØ

Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ Ò Ò Û Ö Ò Î ÖÞ Ò ÚÓÒ ØÛ ¼ Ò ØĐ ØØ º ½ ÞÙÑ ÓÐ Ò Ò ØÖ µº Ò Ø Ð Ò ÈÖ µº ß Ù Ò Ñ ÚÓÑ ½ º º¾¼¼ º ÐÐ Ù Ò Ñ Ò ØÖ ÖÒÓ Ä Ò Ú Ðµ Ò Ø Ò ÃÓ ÑÓ Ôº ¾ ¼ß ¼¼ À ÐÑ Ö Ïº Ù Ö ÙÒ ÏÓÐ Ò Êº ÀÖ ºµ Àº ÙØ ¾¼¼ Ò Ø Ò¹ Ò ØĐ ØØ Ò ÏÓÐ Ò Êº ÈÓØ Ñ ÙÒ ÖÒÓ Ä Ò Ú Ð ÄĐÓÒ

Mehr

Security. Privacy. Authentity

Security. Privacy. Authentity Ä Ö ÖÛ Ø Ö Ð ÙÒ Æ ØÞÛ Ö Ñ Ò Ñ ÒØ ÌÍ ÑÒ ØÞ ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø ÁÒ ÐØ Ú ÖÞ Ò ½ Ë Ö Ø ÔÖÓ Ð Ñ ¾ ½º½ Ä Ø Ö ØÙÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾

Mehr

9 Dynamische Programmierung (Tabellierung)

9 Dynamische Programmierung (Tabellierung) 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö

Mehr

Interoperabilität. Semantische Heterogenität (Datenmodell, Schema, Instanzen) Strukturelle Heterogenität (Datenmodell, Schema, Instanzen)

Interoperabilität. Semantische Heterogenität (Datenmodell, Schema, Instanzen) Strukturelle Heterogenität (Datenmodell, Schema, Instanzen) ÁÒ ÓÖÑ Ø ÓÖ ÙÒ ÙÒ ÒØÛ ÐÙÒ Ñ ÒÙ Ö ÔØ ÆÓº Û ÐÐ Ò ÖØ Ý Ø ØÓÖµ ÁÒØ ÖÓÔ Ö Ð ØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ ÙÒ Ø Û Ò Ù Ñ Þ Ò Ö ËØ Ò Ö ËÙ ÒÒ È Ö Ò Ï Ð ÐÑ À Ð Ö Ò ÖÐ ÚÓÒ Ç ØÞ Ý ÍÒ Ú Ö ØĐ Ø ÇÐ Ò ÙÖ Ô ÖØÑ ÒØ ĐÙÖ ÁÒ

Mehr

Ò Ö Ò Ð Ò Ö º Ä Ð ØÖÓÒ ÐÙÒ Ñ ØØ Ð Ñ ÁÒØ ÖÒ Ø ĐÍ Ö Ø ÙÒ Û ÖØÙÒ ØÙ ÐÐ Ö Î Ö Ö Ò ÙÒØ Ö ÖĐÙ Ø ÙÒ ÚÓÒ ÃÖ Ø Ö Ò Ö Ë Ö Ø ÙÒ ÙÒ Ø ÓÒ Ð ØĐ Ø ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÞÙÖ ÙØ ØÙÒ ÙÖ Ã Ø Ö Ò Ë Ö Þ Ñ Ö ½ ÍÆÁÎ ÊËÁÌ Đ Ì À Å

Mehr

Å Ò ØÙÖ ÖØ Ð ØÖÓ Ø Ø Ä Ò Ò Ù ÓÒÚ ÒØ ÓÒ ÐÐ Ò Ð Ò Ò Ö Ó Ù Ò Æ Ö Ô ÒÒÙÒ ¹ Ê Ø Ö Ð ØÖÓÒ ÒÑ ÖÓ ÓÔ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ö Ò Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö È Ý Ö Ö Ö ¹Ã ÖÐ ¹ÍÒ Ú Ö ØØ ÞÙ Ì Ò Ò ÚÓÖ Ð Ø ÚÓÒ Ê ÑÓÒ

Mehr

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast.

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Ä ÒÙܹÁÒ Ó¹Ì Ù ÙÖ ¹¾ ºÅÖÞ¾¼¼ à ÖÐ ÙØ Á̹ÏÇÊÃ˺ Ǻ ̹ ÓÒ ÙÐØ Ò ²ËÓÐÙØ ÓÒ Einleitung Willkommen Karl

Mehr

ÁÒ Ø Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ¾ Å ÒÞ Ö ÌÖ Ø Ùѹ ¹ ÜÔ Ö Ñ ÒØ ¾º½ ÌÖ Ø Ùѹ ¹ËÔ ØÖÙÑ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÜÔ Ö Ñ ÒØ Ò Å ÒÞ º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º¾º½

Mehr

ËØ Ò À ÖØÑ ÒÒ Å ØÖ Ð¹ÆÖº ½ µ ÃÓÒÞ ÔØ ÓÒ ÙÒ Ú ÐÙ ÖÙÒ Ò Ö Î Ù Ð ÖÙÒ Ø Ò Ö Ñ Ò Ò Ø Ò ÚÓÒ ÓÐÓ Ò ÐÐ Ò ÔÐÓÑ Ö Ø ÈÖÓ º Öº º ÃÖ Ñ Ö ÈÖÓ ÙÖ Ö Ö Ô Ø ÒÚ Ö Ö ØÙÒ Ö ÓÐÓ ÙÒ ÁÒ ÓÖÑ Ø ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø ÂÓ ÒÒ ÏÓÐ Ò Ó

Mehr

A B A B A B B \A A (B C) = (A B) (A C) A B Def. = {x x A oder x B} = {x x B oder x A} = B A. Def

A B A B A B B \A A (B C) = (A B) (A C) A B Def. = {x x A oder x B} = {x x B oder x A} = B A. Def à ÈÁÌ Ä Áº ÄÁÆ Ê Ä Ê ½ ÁÑ ÓÐ Ò Ò Ø Ö Ò ÖØ Ò Ö ÒÓ Ñ Ð Ö Ô Ö Ø ÐÐغ A B A B A B A B A B A B A\B B \A A B A B ½º¾ Ê ÒÖ ÐÒ Ö Å Ò Ò ½º Ë ØÞ Ë Ò ÙÒ Å Ò Òº ÒÒ ÐØ Ò ÓÐ Ò Ê ÒÖ ÐÒ Ö Å Ò Ò µ ÃÓÑÑÙØ Ø Ú ØÞ A B = B

Mehr