GeoGebra im Unterricht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "GeoGebra im Unterricht"

Transkript

1 GeoGebra im Unterricht Das dynamische Nebeneinander von Geometrie und Algebra in GeoGebra ermöglicht Ihren Schülern auf einfache Weise einen experimentellen Zugang zur Mathematik. Dadurch können Sie als Lehrer selbstgesteuertes, individuelles und entdeckendes Lernen fördern. GeoGebra als Werkzeug für mathematische Experimente Lassen Sie Ihre Schüler selbst mathematische Sachverhalte mit GeoGebra entdecken. Dazu geben Sie einen Arbeitsauftrag in Form eines Arbeitsblattes oder einer Overheadfolie, den Ihre Schüler mit Hilfe von GeoGebra bearbeiten sollen. Dabei muss Ihr Unterricht nicht unbedingt im Computerraum stattfinden. Es genügt schon ein PC mit GeoGebra, um in einer Gruppenarbeit oder einem Stationenbetrieb damit zu experimentieren. Einige Tipps dazu Formulieren Sie Ihre Fragestellungen möglichst offen, damit Ihre Schüler genügend Freiräume für eigene Lösungswege haben und sich selbstständig mit mathematischen Problemen auseinandersetzen können. Lernen ist ein individueller Prozess, den Sie so fördern können. Verbinden Sie individuelles Lernen mit Team-Work. Wenn Sie Ihre Schüler zu zweit oder in Kleingruppen arbeiten lassen, entstehen oft allein durch das gegenseitige Erklären der eigenen Gedanken neue Einsichten. Lassen Sie Ihre Schüler Vermutungen und Ergebnisse auch aufschreiben, entweder direkt auf ein Arbeitsblatt oder ins Heft. Dabei können sie die Möglichkeit des Ausdruckens der Konstruktion und ihres Protokolls verwenden. Eine derartige Dokumentation bietet die Basis für eine Diskussion in der Klasse über die gesammelten Vermutungen und Ergebnisse. Lassen Sie dazu Schüler oder Schülergruppen ihre "Theorien" präsentieren und von der Klasse kritisch beurteilen. Während der Arbeitsphasen mit GeoGebra sollten Sie sich als Berater im Hintergrund halten und nur Hilfestellung geben, wenn diese von Ihren Schülern angefordert wird. So geben Sie Ihren Schülern die Gelegenheit, in Ruhe nachzudenken und eigene Lösungswege zu suchen. GeoGebra im Unterricht 1

2 GeoGebra als Präsentationswerkzeug Verwenden Sie GeoGebra als "dynamische Overheadfolie", um Sachverhalte zu veranschaulichen oder Experimente mit der gesamten Klasse durchzuführen. Dazu benötigen Sie einen Laptop oder PC und einen Beamer im Unterrichtsraum. Sie können dabei mit der leeren Oberfläche von GeoGebra starten und eine Konstruktion im Unterricht erstellen oder eine bereits vorbereitete Datei öffnen. In letzterem Fall bietet sich das Konstruktionsprotokoll an, um eine vorbereitete Konstruktion Schritt für Schritt vorzuführen. Einige Tipps dazu Versuchen Sie Ihre Schüler bei der Präsentation aktiv einzubinden. Fördern Sie "mathematische Diskussionen" in der Klasse, indem Sie Vermutungen der Schüler aufgreifen und mit Hilfe von GeoGebra auch überprüfen. Lassen Sie die Schüler selbst Ergebnisse aus Arbeitsphasen mit GeoGebra präsentieren. Bieten Sie Schülern auch die Möglichkeit, Referate mit GeoGebra zu gestalten. Da GeoGebra kostenlos ist, können Ihre Schüler die Software auch problemlos zu Hause nutzen. Ausgangspunkte für Arbeitsaufträge Bei der Erstellung von Arbeitsaufträgen, die mit GeoGebra bearbeitet werden sollen, haben Sie die Möglichkeit verschiedene Ausgangspunkte zu verwenden: Offene Fragestellungen: regen Sie Ihre Schüler zu mathematischen Experimenten an, indem Sie ihre Fragen so formulieren, dass eigenes Entdecken und individuelle Lösungswege möglich sind. Bild der Konstruktion: lassen Sie Ihre Schüler versuchen, eine als Bild vorgegebene Konstruktion selbst durchzuführen. Das Konstruktionsprotokoll kann hier zum Vergleich der verschiedenen Lösungen verwendet werden. Konstruktionsprotokoll: lassen Sie Ihre Schüler eine Konstruktion anhand eines vorgegebenen Konstruktionsprotokolls durchführen. Entfernen Sie dabei einzelne Schritte und lassen Sie Ihre Schüler diese wie einen Lückentext ergänzen. Kombinieren Sie diese Möglichkeiten, ersinnen Sie neue und lassen Sie Ihrer Kreativität freien Lauf. GeoGebra im Unterricht 2

3 Beispiele mit offenen Fragestellungen Die folgenden Beispiele beinhalten offene Fragestellungen und sollen als Anregung für Ihre eigene Unterrichtsvorbereitung dienen. Beispiel 1: Lineares Gleichungssystem mit zwei Unbekannten Beispiel 2: Kreisgleichung Beispiel 3: Tangenten an einen Kreis Beispie 4: Ableitungen und Tangente einer Funktion Beispiel 1: Lineares Gleichungssystem mit zwei Unbekannten Aufgabe: Ermittle graphisch die Lösung des folgenden Gleichungssystems: g: 4x = -6, h: x - 3y = 3. Führe die Probe in deinem Heft durch Einsetzen in beide Gleichungen aus. 1. Versuche, die Gleichung g so zu verändern, dass die Lösungsmenge der beiden Gleichungen leer ist. Was bedeutet das geometrisch? Schreibe deine Vermutungen und Ergebnisse in dein Heft. 2. Versuche weitere Gleichungen g und h anzugeben, bei denen die Lösungsmenge leer ist. Kannst du eine Methode angeben, wie man solche Gleichungen finden kann? Schreibe deine Vermutungen und Ergebnisse in dein Heft. GeoGebra im Unterricht 3

4 Beispiel 2: Kreisgleichung Kreisgleichung und Radius Zeichne mit GeoGebra den Kreis k: x² + y² = 25 und lass dir seinen Radius anzeigen. 1. Verändere die rechte Seite der Gleichung mit der Tastatur und beobachte dabei den Radius. Was fällt dir dabei auf? Schreibe deine Beobachtungen und Vermutungen in dein Heft. 2. Verändere die rechte Seite der Gleichung so, dass der Radius a) r = 4 b) r = 6 c) r = 7 ist. Wie könnte die Gleichung mit dem allgemeinen Radius r aussehen? Schreibe deine Ergebnisse und Vermutungen in dein Heft. Kreisgleichung und Mittelpunkt Zeichne mit GeoGebra den Kreis k: (x 2)² + (y 1)² = 25 und lass dir seinen Mittelpunkt und Radius anzeigen. 1. Verschiebe den Kreis, indem du ihn mit der Maus ziehst, und beobachte dabei die Kreisgleichung und die Koordinaten seines Mittelpunktes. Was fällt dir dabei auf? Schreibe deine Beobachtungen und Vermutungen in dein Heft. 2. Verändere die Kreisgleichung mit der Tastatur so, dass der Mittelpunkt die Koordinaten a) M = (4, 2) b) M = (3, -2) c) M = (-2, -1) hat. Wie könnte die Gleichung mit dem allgemeinen Mittelpunkt M = (m, n) aussehen? Schreibe deine Ergebnisse und Vermutungen in dein Heft. Das folgende Bild zeigt, wie die Ausgangskonstruktion des zweiten Beispiels in GeoGebra aussieht. GeoGebra im Unterricht 4

5 Beispiel 3: Tangenten an einen Kreis Aufgabe: Konstruiere mit GeoGebra den Kreis mit Mittelpunkt M = (3,2) und Radius r = 5 und lass dir die Tangenten an den Kreis durch den Punkt A = (11, 4) anzeigen. 1. Was fällt dir auf, wenn du den Punkt A mit der Maus verschiebst? 2. Wie wirkt sich die Lage von A auf die Tangenten aus? Schreibe deine Beobachtungen in dein Heft. Das Konstruktionsprotokoll kann auch zur Dokumentation verwendet werden: Konstruktionsprotokoll Nr. Name Befehl Algebra 1 Punkt M M = (3, 2) 2 Zahl r r = 5 3 Kreis k Kreis[M, r] k: (x - 3)² + (y - 2)² = 25 4 Punkt A A = (11, 4) 5 Gerade a Tangente[A, k] a: 2.59x y = Gerade b Tangente[A, k] b: 5.12x y = GeoGebra im Unterricht 5

6 Beispiel 4: Ableitungen und Tangente einer Funktion Aufgabe: Zeichne mit GeoGebra die Funktion f(x) = sin(x) und lass dir die ersten beiden Ableitungen anzeigen. Setze weiters einen Punkt T auf die Funktion und erstelle die Tangente an f in diesem Punkt. Verschiebe nun den Punkt T mit der Maus und versuche folgende Fragen zu beantworten: 1. Welchen Zusammenhang gibt es zwischen der Tangente und der 1. Ableitung? Schreibe deine Vermutungen in dein Heft. 2. Was passiert mit den beiden Ableitungen bei einem Hochpunkt bzw. bei einem Tiefpunkt? Notiere deine Vermutungen im Heft. 3. Verändere nun die Funktion f(x) in f(x) = x³ - 2x² und betrachte auch hier die beiden Ableitungen im Hoch- und Tiefpunkt. Stimmen deine Vermutungen von vorhin auch hier? Notiere deine Ergebnisse in deinem Heft. Konstruktionsprotokoll Nr. Name Definition Befehl Algebra 1 Funktion f f(x) = sin(x) 2 Funktion f' Ableitung von f Ableitung[f] f'(x) = cos(x) 3 Funktion f'' 2. Ableitung von f Ableitung[f, 2] f''(x) = -sin(x) 4 Punkt T Punkt auf f Punkt[f] T = (2.21, 0.8) 5 Gerade t Tangente an f in x = x(t) Tangente[T, f] t: y = -0.6x GeoGebra im Unterricht 6

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0

GeoGebra Quickstart. Eine Kurzanleitung für GeoGebra 3.0 GeoGebra Quickstart Eine Kurzanleitung für GeoGebra 3.0 Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

aus: Exemplarische, beziehungsreiche Aufgaben, Februar 2006 Arbeite mit dem Geometrieprogramm GeoGebra.

aus: Exemplarische, beziehungsreiche Aufgaben, Februar 2006 Arbeite mit dem Geometrieprogramm GeoGebra. ÜBERWACHUNGSKAMERA Arbeite mit dem Geometrieprogramm GeoGebra. Du kannst grundlegende Elemente des Programms kennen lernen, indem du die Aufgaben auf dem Arbeitsblatt löst. Screenshots sollen dir dabei

Mehr

1. Lineare Funktionen und lineare Gleichungen

1. Lineare Funktionen und lineare Gleichungen Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra GeoGebra Quickstart Eine Kurzanleitung für GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen Reihe 19 S 1 Verlauf Material LEK Glossar Lösungen GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen Marcel Schmengler, Emmelshausen Klasse: 7 bis 10 Dauer: Die Materialien sind in der Regel

Mehr

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden Curriculum Mathematik 3. Klasse Aus den Rahmenrichtlinien Die Schülerin, der Schüler kann Vorstellungen von natürlichen, ganzen rationalen Zahlen nutzen mit diesen schriftlich im Kopf rechnen geometrische

Mehr

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch Leitidee Lernkompetenzen Lambacher Schweizer Klasse 9 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden

Mehr

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden.

Quickstart. Mit GeoGebra können SchülerInnen Mathematik durch Ziehen von Objekten und Verändern von Parametern interaktiv erkunden. Quickstart Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket Zum Lernen und Lehren in allen Schulstufen Vereint Geometrie, Algebra, Tabellen, Grafiken, Analysis und

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Name und des Einsenders

Name und  des Einsenders Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec Andreas.Ulovec@univie.ac.at Verwenden von Dynamischer

Mehr

Dynamische Mathematik im Unterricht

Dynamische Mathematik im Unterricht Dynamische Mathematik im Unterricht Übersicht Was ist dynamische Mathematik? Was sind dynamische Arbeitsblätter? Entdeckendes Lernen mit dynamischen Arbeitsblättern. Dynamische Arbeitsblätter selber gestalten.

Mehr

Umkreis eines Dreiecks

Umkreis eines Dreiecks Umkreis eines Dreiecks Zeichne mit GeoGebra ein Dreieck mit den Eckpunkten A (-5-1), B (4-2), C (2 3) und konstruiere dessen Umkreis. Mit Werkzeugleiste 1 Konstruiere mit dem Werkzeug Vieleck das Dreieck

Mehr

Lernpfad - Flächenberechnung ebener Figuren. Nicole Weber Ines Jorda

Lernpfad - Flächenberechnung ebener Figuren. Nicole Weber Ines Jorda Lernpfad - Flächenberechnung ebener Figuren Nicole Weber Ines Jorda Ziele: Da wir schon während unseres fachbezogenen Praktikums und bei unseren NachhilfeschülerInnen immer wieder das Problem mit der Uneigenständigkeit

Mehr

GEOGEBRA. Willkommen bei GeoGebra

GEOGEBRA. Willkommen bei GeoGebra GEOGEBRA Willkommen bei GeoGebra GeoGebra ist eine für LehrerInnen und SchülerInnen interaktive, freie, mehrfach ausgezeichnete Unterrichtssoftware für Mathematik, welche von der Grundschule bis zur Universität,

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 6. Semester ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION ARBEITSBLATT 7 UMKEHRAUFGABEN ZUR KURVENDISKUSSION Bisher haben wir immer eine Funktion gegeben gehabt und sie anschließend diskutiert. Nun wollen wir genau das entgegengesetzte unternehmen. Wir wollen

Mehr

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten

1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten 1.7 lineare Gleichungen und Ungleichungen mit 2 Unbekannten Inhaltsverzeichnis 1 Lineare Gleichungen mit 2 Unbekannten 2 1.1 Was ist eine lineare Gleichung mit 2 Unbekannten?..................... 2 1.2

Mehr

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name:

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name: Name: Klasse: Datum: Schatzsuche im Koordinatensystem Öffne die Datei 2_5_Schatzsuche.ggb. 1 Käpt'n Cross hat vor langer Zeit einen Schatz auf der Insel Mysteria vergraben. Wie es in Piratenkreisen üblich

Mehr

Merksatz: Schreibe den Inhalt der Box ab und merke ihn dir.

Merksatz: Schreibe den Inhalt der Box ab und merke ihn dir. Mathematik Klasse 7 Lineare Gleichungssysteme Station 1 Einführung: Schlage das Buch auf Seite 195 auf und notiere dir Stichpunktartig deine Überlegungen zu dem Anfangsproblem "Wie oft haben die Kölner

Mehr

Herzlich Willkommen. GeoGebra für Anfänger

Herzlich Willkommen. GeoGebra für Anfänger Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Inhaltsverzeichnis Viel Erfolg!... 1 Ableitung einer Funktion...2...2...2 Tangenten einer Funktion...3...3...3 Kurvendiskussion...4...4...4

Mehr

Didaktischer Kommentar

Didaktischer Kommentar Didaktischer Kommentar In diesem Lernpfad werden die Schüler/innen mithilfe von Applets zur dynamischen Geometrie zum Erkunden, genauen Beobachten und Begründen geführt. Die Experimentierfreudigkeit und

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

Herzlich Willkommen. GeoGebra für Anfänger

Herzlich Willkommen. GeoGebra für Anfänger Herzlich Willkommen beim Seminar GeoGebra für Anfänger Ihr Name Viel Erfolg! Umkreis eines Dreiecks Zeichnen Sie mit GeoGebra ein Dreieck mit den Eckpunkten A (- -), B ( -), C ( ) und konstruieren Sie

Mehr

MINT Jahrgangsstufe 6, 2. Halbjahr

MINT Jahrgangsstufe 6, 2. Halbjahr MINT Jahrgangsstufe 6, 2. Halbjahr In diesem Halbjahr soll die Mathematik im Vordergrund stehen. An bestimmten Themen und Aufgabenstellungen, die im normalen Unterricht nicht zum Zuge kommen, sollen die

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Lernspirale zum Thema. Einführung in die Differentialrechnung. 7. Klasse. von Markus Hohenwarter und Evelyn Stepancik

Lernspirale zum Thema. Einführung in die Differentialrechnung. 7. Klasse. von Markus Hohenwarter und Evelyn Stepancik Lernspirale zum Thema Einführung in die Differentialrechnung von Markus Hohenwarter und Evelyn Stepancik zum Lernpfad von Gabriele Jauck und Markus Hohenwarter Themenbereich/Inhalte: Einführung in die

Mehr

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website und klicken Sie auf der Startseite auf Download.

1. Was ist GeoGebra? GeoGebra installieren Öffnen Sie die Website  und klicken Sie auf der Startseite auf Download. 1. Was ist GeoGebra? GeoGebra ist eine dynamische Mathematiksoftware, die für Schülerinnen und Schüler aller Altersklassen geeignet ist und auf allen gängigen Betriebssystemen läuft. Sie verbindet Geometrie,

Mehr

Lösen von linearen Gleichungssystemen in zwei Variablen

Lösen von linearen Gleichungssystemen in zwei Variablen für GeoGebraCAS Lösen von linearen Gleichungssystemen in zwei Variablen Letzte Änderung: 29/ März 2011 1 Überblick 1.1 Zusammenfassung Mit Hilfe dieses Unterrichtsmaterials sollen die Verfahren der Gleichsetzungs-,

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 8

Schulinterner Lehrplan Mathematik G8 Klasse 8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 8, Stand: 1.11.2011 Schulinterner Lehrplan Mathematik G8 Klasse 8 Verbindliche Inhalte: Ergänzungen aus Kl. 7:Stochastik Wahrscheinlichkeit im ein-und

Mehr

Die Parabel als Ortskurve

Die Parabel als Ortskurve Die Parabel als Ortskurve Autor: Andreas Nüesch, Gymnasium Oberwil/BL, Schweiz Idee: Gegeben ist eine Konstruktionsvorschrift für einen Punkt P im Koordinatensystem. 1. Konstruieren der Ortskurve mit HIlfe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Abiturprüfung 20 mit ausführlichen Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung

Mehr

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit

Mehr

Glossar. zum Projekt. Dynamische Geometrie-Software. Version 1 vom Gruppe geo09, Projektleiter: Andy Stock

Glossar. zum Projekt. Dynamische Geometrie-Software. Version 1 vom Gruppe geo09, Projektleiter: Andy Stock Glossar zum Projekt Dynamische Geometrie-Software Version 1 vom 03.05.03 Erstellt von: R. Hrushchak, P. Kongsto, A. Stock Seite 1 von 5 Animation: Folge von Schritten zur Erstellung und Veränderung einer

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Der Gauß sche Algorithmus - eine Lerntheke zur Lösung linearer Gleichungssysteme Das komplette Material finden Sie hier: Download

Mehr

Einsatz des GTR im Unterricht, in Klausuren und im Abitur

Einsatz des GTR im Unterricht, in Klausuren und im Abitur Einsatz des GTR im Unterricht, in Klausuren und im Abitur Wolf Pick, Birgit Griese DZLM Fortbildungszyklus Digitale Medien und Werkzeuge Bochum, 14.02.2013 Gliederung Möglichkeiten des Casio fx-cg 20 Beurteilung

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen 1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: stephan@wias-berlin.de

Mehr

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010 Rekursive Folgen für GeoGebraCAS Letzte Änderung: 07. März 2010 1 Überblick Zusammenfassung Innerhalb von zwei Unterrichtseinheiten sollen die Schüler/innen vier Arbeitsblätter mit GeoGebra erstellen,

Mehr

Handreichungen für den Unterricht mit grafikfähigen Taschenrechnern ohne CAS (GTR)

Handreichungen für den Unterricht mit grafikfähigen Taschenrechnern ohne CAS (GTR) Hessisches Kultusministerium Landesabitur 08 Handreichungen für den Unterricht mit grafikfähigen Taschenrechnern ohne CAS (GTR). Methodisch-didaktische Bemerkungen zum Unterricht mit GTR Der Unterricht

Mehr

Funktion der Aufgabe Stellung innerhalb des Unterrichts. Schulformen, in denen entwickelt/ erprobt wurde:

Funktion der Aufgabe Stellung innerhalb des Unterrichts. Schulformen, in denen entwickelt/ erprobt wurde: Mogelpackung? 1. Sucht zu Hause oder auch im Supermarkt nach Verpackungen, von denen ihr vermutet, dass es sich um Mogelpackungen handelt. 2. (Gruppenarbeit) Wählt aus den mitgebrachten Packungen zwei

Mehr

Analyse des Lernproduktes: Diagramme, Umfrage in der Klasse 5

Analyse des Lernproduktes: Diagramme, Umfrage in der Klasse 5 Analyse des Lernproduktes: Diagramme, Umfrage in der Klasse 5 Fach: Mathematik/Stochastik mit Daten und Zufall arbeiten Klasse: 5 Einbindung in den Lehrplan: Kernlehrplan für die Gesamtschule Sekundarstufe

Mehr

Herleitung der Formel für die Krümmung von Funktionsgraphen

Herleitung der Formel für die Krümmung von Funktionsgraphen Herleitung der Formel für die Krümmung von Funktionsgraphen mit Hilfe der Beispiele f(x) = x 2 und f(x) = x 4 Jens Weitendorf Kurzfassung des Inhalts: In dem Artikel wird in einer kurzen Einheit dargestellt,

Mehr

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS

Matrizenrechnung am Beispiel linearer Gleichungssystemer. für GeoGebraCAS Matrizenrechnung am Beispiel linearer Gleichungssystemer für GeoGebraCAS Letzte Änderung: 08/ April 2010 1 Überblick 1.1 Zusammenfassung Lösen von linearen Gleichungssystemen mit Hilfe der Matrizenrechnung.

Mehr

Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400

Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Grundanforderungen beim Umgang mit CAS bis Ende Klassenstufe 12 Casio ClassPad 400 Die Bildschirmabdrucke veranschaulichen die aufgeführten Kompetenzen. Sie erheben keinen Anspruch auf Vollständigkeit

Mehr

Fragebogen zur Unterrichtsentwicklung Sinus-Transfer Grundschule

Fragebogen zur Unterrichtsentwicklung Sinus-Transfer Grundschule Fragebogen zur Unterrichtsentwicklung Sinus-Transfer Grundschule Liebe Kolleginnen und Kollegen der SINUS-Teams, SINUS-Transfer Grundschule ist ein Programm mit dessen Hilfe Veränderungen im Unterricht

Mehr

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen Reihe 19 S 1 Verlauf Material GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen Marcel Schmengler, Emmelshausen Klasse: 7 bis 10 Dauer: Die Materialien sind in der Regel für jeweils eine Unterrichtsstunde

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Quadratische Funktionen. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Download Otto Mar Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Hausaufgaben: Quadratische Funktionen Üben in drei Differenzierungsstufen

Mehr

Mitten-Dreiund Vier-Ecke

Mitten-Dreiund Vier-Ecke Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck

Mehr

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle.

Bestimme dazu die Nullstellen, Scheitelpunkt und Schnittpunkt mit der y-achse und ergänze evtl. einige Punkte durch eine Wertetabelle. Klasse Art Schwierigkeit Mathematisches Schema Nr. 9 Üben xx Quadratische Funktion 1 Skizziere den Graphen der durch y = 0,5 x 2 + x - 4 gegebenen quadratischen Funktion. Bestimme dazu die Nullstellen,

Mehr

Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen. Von Florian Raith, Fürstenzell VORANSICHT

Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen. Von Florian Raith, Fürstenzell VORANSICHT Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen Von Florian Raith, Fürstenzell Wie viel sollen die Orchideen im Verkauf kosten? Bei vielen Fragen aus dem

Mehr

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung "Main" 7. Das Interaktivmenü 10. Variablen und Funktionen 15

Inhalt. Übersicht über das Gerät 6. Die Hauptanwendung Main 7. Das Interaktivmenü 10. Variablen und Funktionen 15 3 Inhalt Übersicht über das Gerät 6 Die Hauptanwendung "Main" 7 Das Edit-Menü 8 Die Software-Tastatur 8 Kopieren und Einfügen 10 Das Interaktivmenü 10 Der Gleichlösungs-Befehl "solve" 11 Umformungen 12

Mehr

GeoGebra. Desktop Version. Was ist GeoGebra?

GeoGebra. Desktop Version. Was ist GeoGebra? GeoGebra Desktop Version Was ist GeoGebra? Dynamische Mathematiksoftware in einem einfach zu bedienenden Paket. Vereint interaktive 2D- und 3D-Geometrie, Algebra, Tabellen, Grafiken, Analysis und Statistik.

Mehr

1. Flächen und Rauminhalte

1. Flächen und Rauminhalte Stoffverteilungsplan Klasse 8 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Flächen und Rauminhalte Lernbereich Längen, Flächen- und Rauminhalte und deren Terme.

Mehr

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN)

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) 1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) D A S S O L L T E N N A C H E U R E M R E F E R A T A L L E K Ö N N E N : Kostenfunktion, Erlösfunktion und Gewinnfunktion aufstellen, graphisch

Mehr

Lastenheft für dynamische Geometrie-Software der Firma EduSoft

Lastenheft für dynamische Geometrie-Software der Firma EduSoft Lastenheft für dynamische Geometrie-Software der Firma EduSoft Zielbestimmung: Es soll ein Programm erstellt werden, mit dem Schüler und Lehrer im sekundären Bildungsbereich geometrische Konstruktionen,

Mehr

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes.

Das Grafikfenster ist dein Zeichenfeld. In das Eingabefenster kannst du mathematische Ausdrücke eingeben, zb die Koordinaten eines Punktes. Körper und Figuren Eigenschaften von Figuren So zeichnest du Figuren mit der Geometrie-Software Geogebra Wenn du Geogebra startest, siehst du drei Fenster: das Grafikfenster, das Algebrafenster und das

Mehr

Medien im Mathematikunterricht

Medien im Mathematikunterricht Hauptseminar 31 Fachdidaktik Mathematik Fachleiter für Mathematik Lernprogramme Tabellenkalkulation Funktionenplotter Dynamische Geometrie Software (DGS) Computer Algebra Systeme (CAS) Computerraum Mit

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

Installation Informationen im Web: Geogebra Quick Start Anleitungen: Zeichenwerkzeuge nutzen

Installation Informationen im Web:  Geogebra Quick Start Anleitungen: Zeichenwerkzeuge nutzen Geogebra Tutorial Installation Informationen im Web: http://wiki.geogebra.org/de/anleitungen:hauptseite Geogebra Quick Start Anleitungen: Zeichenwerkzeuge nutzen Tutorial Geometrie: Punkt, Strecke, Strahl,

Mehr

Arithmetik/Algebra mit Zahlen und Symbolen umgehen

Arithmetik/Algebra mit Zahlen und Symbolen umgehen UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren

Mehr

Schulinternes Curriculum der Jahrgangsstufe 8 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 8 im Fach Mathematik (Kernlehrplan für das Gymnasium Sekundarstufe I (G8), Nordrhein-Westfalen, 2007) Eingesetzte Lehrmittel: Mathematik, Neue Wege, Band 8 Arithmetik/Algebra mit Zahlen und Symbolen umgehen Ordnen ordnen und

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 9

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 9 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 9 Reihe n-folge Buchabschnit t 1 1.1; 1.3; 1.4 1.5 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Die

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

In welchen Schritten führe ich ein Experiment durch?

In welchen Schritten führe ich ein Experiment durch? In welchen Schritten führe ich ein Experiment durch? Alle naturwissenschaftlichen Experimente werden nach dem gleichen Muster durchgeführt. Dabei werden deine Versuche nur dann erfolgreich sein, wenn du

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Gymnasium Jgst. 10 Individuelle Förderung und Differenzierung durch Computereinsatz - die allgemeine Sinusfunktion Die Bedeutungen der Parameter a, b und c bei der allgemeinen Sinusfunktion

Mehr

Inhaltsbezogene Kompetenzen

Inhaltsbezogene Kompetenzen Rationale Zahlen Brüche und Anteile Was man mit einem Bruch alles machen kann Kürzen und Erweitern Die drei Gesichter einer rationalen Zahl Ordnung in die Brüche bringen Dezimalschreibweise bei Größen

Mehr

Schulinternes Curriculum der Jahrgangsstufe 9 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 9 im Fach Mathematik Eingesetzte Lehrmittel: Mathematik, Neue Wege, Band 9 Arithmetik/ Algebra mit Zahlen und Symbolen umgehen Darstellen lesen und schreiben Zahlen in Zehnerpotenzschreibweise erläutern die Potenzschreibweise

Mehr

Technologie im Mathematikunterricht der Sekundarstufe 1. Mag. Gerhard Egger edudays Krems

Technologie im Mathematikunterricht der Sekundarstufe 1. Mag. Gerhard Egger edudays Krems Technologie im Mathematikunterricht der Sekundarstufe 1 Mag. Gerhard Egger edudays Krems 1. Lehrplan Warum Technologie im MU (schon) für 10 14 Jährige? Erziehung zur Anwendung neuer Technologien (BMUKK,

Mehr

Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32

Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32 Funktionaler Zusammenhang Beitrag 15 Mathematik in Ausbildungsberufen 1 von 32 Ganz schön praktisch! Differenzierende Anwendungsaufgaben zur Mathematik in Ausbildungsberufen Von Florian Raith, Fürstenzell

Mehr

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien

(4) in Sachsituationen mathematische Problemstellungen und Zusammenhänge erkennen, geeignete Hilfsmittel und Strategien Mathematik 5. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, beschreiben und

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 24. Mai 2013 *Aufgabe 1. Bestimmen Sie für die folgenden Funktionen jeweils die Gleichung der Tangentialebene für alle Punkte auf der Fläche. Wann ist die Tangentialebene

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: "Find someone who..." - Übungen zur analytischen Geometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Find someone who... - Übungen zur analytischen Geometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: "Find someone who..." - Übungen zur analytischen Geometrie Das komplette Material finden Sie hier: Download bei School-Scout.de S

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1.1 Lineare Gleichungen mit einer Variablen Basisaufgabe zum selbstständigen Lernen Löse die folgenden Gleichungen in deinem Heft. Notiere jeweils deine Lösungsschritte und gib

Mehr

Konstruieren: einfache Figuren maßstabsgetreu vergröjahres. anwenden. beschreiben und be- gründen und diese im Rahmen. Analyse von Sachzusammenhängen

Konstruieren: einfache Figuren maßstabsgetreu vergröjahres. anwenden. beschreiben und be- gründen und diese im Rahmen. Analyse von Sachzusammenhängen Neue Wege Klasse 9 Schulcurriculum EGW Inhalt Neue Wege 9 Kapitel 1 Ähnlichkeit 1.1 Verkleinern und Vergrößern 1.2 Bestimmung von unzugänglichen Streckenlängen Strahlensätze 1.3 Ähnliche Figuren 1.4 Verkleinern

Mehr

Mathematik 2. Klasse Grundschule

Mathematik 2. Klasse Grundschule Mathematik 2. Klasse Grundschule Die Schülerin, der Schüler kann (1) mit den natürlichen Zahlen schriftlich und im Kopf rechnen (2) geometrische Objekte der Ebene und des Raumes erkennen, und klassifizieren

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Lernspirale zum Thema. Einführung in die Integralrechnung. 8. Klasse. von Evelyn Stepancik und Markus Hohenwarter

Lernspirale zum Thema. Einführung in die Integralrechnung. 8. Klasse. von Evelyn Stepancik und Markus Hohenwarter Lernspirale zum Thema Einführung in die Integralrechnung 8. Klasse von Evelyn Stepancik und Markus Hohenwarter zum Lernpfad von Markus Hohenwarter, Gabriele Jauck und Andreas Lindner Voraussetzungen: Themenbereich/Inhalte:

Mehr

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3 Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 6, 2016 Zeitraum 10 Unterrichtsvorhaben 1 Brüche und Dezimalzahlen 1.1 Natürliche Zahlen und Teilbarkeitsregeln 1.2 Brüche 1.3 Anteile 1.4

Mehr

Schuleigener Lehrplan Mathematik -Klasse 7 -

Schuleigener Lehrplan Mathematik -Klasse 7 - Schuleigener Lehrplan Mathematik -Klasse 7 - 1. Prozente und Zinsen - Optional Schnäppchen gesucht Prozent Prozente im Straßenverkehr Zinsen 1 Prozente Vergleiche werden,,,,einfacher 2 Prozentsatz Prozentwert,,,,Grundwert

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 6 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Bruchzahlen - Wiederholen: Anteile als Bruch darstellen - Dezimalschreibweise - Dezimalschreibweisen vergleichen

Mehr

antiproportionale Zuordnungen mit Anwendungen

antiproportionale Zuordnungen mit Anwendungen Chemie: Graphen zu -Versuchsreihen Thema: Proportionale und antiproportionale Zuordnungen mit Anwendungen Umfang: 12 Wochen Jahrgangsstufe 7 Proportionale und antiproportionale Zuordnungen Darstellen Zuordnungen

Mehr

geeigneten Fachbegriffen erläutern Kommunizieren

geeigneten Fachbegriffen erläutern Kommunizieren Kapitel I Rationale Zahlen Arithmetik / Algebra Einfache Bruchteile auf verschiedene Weise darstellen: Lesen: Informationen aus Text, Bild, 1 Brüche und Anteile handelnd, zeichnerisch an wiedergeben 2

Mehr

Dynamische Funktionen mit GeoGebra

Dynamische Funktionen mit GeoGebra Markus HOHENWARTER, Salzburg Dynamische Funktionen mit GeoGebra GeoGebra ist ein Softwaresystem für den Unterricht, das dynamische Geometrie, Algebra und Analysis verbindet (http://www.geogebra.at). Insbesondere

Mehr

Schulinternes Curriculum der Jahrgangsstufe 7 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 7 im Fach Mathematik Eingesetzte Lehrmittel: Mathematik, Neue Wege, Band 7 Arithmetik/ Algebra mit Zahlen und Symbolen umgehen Ordnen Operieren ordnen und vergleichen rationale Zahlen führen Grundrechenarten für rationale

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

SYMMETRIE FRANZ LEMMERMEYER

SYMMETRIE FRANZ LEMMERMEYER SYMMETRIE FRANZ LEMMERMEYER Symmetrie ist ein außerordentlich wichtiges Konzept in der Mathematik und der Physik. Ist beispielsweise (x, y) eine Lösung des Gleichungssystems x + y = 5, xy = 1, so muss

Mehr

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und

Mehr