Univariate Kennwerte mit SPSS

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Univariate Kennwerte mit SPSS"

Transkript

1 Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der Ergebnisse ist nicht intendiert. Anmerkung: Die Beispiele sind der Datei POKIV_Terror_V13.SAV entnommen. Fragebogen und Codeplan stehen im Aktenordner im CIP-Pool. Alle Datenanalysen werden über Analysieren aufgerufen. Nominalskalenniveau Auf Nominalskalenniveau können Tabellen (Häufigkeiten, ) erzeugt werden. Als Kennwert kann der Modus bestimmt werden. Diese Tabellen werden über Deskriptive Statistiken - Häufigkeiten aufgerufen. Beispiel: Es sollen die Häufigkeiten von F41 (Familienstand), F42 (höchster allgemeiner Schulabschluss) und der neu erzeugten Variablen F41dicho berechnet werden.

2 Die betreffenden Variablen werden im linken Feld markiert und über den Pfeil in das rechte Feld transportiert. Auch hier können Sie über OK sofort berechnen lassen oder Sie können den Befehl in das Syntaxfenster übertragen. FREQUENCIES VARIABLES=f41 f42 f42dicho /ORDER= ANALYSIS. Die Originaltabellen sehen wie folgt aus: Häufigkeiten Statistiken N f42 Welchen höchsten allgemeinen Schulabschl f42dicho Schulabs chluss (dichotom f41 Welchen Familienstand haben Sie? uss isiert) Häufigkeitstabelle 2

3 f41 Welchen Familienstand haben Sie? 1.00 Ich bin verheiratet und lebe 2.00 Ich bin verheiratet und lebe 3.00 Ich bin ledig 4.00 Ich bin geschieden 5.00 Ich bin verwitwet 9.00 keine Angabe Häufigkeit Prozent e Kumulierte f42 Welchen höchsten allgemeinen Schulabschluss 2.00 Hauptschulabschluss ( Volksschulabschluss) 3.00 Realschulabschluss (mittlere 4.00 Abschluss der Polytechnischen 5.00 Fachhochschulreife 6.00 Allg. oder fachgebundene Fachschulreife 7.00 Anderer Abschluss 9.00 keine Angabe Häufigkeit Prozent e Kumulierte f42dicho Schulabschluss (dichotomisiert) 1.00 keine Hochschulreife 2.00 Hochschulreife System Häufigkeit Prozent e Kumulierte Der Modus muss nicht extra berechnet werden, es ist direkt aus den Tabellen ablesbar, da er die Kategorie mit den höchsten Werten ist. Beim Familienstand ist es die Kategorie ledig, beim Schulabschluss die Hochschulreife. Bei der dichotomisierten Variablen kann gut die Wirkung der Kategorienzusammenfassung gesehen werden. 3

4 Über die Optionen Diagramme und Format können Sie zusätzlich Balkendiagramme und Änderungen in der Reihenfolge der Kategorien erzeugen. Ordinalskalenniveau Zusätzlich zu den Häufigkeiten und dem Modus, können der Median und der Interquartilsabstand berechnet werden. Im Grunde haben wir es bei der Variablen Schulabschluss auch schon mit einer ordinal skalierten Variablen zu tun, wenn die Kategorie anderer Abschluss nicht berücksichtigt wird. Beispiel: Neben dem Schulabschluss sollen die Kennwerte der Frage 21 ( In welchem Umfang beeinflusst unsere Kultur andere Völker? ) berechnet werden. f21 Unsere Kultur beeinflusst andere Völker 1.00 sehr stark 2.00 nicht so stark 3.00 kaum 4.00 überhaupt nicht 5.00 kann ich nicht beantworten 9.00 keine Angabe e Kumulierte Häufigkeit Prozent Ein erster Blick auf die Tabelle zeigt, dass die Kategorie 5 kann ich nicht beantworten aus der Analyse entfernt werden muss, wenn es sich um Ordinalskalenniveau handelt. Es wird der Wert 5 auf missing gesetzt. In diesem Fall können Sie in dieselbe Variable umkodieren. Der neue Wert ist 9, da dieser Wert der Code für einen fehlenden Wert ist. Alternativ können Sie den Wert auch im Variablenansichtsfenster als zusätzlichen Missingwert definieren. Die Berechnung des Median kann mit zwei Prozeduren geschehen: 4

5 1.) Wieder über Deskriptive Statistik - Häufigkeiten. Sie tragen die Variable V21 ein und klicken dann auf Statistik Hier rufen die den Median und die Quartile auf (Häkchen). Wenn Sie weiterhin die Häufigkeitstabelle wollen, sehen die Ergebnisse wie folgt aus: Häufigkeiten Statistiken f21 Unsere Kultur beeinflusst andere Völker N Median Perzentile f21 Unsere Kultur beeinflusst andere Völker 1.00 sehr stark 2.00 nicht so stark 3.00 kaum 4.00 überhaupt nicht 9.00 keine Angabe e Kumulierte Häufigkeit Prozent Der Median ist 2, der IQR ergibt sich aus 3.Quartil 1. Quartil, also = 1. 5

6 2) Sie analysieren über explorative Datenanalyse Wie immer markieren Sie die Variable V21 im Variablenfenster, die über den Pfeil in das Fenster Abhängige Variablen geschoben wird. Sie können auch schon den Box-Plot aufrufen: Klicken Sie auf Diagramme, es öffnet sich ein neues Fenster, entfernen Sie hier das Häkchen von Stengel-Blatt. Dann Weiter und OK. Die Ergebnistabelle zeigt mehrere Kennwerte, von denen nur die fett markierten Kennwerte für Ordinalskalenniveau gültig sind. 6

7 Univariate Statistiken f21 Unsere Kultur beeinflusst andere Völker Mittelwert 95% Konfidenzintervall des Mittelwerts Untergrenze Obergrenze Standardf Statistik ehler % getrimmtes Mittel Median Varianz Standardabweichung Minimum Maximum Spannweite Interquartilbereich Schiefe Kurtosis ,00 3,50 3,00 Der Box-Plot selbst ist nicht sehr aussagekräftig, man kann aber erkennen, dass 50 % und mehr aller Fälle im Bereich zwischen 2 und 3 liegen, mindestens 50 % der Fälle die Werte 1 und 2 angekreuzt haben. 2,50 2,00 1,50 1,00 Unsere Kultur beeinflusst andere Völker Metrisches Skalenniveau Auf metrischem Skalenniveau kommen noch die Kennwerte arithmetischer Mittelwert und Standardabweichung hinzu. Beispiel: Wir wollen uns die Kennwerte der drei Subskalen Angst vor terroristischen Bedrohungen, Terrorpersistenz und Reiseangst wg. Terror anschauen. Auch diese Kennwerte können Sie über Deskriptive Statistiken - Häufigkeiten erhalten. 7

8 Über Statistik kommen Sie in das Kennwertefenster, in dem Sie wie in der Abbildung gezeigt die Häkchen setzen. Bevor Sie auf OK klicken, sollten die Anzeige der eigentlich überflüssigen Häufigkeitstabelle ausschalten, indem Sie das Häkchen entfernen. Die Ergebnisse der nicht redigierten Tabelle sehen wie folgt aus: Statistiken N Mittelwert Median Modus Standardabweichung Varianz Schiefe Standardfehler der Schiefe Kurtosis Standardfehler der Kurtosis atb_skal reiseang Angst vor terrpers Reiseangst terroristischen Terrorper wg. Bedrohungen sistenz Terrorismus Spannweite Minimum Maximum Perzentile Sie können über diese Prozedur auch Histogramme aufrufen: 8

9 40 30 Angst vor terroristischen Bedrohungen Beispiel: ATB-Skala Das Histogramm der ATB-Skala zeigt eine linkssteile Verteilung, die sich auch im Schiefemaß zeigt. Häufigkeit ,00 2,00 3,00 4,00 5,00 6,00 Angst vor terroristischen Bedrohungen Mean = 2,4691 Std. Dev. = 1,02362 N = 355 2) Sie können diese Kennwerte auch über die schon gezeigte Prozedur Explorative Datenanalyse aufrufen. 3) Beim Vergleich von mehreren Variablen ist die Prozedur Deskriptive Statistiken auch günstig, da hier die Variablen in einer Tabelle zusammengefasst werden und auch z-werte berechnet werden können. 9

10 Sie setzen ein Häkchen für die Speicherung der z-werte (standardisierte Werte) und über Optionen klicken Sie neben der Voreinstellung Mittelwert, Standardabweichung, Minimum und Maximum auch die Anzeigenreihenfolge Absteigende Mittelwerte an. Hierdurch werden die drei Variablen in ihrer Reihenfolge geordnet. Deskriptive Statistik reiseang Reiseangst wg. Terrorismus terrpers Terrorpersistenz pazifism Pazifismus (Ablehnung von Kriegen) e Werte (Listenweise) N Minimum Maximum Mittelwert Standardab weichung Die unredigierte Tabelle zeigt die Skalen gemäß der Höhe ihrer Mittelwerte an. Auch können Sie sehen, dass nur bei 343 Personen alle Skalenwerte vorgelegen haben. Die z-werte werden als drei neue Variablen an die Datenmatrix angehängt. 10

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Datentransformation mit SPSS

Datentransformation mit SPSS Datentransformation mit SPSS Das Statistikprogrammsystem SPSS for Windows hat die komfortabelsten Transformationsroutinen. In diesem Text werden nur die einfachsten Transformationen besprochen. Wichtig:

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 25. August 2009 25. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick: 1. Hilfsbefehl und Datentransformationsbefehl (EXECUTE und COMPUTE) 2. Möglichkeiten

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2 Häufigkeiten Deskriptive Statistiken Häufigkeiten Beruflicher Bildungsabschluss (Mbfbil4) Zielvariablenliste OK Er erscheint: Statistiken beruflicher Bildungsabschluss incl. N Gültig 3445 Fehlend 0 beruflicher

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 8. Mai 2009 8. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Hilfsbefehl und Datentransformationsbefehl (II) 1.a. execute 1.b. compute

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Eigene MC-Fragen SPSS

Eigene MC-Fragen SPSS Eigene MC-Fragen SPSS 1. Welche Spalte ist in der Variablenansicht unbedingt festzulegen? [a] Variablenlabel [b] Skala [c] Name [d] Typ [e] Wertelabel 2. Wie heißt das Standardfenster von SPSS? [a] Dialogfenster

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Datentransformation mit SPSS

Datentransformation mit SPSS Datentransformation mit SPSS Das Statistikprogrammsystem SPSS for Windows hat die komfortabelsten Transformationsroutinen. In diesem Text werden nur die einfachsten Transformationen besprochen. Wichtig:

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03

I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 I.V. Methoden 2: Deskriptive Statistik WiSe 02/03 Vorlesung am 04.11.2002 Figures won t lie, but liars will figure. General Charles H.Grosvenor Dr. Wolfgang Langer Institut für Soziologie Martin-Luther-Universität

Mehr

Kurzanleitung für SPSS Statistics 22

Kurzanleitung für SPSS Statistics 22 Kurzanleitung für SPSS Statistics 22 im Rahmen des Moduls Betriebssoziologie (Prof. Dr. Christian Ernst) Schritt 1: Variablen definieren (in der Variablenansicht) Daten können direkt in ein "leeres" Datenfenster

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Deskriptive Statistiken

Deskriptive Statistiken Deskriptive Statistiken Inhaltsverzeichnis DESKRIPTIVE STATISTIKEN... 1 Deskriptive Statistiken Deskriptive Statistiken Mit MAXQDA Stats können Sie zahlreiche Maßzahlen der deskriptiven Statistiken für

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-03 1 Ein metrisches Merkmal Wir laden den Datensatz: R> load("statlab.rda") und machen die Variablen direkt verfügbar: R>

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Deskriptive Statistik Erläuterungen

Deskriptive Statistik Erläuterungen Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Übungen: Wahrscheinlichkeitsrechnung, Zufallsvariablen & Co. Woche 1-3

Übungen: Wahrscheinlichkeitsrechnung, Zufallsvariablen & Co. Woche 1-3 Wahrscheinlichkeitsrechnung Zufallsvariable Woche 1-3 Wahrscheinlichkeitsfunktion einer diskreten ZV Verteilungsfunktion einer diskreten ZV Erwartungswert und Varianz einer diskreten ZV 1) Die Wirtschaftsforschungsinstitute

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Ziel: Analysieren und verdeutlichen von Zusammenhängen mehrerer Variablen, wie z.b. Anzahlen pro Kategorien; Mittelwert und Standardabweichung pro

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan):

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan): Beispiel für eine Itemanalyse mit der SPSS-Prozedur Reliabilitätsanalyse (RELIABILITY) Daten: POKIII_AG1_V06.SAV (POK III, AG 1) Die Skala Körperbewusstsein von Löwe und Clement (1996) 1 besteht aus zwei

Mehr

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Vergleich A388 DLH SIA Messstation Klein-Gerau

Vergleich A388 DLH SIA Messstation Klein-Gerau Vergleich A388 DLH SIA Messstation Klein-Gerau 1 A388 DLH [FAOR / WSSS] vs. SIA [WSSS] 2 A388 Höhe & Geschwindigkeit Statistische Auswertung A388 FAOR Johannesburg / Südafrika WSSS Singapur / Singapur

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.?

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.? Dr. Renate Prust: Einführung in quantitative Forschungsmethoden Übung zur univariaten Statistik (mit SPSS-Ausgabe) 1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : a. Erstellen

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Daten zusammenfügen und erste Datenbereinigung

Daten zusammenfügen und erste Datenbereinigung Daten zusammenfügen und erste Datenbereinigung 1. Schritt: Kopieren Sie alle Dateien, in denen die eingegebenen Daten stehen, von stud.ip in ein Verzeichnis Ihrer Wahl (z.b. in Eigene Dateien ). 2. Schritt:

Mehr

Übung 1 im Fach "Biometrie / Q1"

Übung 1 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik

Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik Dr. rer. nat. Meinhard Mende MSc Sportwissenschaften und Sportmanagement Statistik 2016, Übung

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Achim Bühl, Peter Zöfel SPSS 12. Einführung in die moderne Datenanalyse unter Windows. 9., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel SPSS 12. Einführung in die moderne Datenanalyse unter Windows. 9., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS 12 Einführung in die moderne Datenanalyse unter Windows 9., überarbeitete und erweiterte Auflage ein Imprint der Pearson Education Deutschland GmbH 10.4 Explorative Datenanalyse

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

1 Verteilungen metrischer Daten

1 Verteilungen metrischer Daten 1 Verteilungen metrischer Daten Um statistische Qualität zu kontrollieren und sicherzustellen, interessiert im Rahmen eines Forschungsvorhabens von der Testkonstruktion bis zur statistischen Analyse in

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Einführung in Datensatz Stichprobenbeschreibung

Mehr

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 I.3. Computergestützte Methoden 1. Deskriptive Statistik Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 1 Seminarübersicht Nr. Thema 1 Deskriptive Statistik 1.1 Organisation und Darstellung von

Mehr

Übung Statistik I Statistik mit Stata SS Wiederholung und Probeklausur

Übung Statistik I Statistik mit Stata SS Wiederholung und Probeklausur Übung Statistik I Statistik mit Stata SS07 04.06.2007 7. Wiederholung und Probeklausur Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: n.v. Andrea.Kummerer@sowi.uni-goettingen.de Statistik mit Stata -

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall..

= 3. Kapitel 4: Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Kapitel : Normalverteilung.. und Standardnormalverteilung und: das Konfidenzintervall.. Mittelwert = Summe aller Einzelwerte / n = durchschnittliche Ausprägung, wenn alle gleich viel hätten. Streuung =

Mehr

Kreisdiagramm, Tortendiagramm

Kreisdiagramm, Tortendiagramm Kreisdiagramm, Tortendiagramm Darstellung der relativen (absoluten) Häufigkeiten als Fläche eines Kreises Anwendung: Nominale Merkmale Ordinale Merkmale (Problem: Ordnung nicht korrekt wiedergegeben) Gruppierte

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

Statistik Skalen (Gurtner 2004)

Statistik Skalen (Gurtner 2004) Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen

Mehr

Modulbeschreibung Statistik

Modulbeschreibung Statistik Modulbeschreibung Statistik Christian Reinboth Worum geht es in dieser Vorlesung? Eine statistische Grundlagenvorlesung ist Teil der meisten Studiengänge ob im natur-, wirtschafts- oder sozialwissenschaftlichen

Mehr

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Kapitel 35 Histogramme

Kapitel 35 Histogramme Kapitel 35 Histogramme In einem Histogramm können Sie die Häufigkeitsverteilung der Werte einer intervallskalierten Variablen darstellen. Die Werte werden zu Gruppen zusammengefaßt und die Häufigkeiten

Mehr

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Befragungszeitraum: Marz 2016 bis Mai 2016 27.06.2016 Hon.-Prof. Dr. Christian Kreidl / Prof. Dr. Ulrich Dittler Inhaltsübersicht

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav Beispiel für eine Daten: POKIII_AG1_V03.sav Es soll überprüft werden, ob es geschlechtsspezifische Unterschiede bei den Einstellungen zum Tanz gibt. Aus dem Fragebogen der AG 1 des POK III wurden folgende

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005/

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis 2009-02-20 1 Grundlegende Befehle Zunächst laden wir den Datensatz (siehe auch Daten.pdf ) BBBClub R> load("bbbclub.rda") das den "data.frame" BBBClub

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 24. August 2009 24. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Arbeitsschritte bei der Datenanalyse 2. Datensatz kennenlernen, Variableninformationen

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr