Univariate Kennwerte mit SPSS

Größe: px
Ab Seite anzeigen:

Download "Univariate Kennwerte mit SPSS"

Transkript

1 Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der Ergebnisse ist nicht intendiert. Anmerkung: Die Beispiele sind der Datei POKIV_Terror_V13.SAV entnommen. Fragebogen und Codeplan stehen im Aktenordner im CIP-Pool. Alle Datenanalysen werden über Analysieren aufgerufen. Nominalskalenniveau Auf Nominalskalenniveau können Tabellen (Häufigkeiten, ) erzeugt werden. Als Kennwert kann der Modus bestimmt werden. Diese Tabellen werden über Deskriptive Statistiken - Häufigkeiten aufgerufen. Beispiel: Es sollen die Häufigkeiten von F41 (Familienstand), F42 (höchster allgemeiner Schulabschluss) und der neu erzeugten Variablen F41dicho berechnet werden.

2 Die betreffenden Variablen werden im linken Feld markiert und über den Pfeil in das rechte Feld transportiert. Auch hier können Sie über OK sofort berechnen lassen oder Sie können den Befehl in das Syntaxfenster übertragen. FREQUENCIES VARIABLES=f41 f42 f42dicho /ORDER= ANALYSIS. Die Originaltabellen sehen wie folgt aus: Häufigkeiten Statistiken N f42 Welchen höchsten allgemeinen Schulabschl f42dicho Schulabs chluss (dichotom f41 Welchen Familienstand haben Sie? uss isiert) Häufigkeitstabelle 2

3 f41 Welchen Familienstand haben Sie? 1.00 Ich bin verheiratet und lebe 2.00 Ich bin verheiratet und lebe 3.00 Ich bin ledig 4.00 Ich bin geschieden 5.00 Ich bin verwitwet 9.00 keine Angabe Häufigkeit Prozent e Kumulierte f42 Welchen höchsten allgemeinen Schulabschluss 2.00 Hauptschulabschluss ( Volksschulabschluss) 3.00 Realschulabschluss (mittlere 4.00 Abschluss der Polytechnischen 5.00 Fachhochschulreife 6.00 Allg. oder fachgebundene Fachschulreife 7.00 Anderer Abschluss 9.00 keine Angabe Häufigkeit Prozent e Kumulierte f42dicho Schulabschluss (dichotomisiert) 1.00 keine Hochschulreife 2.00 Hochschulreife System Häufigkeit Prozent e Kumulierte Der Modus muss nicht extra berechnet werden, es ist direkt aus den Tabellen ablesbar, da er die Kategorie mit den höchsten Werten ist. Beim Familienstand ist es die Kategorie ledig, beim Schulabschluss die Hochschulreife. Bei der dichotomisierten Variablen kann gut die Wirkung der Kategorienzusammenfassung gesehen werden. 3

4 Über die Optionen Diagramme und Format können Sie zusätzlich Balkendiagramme und Änderungen in der Reihenfolge der Kategorien erzeugen. Ordinalskalenniveau Zusätzlich zu den Häufigkeiten und dem Modus, können der Median und der Interquartilsabstand berechnet werden. Im Grunde haben wir es bei der Variablen Schulabschluss auch schon mit einer ordinal skalierten Variablen zu tun, wenn die Kategorie anderer Abschluss nicht berücksichtigt wird. Beispiel: Neben dem Schulabschluss sollen die Kennwerte der Frage 21 ( In welchem Umfang beeinflusst unsere Kultur andere Völker? ) berechnet werden. f21 Unsere Kultur beeinflusst andere Völker 1.00 sehr stark 2.00 nicht so stark 3.00 kaum 4.00 überhaupt nicht 5.00 kann ich nicht beantworten 9.00 keine Angabe e Kumulierte Häufigkeit Prozent Ein erster Blick auf die Tabelle zeigt, dass die Kategorie 5 kann ich nicht beantworten aus der Analyse entfernt werden muss, wenn es sich um Ordinalskalenniveau handelt. Es wird der Wert 5 auf missing gesetzt. In diesem Fall können Sie in dieselbe Variable umkodieren. Der neue Wert ist 9, da dieser Wert der Code für einen fehlenden Wert ist. Alternativ können Sie den Wert auch im Variablenansichtsfenster als zusätzlichen Missingwert definieren. Die Berechnung des Median kann mit zwei Prozeduren geschehen: 4

5 1.) Wieder über Deskriptive Statistik - Häufigkeiten. Sie tragen die Variable V21 ein und klicken dann auf Statistik Hier rufen die den Median und die Quartile auf (Häkchen). Wenn Sie weiterhin die Häufigkeitstabelle wollen, sehen die Ergebnisse wie folgt aus: Häufigkeiten Statistiken f21 Unsere Kultur beeinflusst andere Völker N Median Perzentile f21 Unsere Kultur beeinflusst andere Völker 1.00 sehr stark 2.00 nicht so stark 3.00 kaum 4.00 überhaupt nicht 9.00 keine Angabe e Kumulierte Häufigkeit Prozent Der Median ist 2, der IQR ergibt sich aus 3.Quartil 1. Quartil, also = 1. 5

6 2) Sie analysieren über explorative Datenanalyse Wie immer markieren Sie die Variable V21 im Variablenfenster, die über den Pfeil in das Fenster Abhängige Variablen geschoben wird. Sie können auch schon den Box-Plot aufrufen: Klicken Sie auf Diagramme, es öffnet sich ein neues Fenster, entfernen Sie hier das Häkchen von Stengel-Blatt. Dann Weiter und OK. Die Ergebnistabelle zeigt mehrere Kennwerte, von denen nur die fett markierten Kennwerte für Ordinalskalenniveau gültig sind. 6

7 Univariate Statistiken f21 Unsere Kultur beeinflusst andere Völker Mittelwert 95% Konfidenzintervall des Mittelwerts Untergrenze Obergrenze Standardf Statistik ehler % getrimmtes Mittel Median Varianz Standardabweichung Minimum Maximum Spannweite Interquartilbereich Schiefe Kurtosis ,00 3,50 3,00 Der Box-Plot selbst ist nicht sehr aussagekräftig, man kann aber erkennen, dass 50 % und mehr aller Fälle im Bereich zwischen 2 und 3 liegen, mindestens 50 % der Fälle die Werte 1 und 2 angekreuzt haben. 2,50 2,00 1,50 1,00 Unsere Kultur beeinflusst andere Völker Metrisches Skalenniveau Auf metrischem Skalenniveau kommen noch die Kennwerte arithmetischer Mittelwert und Standardabweichung hinzu. Beispiel: Wir wollen uns die Kennwerte der drei Subskalen Angst vor terroristischen Bedrohungen, Terrorpersistenz und Reiseangst wg. Terror anschauen. Auch diese Kennwerte können Sie über Deskriptive Statistiken - Häufigkeiten erhalten. 7

8 Über Statistik kommen Sie in das Kennwertefenster, in dem Sie wie in der Abbildung gezeigt die Häkchen setzen. Bevor Sie auf OK klicken, sollten die Anzeige der eigentlich überflüssigen Häufigkeitstabelle ausschalten, indem Sie das Häkchen entfernen. Die Ergebnisse der nicht redigierten Tabelle sehen wie folgt aus: Statistiken N Mittelwert Median Modus Standardabweichung Varianz Schiefe Standardfehler der Schiefe Kurtosis Standardfehler der Kurtosis atb_skal reiseang Angst vor terrpers Reiseangst terroristischen Terrorper wg. Bedrohungen sistenz Terrorismus Spannweite Minimum Maximum Perzentile Sie können über diese Prozedur auch Histogramme aufrufen: 8

9 40 30 Angst vor terroristischen Bedrohungen Beispiel: ATB-Skala Das Histogramm der ATB-Skala zeigt eine linkssteile Verteilung, die sich auch im Schiefemaß zeigt. Häufigkeit ,00 2,00 3,00 4,00 5,00 6,00 Angst vor terroristischen Bedrohungen Mean = 2,4691 Std. Dev. = 1,02362 N = 355 2) Sie können diese Kennwerte auch über die schon gezeigte Prozedur Explorative Datenanalyse aufrufen. 3) Beim Vergleich von mehreren Variablen ist die Prozedur Deskriptive Statistiken auch günstig, da hier die Variablen in einer Tabelle zusammengefasst werden und auch z-werte berechnet werden können. 9

10 Sie setzen ein Häkchen für die Speicherung der z-werte (standardisierte Werte) und über Optionen klicken Sie neben der Voreinstellung Mittelwert, Standardabweichung, Minimum und Maximum auch die Anzeigenreihenfolge Absteigende Mittelwerte an. Hierdurch werden die drei Variablen in ihrer Reihenfolge geordnet. Deskriptive Statistik reiseang Reiseangst wg. Terrorismus terrpers Terrorpersistenz pazifism Pazifismus (Ablehnung von Kriegen) e Werte (Listenweise) N Minimum Maximum Mittelwert Standardab weichung Die unredigierte Tabelle zeigt die Skalen gemäß der Höhe ihrer Mittelwerte an. Auch können Sie sehen, dass nur bei 343 Personen alle Skalenwerte vorgelegen haben. Die z-werte werden als drei neue Variablen an die Datenmatrix angehängt. 10

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Datentransformation mit SPSS

Datentransformation mit SPSS Datentransformation mit SPSS Das Statistikprogrammsystem SPSS for Windows hat die komfortabelsten Transformationsroutinen. In diesem Text werden nur die einfachsten Transformationen besprochen. Wichtig:

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 25. August 2009 25. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick: 1. Hilfsbefehl und Datentransformationsbefehl (EXECUTE und COMPUTE) 2. Möglichkeiten

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 8. Mai 2009 8. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Hilfsbefehl und Datentransformationsbefehl (II) 1.a. execute 1.b. compute

Mehr

Datentransformation mit SPSS

Datentransformation mit SPSS Datentransformation mit SPSS Das Statistikprogrammsystem SPSS for Windows hat die komfortabelsten Transformationsroutinen. In diesem Text werden nur die einfachsten Transformationen besprochen. Wichtig:

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen

Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Skript 7 Kreuztabellen und benutzerdefinierte Tabellen Ziel: Analysieren und verdeutlichen von Zusammenhängen mehrerer Variablen, wie z.b. Anzahlen pro Kategorien; Mittelwert und Standardabweichung pro

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan):

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan): Beispiel für eine Itemanalyse mit der SPSS-Prozedur Reliabilitätsanalyse (RELIABILITY) Daten: POKIII_AG1_V06.SAV (POK III, AG 1) Die Skala Körperbewusstsein von Löwe und Clement (1996) 1 besteht aus zwei

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Daten zusammenfügen und erste Datenbereinigung

Daten zusammenfügen und erste Datenbereinigung Daten zusammenfügen und erste Datenbereinigung 1. Schritt: Kopieren Sie alle Dateien, in denen die eingegebenen Daten stehen, von stud.ip in ein Verzeichnis Ihrer Wahl (z.b. in Eigene Dateien ). 2. Schritt:

Mehr

Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik

Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik Interventions- und Evaluationsforschung theoretisch begründen Übung 1 Datenprüfung und deskriptive Statistik Dr. rer. nat. Meinhard Mende MSc Sportwissenschaften und Sportmanagement Statistik 2016, Übung

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.?

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.? Dr. Renate Prust: Einführung in quantitative Forschungsmethoden Übung zur univariaten Statistik (mit SPSS-Ausgabe) 1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : a. Erstellen

Mehr

Übung 1 im Fach "Biometrie / Q1"

Übung 1 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Achim Bühl, Peter Zöfel SPSS 12. Einführung in die moderne Datenanalyse unter Windows. 9., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel SPSS 12. Einführung in die moderne Datenanalyse unter Windows. 9., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS 12 Einführung in die moderne Datenanalyse unter Windows 9., überarbeitete und erweiterte Auflage ein Imprint der Pearson Education Deutschland GmbH 10.4 Explorative Datenanalyse

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Kapitel 35 Histogramme

Kapitel 35 Histogramme Kapitel 35 Histogramme In einem Histogramm können Sie die Häufigkeitsverteilung der Werte einer intervallskalierten Variablen darstellen. Die Werte werden zu Gruppen zusammengefaßt und die Häufigkeiten

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a)

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a) LÖSUNG 7 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Aufrufen der Varianzanalyse: "Analysieren", "Mittelwerte vergleichen", "Einfaktorielle ANOVA ", "Abhängige Variablen:" TVHOURS;

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005/

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav Beispiel für eine Daten: POKIII_AG1_V03.sav Es soll überprüft werden, ob es geschlechtsspezifische Unterschiede bei den Einstellungen zum Tanz gibt. Aus dem Fragebogen der AG 1 des POK III wurden folgende

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar)

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar) Die folgenden Erklärungen und Abbildungen sollen den Umgang mit SPSS im Rahmen des POK erleichtern. Diese beschreiben nicht alle Möglichkeiten, die SPSS bietet, sondern nur die Verfahren, die im Seminar

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben Helmut Küchenhoff, Cornelia Oberhauser, Monia Mahling, Armin Monecke Im Folgenden gibt es 4 Aufgabenblöcke. Block 1: Daten einlesen,

Mehr

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht

Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Befragungszeitraum: Marz 2016 bis Mai 2016 27.06.2016 Hon.-Prof. Dr. Christian Kreidl / Prof. Dr. Ulrich Dittler Inhaltsübersicht

Mehr

Kapitel 34 Boxplots und Fehlerbalken

Kapitel 34 Boxplots und Fehlerbalken Kapitel 34 Boxplots und Fehlerbalken Boxplots und Fehlerbalken sind dazu geeignet, die Lage und Verteilung der Werte einer Stichprobe grafisch darzustellen. Die beiden Diagrammtypen sind auf die Darstellungen

Mehr

Kapitel 13 Häufigkeitstabellen

Kapitel 13 Häufigkeitstabellen Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig

Mehr

SPSS 22 Julian Bothe Hafencity Universität Hamburg Version 1.1;

SPSS 22 Julian Bothe Hafencity Universität Hamburg Version 1.1; Ta SPSS 22 Julian Bothe Hafencity Universität Hamburg Version 1.1; 26.1.2016 Skript 8 Graphiken Ziel: Visualisieren von einzelnen Variablen durch Graphiken, Vergleich zweier Variablen durch Analyse der

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Erste Datenbereinigung

Erste Datenbereinigung Erste Datenbereinigung I. Datenbereinigung klassisch I. Schritt: Praktisch: Auf zwei PCs die Datei herunterladen. Auf dem einen PC wird die Häufigkeitsauszählung durchgeführt, auf dem anderen PC wird die

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 24. August 2009 24. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Arbeitsschritte bei der Datenanalyse 2. Datensatz kennenlernen, Variableninformationen

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Einführung in SPSS. Sitzung 2: Datenbereinigung und Datenmanagement. Knut Wenzig. 15. Dezember 2005

Einführung in SPSS. Sitzung 2: Datenbereinigung und Datenmanagement. Knut Wenzig. 15. Dezember 2005 Sitzung 2: 15. Dezember 2005 Rückblick auf die Datenimport Benutzeroberfläche von SPSS Auswahl von Fällen Fälle anzeigen lassen Bestimmte Werte manipulieren Variablen in andere umkodieren Neue Variablen

Mehr

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Datenmaske für SPSS. Für die Datenanalyse mit SPSS können die Daten auf verschiedene Weise aufbereitet

Datenmaske für SPSS. Für die Datenanalyse mit SPSS können die Daten auf verschiedene Weise aufbereitet Für die Datenanalyse mit SPSS können die Daten auf verschiedene Weise aufbereitet werden: 1. Tabellenkalkulationsprogramme (Excel, Paradox) 2. Datenbankprogramme (dbase, Access) 3. Reine ASCII-Dateien

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I

Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I Rechnen mit dem Summenzeichen Zum Ausdruck 5X (x i 3) i=2 Der Ausdruck rechts vom Summenzeichen bedeutet, dass von den einzelnen Datenwerten

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen:

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Kapitel 3 FRAGESTELLUNG 1 und 2 Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Wenn in der SPSS Datenansicht bis nach unten gescrollt wird, kann festgestellt

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen n. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Matthias Gabriel. Kurze Einführung in SPSS 11.5

Matthias Gabriel. Kurze Einführung in SPSS 11.5 Kurze Einführung in SPSS 11.5 2001 überarbeitet Oktober 2003 1 Legende: Im folgenden Text entsprechen die Wörter zwischen Anführungszeichen den Befehlen bzw. Menüoptionen im SPSS z.b: Berechnen, Zählen,

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

Kapitel 41 Interaktive Diagramme

Kapitel 41 Interaktive Diagramme Kapitel 41 Interaktive Diagramme Bei den Interaktiven Grafiken handelt es sich um eine Gruppen von Diagrammen, die bei SPSS erst seit der Version 8.0 zur Verfügung stehen. Vom grundlegenden Diagrammtyp

Mehr

Kapitel 18 Mittelwertvergleiche

Kapitel 18 Mittelwertvergleiche Kapitel 18 Mittelwertvergleiche 18.1 Prozeduren für Mittelwertvergleiche Wenn einzelne Fallgruppen wie zum Beispiel verschiedene Personengruppen bezüglich eines bestimmten Merkmals miteinander verglichen

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: Di. 15-16 Uhr Andrea.Kummerer@sowi.uni-goettingen.de Statistik mit Stata

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr