Simulation von räumlich verteilten kontinuierlichen Modellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Simulation von räumlich verteilten kontinuierlichen Modellen"

Transkript

1 Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von räumlich verteilten kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT DRESDEN (FH) Fachbereich Informatik/Mathematik Simulation von verteilten kontinuierlichen Modellen Einführung Unterschiede zur einfachen kontinuierlichen Simulation Numerische Lösung von räumlich verteilten Differentialgleichungssystemen Grundverfahren Problembetrachung Anwendungsfälle und Software für die verteilte kontinuierliche Simulation Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 2 1

2 Einführung in die Simulation 2/3-dimensionaler Systeme Grundprinzip Die generelle Vorgehensweise der Lösung mittels Beschreibung durch Differentialgleichungssysteme und deren numerischer Lösung wird beibehalten. Allerdings sind die Gleichungen zusätzlich zur Zeit auch im Raum, also über x, y und ggf. auch z verteilt. Die Parameter der Gleichungen können von den räumlichen Gegebenheiten abhängen, d.h: Einfluss von Material und physikalischen Größen bei technischen Simulationen Klimasimulation : großräumige Windström- ungen, Geografie und Sonneneinstrahlung Regionale Unterschiede bei Wirtschaftssimulationen oder Hygieneparameter in der Region bei Infektionsausbreitung (siehe 2- dimens. Bsp. rechts) Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 3 Beschreibung räumlich verteilter Systeme Die prinzipielle Vorgehensweise soll zuerst am Beispiel einer 2D-Simulation betrachtet werden. Anschließend werden 3D-Verfahren betrachtet. Grundkonzept : Unterteilung der Fläche (Raum) in kleine Elemente meist Rechtecke (Quadrate) oder Dreiecke Die Eigenschaften werden entweder an die Kanten, Ecken oder in einem Punkt mit partiellen Differentialgleichungen beschrieben, wobei die benachbarten Elemente mit unterschiedlicher Gewichtung berücksichtigt werden können. Die Berechnung erfolgt nach dem Schema : Schleife über das Zeitintervall Schleife über alle Elemente der Fläche (Raum) Berechne neuen Wert für jedes Element als Funktion der 8 oder 26 Nachbarn Übernehme neue Werte als neue Zeit-Zustand Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 4 2

3 Probleme bei der Beschreibung räumlich verteilter Systeme Die räumliche Diskretisierung trifft auf verschiedene Probleme : Diskretisierungsprobleme : Fehler bei der Abbildung von Unstetigkeiten bei zu grober Diskretisierung : Übergangseffekte g oder Störungen können unterdrückt werden (Kurve nicht abbildbar im Bsp.) Lösung: an das Problem angepasste Elemente finden (bessere Appoximationsfunktionen, Splines etc.) Die Größe der Datenmenge : Durch die 2/3 weiteren Raumdimensionen kommt es zum quadratischen/kubischen Wachstum der Datenmengen e und Rechenzeiten e e! Bsp.: Modellierung PKW für Crashtest PKW mit 4m x 2m x 2 m = 16 m³ Rauminhalt bei Element- Auflösung 1,0 mm -> 16 * 10e9 Elemente 0,1 mm -> 16 * 10e12 Elemente Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 5 Bei nur 100 Byte Formeldaten pro Element werden benötigt 16*100 Gbyte RAM 16*100 Terrabyte RAM Lösungsoptionen für die Beschreibungsprobleme Datenreduktion : Verwendung unterschiedlicher Diskretisierungs maße in Abhängigkeit von den räumlichen Positionen (z.b. innere, massive Stahlteile im PKW nur mit 1cm Diskretisierung, außen 0,1 mm) Hybridmodelle (im PKW-Innenraum nur Luft, damit nur grobes Luft-Strömungsmodell mit 5 cm Kantenlänge) Rechenzeitoptimierung Unterschiedliche Zeitdiskretisierung (bei Krafteinwirkung (Crash) hochgenau mit 0,001s, davor nur 0,1 s Auflösung) Verwendung massiv paralleler Computer durch die Quasi-Unabhängigkeit weiter entfernter Elemente Neu : Grafikkarten mit 512 oder 1024 Prozessoren FOLGE beider Lösungen: komplexe Datenstrukturen (Sparse Matrizen) und sehr aufwändige, parallele Berechnungsalgorithmen! Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 6 3

4 Typische Modellierungsansätze aus der Praxis FEM In der Technik ist die Finite Elemente Methode (FEM) eingesetzte Methode. FEM-Grundkonzept : Unterteilung des Objektes in Finite Elemente Beschreibung der Eigenschaften durch partielle Differentialgleichungen Wichtig: Bei gleichem Stofftyp (Metall) ergibt sich meist eine Basisformel für alle Elemente, welche durch konkrete Parameter an die Material-, Temperatur- oder Druckbedingungen angepasst wird Einsatz Einsatz in allen technischen Simulationen teilweise bereits in CAD/CAM integriert sehr hohe Lizenzkosten (tw. ab ) Kommerz. Marktführer : ansys.com Opensource: Openfoam die am häufigsten Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 7 Typische Modellierungsansätze aus der Praxis - FVM / CFD Im Bereich der Strömungsmechanik ist die Finite Volumen Methode (FVM) die am häufigsten eingesetzte Methode. FVM-Grundkonzept : Unterteilung des Objektes in Finite Volumen Die Beschreibung basiert i.d.r. auf Stoff-oderoder Energieerhaltungssätzen (Gesamtmenge ist konstant, Fluss zwischen den Volumen, hervorgerufen durch Druck- oder Temperaturunterschiede) Typische Formeln : Navier-Stokes-Gleichungen zur Beschreibung von Fluid-Strömungen Einsatz Einsatz in allen technischenfl Fluid-Simulationen lationen teilweise bereits in CAD/CAM integriert sehr hohe Lizenzkosten (tw. ab ) Kommerz. Marktführer : ansys.com tw. Opensource: siehe Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 8 4

5 Zusammenfassung 2D/3D - Simulationsuntersuchungen sind heute UNVERZICHTBAR in fast allen Bereichen der Technik und Naturwissenschaften Simulatoren (FEM/FVM) sind meist eingebunden in CAD/CAM-Softwaresysteme Problematisch sind generell die Größe der Daten, die Anzahl der Rechenschritte die Genauigkeit und Stabilität der verwendeten mathematischen und computertechnischen Ansätze Notwendig ist meist der Einsatz von Highend-Parallelrechnern! Das Wettrennen im Rechnerbereich zielt letztlich auch auf die noch bessere Beherrschung der 3D-Simulation ab! Simulation betrieblicher Prozesse - Einführung - Prof. T.Wiedemann - HTW Dresden - Folie 9 5

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Zellulare Neuronale Netzwerke

Zellulare Neuronale Netzwerke Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Zellulare Neuronale Netzwerke Florian Bilstein Dresden, 13.06.2012 Gliederung 1.

Mehr

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse Hochschule Zittau/Görlitz, Fakultät Maschinenwesen, Fachgebiet Technische Thermodynamik M. Kunick, H. J. Kretzschmar, U. Gampe Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die

Mehr

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group "CFD Steam Property Formulation"

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group CFD Steam Property Formulation M. Kunick, H. J. Kretzschmar Hochschule Zittau/Görlitz, Fachgebiet Technische Thermodynamik, Zittau Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task

Mehr

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden Frederik Rabe, Anja Hofmann, Ulrich Krause Gliederung Einleitung Grundlagen Grundlagen CFD NIST FDS

Mehr

Ölverteilung im Getriebe Netzlose CFD bietet Potenzial

Ölverteilung im Getriebe Netzlose CFD bietet Potenzial Ölverteilung im Getriebe Netzlose CFD bietet Potenzial Vortragender: Dr. Christof Rachor, MSC Software 26. Januar 2012 5. Simulationsforum Nord MSC Software und NEXT LIMIT TECHNOLOGIES Partnerschaft seit

Mehr

Informationen zum Aufnahmetest Mathematik

Informationen zum Aufnahmetest Mathematik Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle

Mehr

Computer Aided Engineering

Computer Aided Engineering Computer Aided Engineering André Dietzsch 03Inf Übersicht Definition Teilgebiete des CAE CAD FEM Anwendungen Was hat das mit Rechnernetzen zu tun? André Dietzsch 03Inf Computer Aided Engineering 2 Definition

Mehr

Überblick Vor- und Nachteile von Simulationssprachen bei der Simulation komplexer Fertigungssysteme. Historische Entwicklung von Bausteinsystemen

Überblick Vor- und Nachteile von Simulationssprachen bei der Simulation komplexer Fertigungssysteme. Historische Entwicklung von Bausteinsystemen Vorlesungsreihe Simulation betrieblicher Prozesse Bausteinorientierte diskrete Simulationssysteme am Beispiel von TAYLOR ED Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE

Mehr

Maschinenbau Erneuerbare Energien. Bachelorarbeit. Numerische Simulation zur Umströmung einer Photovoltaikanlage. Irmela Blaschke

Maschinenbau Erneuerbare Energien. Bachelorarbeit. Numerische Simulation zur Umströmung einer Photovoltaikanlage. Irmela Blaschke Beuth Hochschule für Technik Berlin University of Applied Sciences Fachbereich VIII Maschinenbau Erneuerbare Energien CFX Berlin Software GmbH Karl-Marx-Allee 90 10243 Berlin Bachelorarbeit Numerische

Mehr

Programmierung von Multicore-Rechnern

Programmierung von Multicore-Rechnern Programmierung von Multicore-Rechnern Prof. Dr.-Ing. habil. Peter Sobe HTW Dresden, Fakultät Informatik/Mathematik www.informatik.htw-dresden.de Gliederung: Ein Blick auf Multicore-Prozessoren/ und -Rechner

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Gefühl*** vorher / nachher. Situation* Essen (was und wie viel?) Ess- Motiv** Tag Datum Frühstück Zeit: Allgemeines Befinden

Gefühl*** vorher / nachher. Situation* Essen (was und wie viel?) Ess- Motiv** Tag Datum Frühstück Zeit: Allgemeines Befinden Name: Größe: cm Gewicht: kg Alter: Jahre Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation* Essen Ess- Situation*

Mehr

Anwendungsbeispiel zu XML -MathML

Anwendungsbeispiel zu XML -MathML Vorlesungsreihe Entwicklung webbasierter Anwendungen Anwendungsbeispiel zu XML -MathML Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT DRESDEN

Mehr

Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen

Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen A.Walle 1,J. Heiland 2,M. Schäfer 1,V.Mehrmann 2 1 TUDarmstadt, Fachgebietfür Numerische Berechnungsverfahren

Mehr

Ein Algorithmus für die

Ein Algorithmus für die VGG 1 Ein Algorithmus für die Visualisierung gerichteter Graphen in der Ebene (2D) Seminar Graph Drawing SS 2004 bei Prof. Bischof (Lehrstuhl für Hochleistungsrechnen) Gliederung VGG 2 Einleitung Motivation

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken

CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken www.dlr.de Folie 1 CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken Simulation von Vibration und Schall im Verkehrswesen Graham Ashcroft Numerische Methoden

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

A Vortex Particle Method for Smoke, Fire, and Explosions

A Vortex Particle Method for Smoke, Fire, and Explosions Hauptseminar WS 05/06 Graphische Datenverarbeitung A Vortex Particle Method for Smoke, Fire, and Explosions ( Ein Wirbel-Partikel Ansatz für Rauch, Feuer und Explosionen ) Martin Petrasch Inhalt 1. Überblick

Mehr

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20b Master Informatik / Medizininformatik Numerische Mathematik Folie

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Willkommen an der Reinhold Würth Hochschule in Künzelsau Die Kolloquiumsreihe von Hochschule und Industrie Prof. Dr.-Ing.

Mehr

Computational Fluid Dynamics - CFD Overview

Computational Fluid Dynamics - CFD Overview Computational Fluid Dynamics - CFD Overview Claus-Dieter Munz Universität Stuttgart, Institut für Aerodynamik und Gasdynamik Pfaffenwaldring 21, 70550 Stuttgart Tel. +49-711/685-63401 (Sekr.) Fax +49-711/685-63438

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany Spline-artige Kurven auf Subdivision Surfaces Jörn Loviscach Hochschule Bremen, Germany Überblick Spline-artige Kurven auf Spline-Flächen Kurven auf SDS: Problem, Anwendung Verwandte Arbeiten Spline-artige

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Prof. Dr. rer. nat. Christian Schröder Dipl.-Ing. Thomas Hilbig, Dipl.-Ing. Gerhard Hartmann Fachbereich Elektrotechnik und

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen.

Aufgabe 12 Nach dem Eintippen der Kantenlänge soll die folgende Tabelle den Rauminhalt und die Oberfläche eines Würfels automatisch berechnen. Aufgabe 11 Excel hat für alles eine Lösung. So kann das Programm automatisch den größten oder den kleinsten Wert einer Tabelle bestimmen. Wenn man die richtige Funktion kennt, ist das überhaupt kein Problem.

Mehr

Non-Deterministische CFD Simulationen in FINE /Turbo

Non-Deterministische CFD Simulationen in FINE /Turbo Non-Deterministische CFD Simulationen in FINE /Turbo Dipl.-Ing. (FH) Peter Thiel Dr.-Ing. Thomas Hildebrandt NUMECA Ingenieurbüro NUMECA, a New Wave in Fluid Dynamics Überblick 1. Motivation: Warum non-deterministische

Mehr

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5 1 Einleitung 1 1.1 Motivation.................................... 1 1.2 Zielsetzung................................... 4 1.3 Aufbau und Gliederung der Arbeit...................... 5 2 Hygromechanische

Mehr

Nutzung von Grid- Ressourcen mittels Virtualisierung

Nutzung von Grid- Ressourcen mittels Virtualisierung Nutzung von Grid- Ressourcen mittels Virtualisierung Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH November 2009 Inhalt CFX Berlin Software GmbH Plasma-Technologie-Grid Anforderungen an kommerzielle

Mehr

Interesse an numerischer Simulation für Vorgänge in Wärme- bzw. Kältespeichern

Interesse an numerischer Simulation für Vorgänge in Wärme- bzw. Kältespeichern Interesse an numerischer Simulation für Vorgänge in Wärme- bzw. Kältespeichern Thorsten Urbaneck, Bernd Platzer, Rolf Lohse Fakultät für Maschinenbau Professur Technische Thermodynamik 1 Quelle: Solvis

Mehr

PROJEKT IN EINFÜHRUNG IN DIE MODELLIERUNG

PROJEKT IN EINFÜHRUNG IN DIE MODELLIERUNG PROJEKT IN EINFÜHRUNG IN DIE MODELLIERUNG MICHAEL JUHOS (051461), MARLENE LEPUSCHITZ (0630896), SOFIE WALTL (0710478) Inhaltsverzeichnis 1. Einleitung 1. Variante I 1 3. Variante II 4. Variante III in

Mehr

Terrain-Rendering mit Geometry Clipmaps

Terrain-Rendering mit Geometry Clipmaps Vorarbeiten & Grundlagen Basiskomponenten Der Clipmap-Algorithmus Terrain-Rendering mit Seminar Computergrak 2010 Vorarbeiten & Grundlagen Basiskomponenten Der Clipmap-Algorithmus Worum geht's? Algorithmus

Mehr

Grundlagen der 3D-Modellierung

Grundlagen der 3D-Modellierung April 28, 2009 Inhaltsverzeichnis 1 Einführung 2 Direkte Darstellungsschemata 3 Indirekte Darstellungsschemata 4 Parametrische Kurven und Freiformflächen 5 Abschluss Motivation Vom physikalischen Körper

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Simulationstechnik I Einführung in die Simulationstechnik

Simulationstechnik I Einführung in die Simulationstechnik Simulationstechnik I Einführung in die Simulationstechnik Modellierung und Simulation in der Verfahrenstechnik Teil 1: Praktische Übung Prof. Dr.-Ing. Wolfgang Marquardt Jürgen Hahn, Ph.D. Lehrstuhl für

Mehr

Was ist das i3mainz?

Was ist das i3mainz? Laserscanning zur drei- dimensionalen Objekterfassung: Grundlagen und Anwendungen Andreas Marbs i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz - University of Applied Sciences

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Berlin University of Applied Sciences Fachbereich II Mathematik - Physik Chemie Masterarbeit von Dipl.-Ing. Ingrid Maus zur Erlangung des Grades Master of Computational Engineering

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Mathematik Akzentfach

Mathematik Akzentfach Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...

Mehr

Simulation in der kommunalen Abwasserreinigung

Simulation in der kommunalen Abwasserreinigung Michaela Hunze Simulation in der kommunalen Abwasserreinigung Grundlagen, Hintergründe und Anwendungsfälle Ein Lehrbuch für Anfänger und Fortgeschrittene Oldenbourg Industrieverlag Inhalt s Verzeichnis

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Computergrafik Bilder, Grafiken, Zeichnungen etc., die mithilfe von Computern hergestellt oder bearbeitet werden, bezeichnet man allgemein als Computergrafiken. Früher wurde streng zwischen Computergrafik

Mehr

Simulation von kontinuierlichen Modellen

Simulation von kontinuierlichen Modellen Vorlesungsreihe Simulation betrieblicher Prozesse Simulation von kontinuierlichen Modellen Prof. Dr.-Ing. Thomas Wiedemann email: wiedem@informatik.htw-dresden.de HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT

Mehr

System Dynamics. Renate Thies. Sommersemester 2004. Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11)

System Dynamics. Renate Thies. Sommersemester 2004. Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11) Äg System Dynamics Renate Thies Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11) Sommersemester 2004 System Dynamics 1/31 Inhaltsverzeichnis Äg Einführung Level und Flußraten

Mehr

Einführung in Bildverarbeitung und Computervision

Einführung in Bildverarbeitung und Computervision Einführung in Bildverarbeitung und Computervision Vorlesung 1: Grundlagen Dipl.-Math. Dimitri Ovrutskiy SS 2010 HTWdS Auf Basis der Vorlesungen von und mit Danksagung an Hr. Prof. Dr. J. Weikert Bildverarbeitung

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Simulation von CO 2 -Schneestrahldüsen

Simulation von CO 2 -Schneestrahldüsen Simulation von CO 2 -Schneestrahldüsen Clemens Buske Dr. Volker Kassera CFD Consultants GmbH Sprollstraße 10/1 D-72108 Rottenburg Tel.: 07472 988688-18 www.cfdconsultants.de - Folie 1 / 33 - Überblick

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

3D-Convection Zwischen Systemsimulation und CFD

3D-Convection Zwischen Systemsimulation und CFD 3D-Convection Zwischen Systemsimulation und CFD Vitja Schröder 25.03.2015 3D Innenraummodell 1 Vitja Schröder Ladestraße 2 38442 Wolfsburg, Germany Tel: ++49-(0)5362-938 28 84 schroeder@xrg-simulation.de

Mehr

ZUKUNFTSRAUM SCHULE Optimierung von Lüftungskonzepten für Klassenräume im Bestand auf der Basis von in situ Messmethoden

ZUKUNFTSRAUM SCHULE Optimierung von Lüftungskonzepten für Klassenräume im Bestand auf der Basis von in situ Messmethoden ZUKUNFTSRAUM SCHULE Optimierung von Lüftungskonzepten für Klassenräume im Bestand auf der Basis von in situ Messmethoden Auf Wissen bauen Raumklimasysteme Kompetenzfelder Kombination natürlicher und mechanischer

Mehr

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung)

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung) Lösungen zur Übung 0/1: 'Evolutionsgleichung' Aufgabe 0/1: Der Code zur Berechnung der analytischen Lösung der Evolutionsgleichung findet sich im file evolution.f90, derjenige zur Berechnung der numerischen

Mehr

DLR_School_Lab- Versuch Haftmagnet

DLR_School_Lab- Versuch Haftmagnet Drucksachenkategorie DLR_School_Lab- Versuch Haftmagnet Untersuchung von Haftmagneten durch Messungen und numerische Simulation nach der Finite- Elemente-Methode (FEM) Version 3 vom 30. 6. 2014 Erstellt

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

CFD * in der Gebäudetechnik

CFD * in der Gebäudetechnik CFD * in der Gebäudetechnik * CFD = Computational Fluid Dynamics Innenraumströmung Systemoptimierung Weitwurfdüsen Anordnung von Weitwurfdüsen in einer Mehrzweckhalle Reinraumtechnik Schadstoffausbreitung

Mehr

Simulation des motorischen Innenprozesses

Simulation des motorischen Innenprozesses Simulation des motorischen Innenrozesses Nocke, J., Lehrstuhl für Technische Thermodynamik Verbrennungsrozessrechnung-ASIM 003 LTT- Gliederung des Vortrages 1. Einleitung und Motivation. Physikalisch-emirische

Mehr

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung Regelungs- und Systemtechnik 1 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie Zu regelnde Größen: Position Geschwindigkeit Beschleunigung

Mehr

Teil A Arbeitsblatt. Teil B Pflichtaufgaben

Teil A Arbeitsblatt. Teil B Pflichtaufgaben Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse

Mehr

Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen

Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen Verwendung von LS-OPT zur Generierung von Materialkarten am Beispiel von Schaumwerkstoffen Katharina Witowski (DYNAmore GmbH) Peter Reithofer (4a engineering GmbH) Übersicht Problemstellung Parameteridentifikation

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung t.jung@fhtw-berlin.de Heute Volumenrepräsentationen Thomas Jung Generierung von Volumenrepräsentationen Rendering von Volumenrepräsentationen Konvertierung in Oberflächenrepräsentationen Weitere Geometrische

Mehr

Simerics. Unternehmen. Über uns. info@simerics.de. Telefon +49 7472 96946-25. www.simerics.de

Simerics. Unternehmen. Über uns. info@simerics.de. Telefon +49 7472 96946-25. www.simerics.de Simerics Über uns Unternehmen Die Simerics GmbH ist ein Joint Venture der Partnergesellschaften Simerics Inc. (USA) und der CFD Consultants GmbH (Deutschland). Die Gründung erfolgte 2014 mit dem Ziel die

Mehr

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung

Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Modellierung verteilter Systeme Grundlagen der Programm und Systementwicklung Wintersemester 2009/10 Prof. Dr. Dr. h.c. Manfred Broy Unter Mitarbeit von Dr. K. Spies, Dr. M. Spichkova, L. Heinemann, P.

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

Discontinuous Galerkin Verfahren in der CFD

Discontinuous Galerkin Verfahren in der CFD Discontinuous Galerkin Verfahren in der CFD Dr. Manuel Keßler Universität Stuttgart Status Quo - Aerodynamik Verfahren Finite Volumen Codes 2. Ordnung im Raum Zeitintegration 1.-4. Ordnung (Runge-Kutta

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Übungspraktikum 3 Physik II

Übungspraktikum 3 Physik II HOCHSCHULE BOCHUM Fachbereich Geodäsie Übungspraktikum 3 Physik II SS 2015 Thema: Wegzeitgesetze und Grundgesetz der Dynamik Übung 1: Bestimmung der und der Momentangeschwindigkeit eines Fahrzeugs auf

Mehr

Wasseroberfläche von Wasserwellen. Particle Hydrodynamics (SPH)

Wasseroberfläche von Wasserwellen. Particle Hydrodynamics (SPH) 07. Februar 2008 Die Beschreibung der freien Wasseroberfläche von Wasserwellen mit der Methode der Smoothed Particle Hydrodynamics (SPH) Anwendungen und erste Erfahrungen mit dem Programmpaket Dipl.-Ing.

Mehr

EXCEL in der Wirtschaftsmathematik

EXCEL in der Wirtschaftsmathematik Hans Benker EXCEL in der Wirtschaftsmathematik Anwendung von Tabellenkalkulationsprogrammen für Studenten, Dozenten und Praktiker Springer Vieweg Inhaltsverzeichnis TEIL I: Einführung in EXCEL 1 Das Tabellenkalkulationsprogramm

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage):

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage): Protokoll 1 a) Beschreiben Sie den allgemeinen Ablauf einer Simulationsaufgabe! b) Wie implementieren Sie eine Einlass- Randbedingung (Ohne Turbulenz!) in OpenFOAM? Geben Sie eine typische Wahl für U und

Mehr

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Modellierung und Simulation der gekoppelten 3Phasenströmung des PUR-Fasersprühverfahrens

Modellierung und Simulation der gekoppelten 3Phasenströmung des PUR-Fasersprühverfahrens 2. Norddeutsches Simulationsforum 27.05.2010, HAW Hamburg Modellierung und Simulation der gekoppelten 3Phasenströmung des PUR-Fasersprühverfahrens Prof. Dr.-Ing. Peter Wulf HAW Hamburg Dipl.-Ing.(FH) Patrick

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur

Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur Sigrun Ortleb Universtät Kassel FB 10 Mathematik und Naturwissenschaften AG Analysis und Angewandte Mathematik Sigrun Ortleb

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS Sven D. Simeitis 04/2011 Gliederung Einleitung Art um Umfang der Berechnungen MECHANICA (p-methode) ANSYS (h-methode) Berechnungsbeispiele Rundstab

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

ENTSCHEIDUNGSUNTERSTÜTZUNG IN DER CHEMIEANLAGENPLANUNG

ENTSCHEIDUNGSUNTERSTÜTZUNG IN DER CHEMIEANLAGENPLANUNG ENTSCHEIDUNGSUNTERSTÜTZUNG IN DER CHEMIEANLAGENPLANUNG Richard Welke, Karl-Heinz Küfer, Anton Winterfeld, Fraunhofer ITWM, Norbert Asprion, BASF SE 7. Symposium Informationstechnologien für Entwicklung

Mehr

Modellierung und Simulation

Modellierung und Simulation Prüfung SS 2004 Modellierung und Simulation Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine rote Farbe

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Dr. habil. Marcel Kunze Engineering Mathematics and Computing Lab (EMCL) Institut für Angewandte und Numerische Mathematik IV Karlsruhe Institute of Technology

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Dialekte der Klimaforschung

Dialekte der Klimaforschung Dialekte der Klimaforschung Vom Fortran-Programm zum parallelen Programm Thomas Ludwig Inhalt Welche Dialekte werden transformiert? Welche Anforderungen stellen wir? Wozu diese Transformation? Wie ist

Mehr