6. a) 12 3 = 36 b) 14 = Median, weil die Datenmenge eine ungerade Zahl ist. c) 7, 14, 15 oder 6, 14, 16 oder 5; 14, 17.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6. a) 12 3 = 36 b) 14 = Median, weil die Datenmenge eine ungerade Zahl ist. c) 7, 14, 15 oder 6, 14, 16 oder 5; 14, 17."

Transkript

1 a) siehe c) b) Arithmetische Mittel x Teilnehmerzahl = gelaufene Gesamtstrecke 2596,4 23 = ,2 m 59,1 km. Der Median ist der mittlere Wert (Zentralwert) aller Daten. Er beträgt 2400 m; rechts und links vom Median liegen die Ergebnisse von jeweils 11 Teilnehmern. Das arithmetische Mittel ist durch die Ausreißer im oberen Quartil zu stark beeinflusst. c) Vorschlag für Zeitungsartikel An der Aktion Laufen für Bolivien haben alle Schülerinnen und Schüler der Klasse 8c teilgenommen. Jeder durfte seine individuelle Laufstrecke einbringen. Die einzelnen Leistungen streuten natürlich sehr stark. Sie reichten von knapp unter 500 m bis fast m. Ein Viertel der Teilnehmer schaffte keine m, die Hälfte der Teilnehmer lief zwischen m und m, das stärkste Viertel lief zwischen m und m. Der Durchschnitt lag bei rd m. Am Ende kamen fast 60 km zusammen, und es gab 23 Sieger, die ihr Bestes gegeben hatten. 5. a) Median = 28; arithmetisches Mittel = 146 : 5 = 29,2 b) Median = = 237,5; arithmetisches Mittel = 1900 = 237,5 2 8 c) Median = 2; arithmetisches Mittel = 14 : 7 = 2 6. a) 12 3 = 36 b) 14 = Median, weil die Datenmenge eine ungerade Zahl ist. c) 7, 14, 15 oder 6, 14, 16 oder 5; 14, a) Median = 1,8 arithmetisches Mittel = 2,0 b) Das einfachste ist es, den Median zu ändern. In der geordneten Datenreihe steht in der Mitte der Wert 1,8. Dieser wird durch 2,0 ersetzt, bleibt also Median. c) Der Median bleibt unverändert, das arithmetische Mittel erhöht sich auf 2,8. 8. Im Vorjahr ist Susanne eine Strecke von 12 32,4 km = 388,8 km gelaufen. In diesem Jahr hat sie bis Ende November 11 29,6 km = 325,6 km zurückgelegt. Sie muss also im Dezember noch 63,2 km laufen. 9. a) Obere Reihe: 8 Mädchen und 6 Jungen Median = 36; arithmetisches Mittel = 536 : 14 = 38,3 Untere Reihe: 7 Mädchen und 7 Jungen Median = 42; arithmetisches Mittel = 573 : 14 = 40,9 Die beiden Mittelwerte sind weder für die obere noch für die untere Gruppe typisch. Die erzielten Weiten weichen zu stark von den Mittelwerten ab. Zum einen sind die Gruppen sehr klein, zum anderen ist ein Vergleich der Mittelwerte auch deshalb problematisch, weil die Gruppen unterschiedlich zusammengesetzt sind und die Jungen im Durchschnitt 20 m weiter werfen als die Mädchen (s. Teil b)). Dieses wird auch durch das Histogramm auf den Seitenrand des Schülerbandes belegt: Die drei ersten Wurfweite-Klassen enthalten nur Würfe von Mädchen, die nachfolgenden Klassen enthalten nur Würfe von Jungen.

2 b) In beiden Gruppen sind zusammen 15 Mädchen Median = 30; arithmetisches Mittel = 30,3 In beiden Gruppen sind zusammen 13 Jungen Median = 50; arithmetisches Mittel = 50,3 Hier sind die beiden Mittelwerte, jeweils für Mädchen und Jungen getrennt ermittelt, aussagefähiger, denn sie sind fast identisch, was auf eine geringere Streuung und stärkere symmetrische Anordnung der Daten um die Mittelwerte in den Gruppen schließen lässt. 10. a) Die Reihenfolge Modalwert < arithmetisches Mittel < Median lässt sich aus der schiefen Verteilung der Daten vorhersagen, denn die große Häufigkeit für 0 Kinder verkleinert das arithmetische Mittel beträchtlich. Es werden ermittelt: Modalwert = häufigster Datenwert = 0 Kinder arithmetisches Mittel = 1448 = 1,45 Kinder 1002 (501. Wert Wert) Median = = 1 2 b) Fünf Freunde treffen sich zu einem Geschicklichkeitsspiel. Nach der ersten Runde sieht das Ergebnis so aus: Spieler Punkte Modalwert 20 Punkte; arithmetisches Mittel 6 Punkte; Median 3 Punkte c) In der zweiten Runde des Spiels aus c) hat jeder der Freunde 4 Punkte erzielt. Jetzt stimmen die drei Mittelwerte überein: je 4 Punkte. 11. Man kann anhand der Verteilung der Daten vermuten, dass die beiden Mittelwerte der Pulsfrequenzen in der Größenordnung von Ende 60 bis Anfang 70 Pulsschlägen pro Minute liegen. Median: (68 69) 2 = 68,5; arithmetisches Mittel: = 68,7 12. a) Durchschnittliche Tageseinnahme: 3350 : 7 = 478,60 b) Wenn man beispielsweise drei Preisklassen mit 8, 10 und 12 hat, kann zur Abschätzung der Zahl verkaufter Kinokarten doch mit durchschnittlich 10 rechnen, obwohl man die genauen Verkaufszahlen nicht kennt. Das ergibt ca. 335 Karten.

3 a) Das Diagramm zeigt die absolute Häufigkeit, mit der Warteschlangen von 0 bis 9 Kunden vor den Kassen gezählt wurden (Basis: 29 beaobachtete Zeitabschnitte) absolute Häufigkeit Der Median beträgt 5, das arithmetische Mittel ist 144:29 5. b) Die Kennwerte bieten keine Entscheidungshilfe für den Filialleiter. Der Filialleiter sollte für eine größere Zahl von Kunden die Wartezeit vom Anstellen am Ende der Schlange bis zum Erreichen der Kasse und zusätzlich die Zeit für die Ermittlung des Rechnungsbetrages messen und analysieren. Vermutlich werden auch eher die Kunden in den langen Warteschlangen unzufrieden werden, insbesondere dann, wenn sie nur wenige Waren im Korb haben Deshalb sollte er eine Schnellkasse für Kunden einrichten, die nur bis zu fünf Waren im Korb haben. 14. a) Die Aussage ist wahr, denn bei einer ungeraden Datenzahl gibt es immer einen mittleren Wert. b) Die Aussage ist wahr, denn das arithmetische Mittel wird so berechnet: Gesamtsumme der Daten geteilt durch die Gesamtzahl n der Daten. Folglich ergibt das arithmetische Mittel multipliziert mit der Gesamtzahl die Gesamtsumme der Daten. c) Die Aussage ist dann wahr, wenn es bei wenigen Datenwerten betragsmäßig große Ausreißer gibt. Bei großen Datenmengen reagiert das arithmetische Mittel nur wenig auf einzelne Ausreißer. Der Median verändert sich nicht, wenn sich durch den Ausreißer die Datenanzahl nicht ändert. Beispiel: 1. Kleine Datenmenge ohne Ausreißer: Median = 2; arithmetisches Mittel = 2 mit Ausreißer Median = 2; arithmetisches Mittel = 3 2. Große Datenmenge ohne Ausreißer: Median = 2; arithmetisches Mittel = 2 mit Ausreißer: Median = 2; arithmetisches Mittel = 2,4

4 d) Die Aussage ist wahr, denn bei einer symmetrischen Datenverteilung liegen rechts und links vom Mittelwert die Datenmengen jeweils in gleicher Höhe bei gleichem Abstand vom Mittelwert. Beispiel: Schulnote absolute Häufigkeit Median = 3; arithmetisches Mittel = Der Median ist 20, das arithmetische Mittel beträgt 23. Peter liegt mit seinen 25 Punkten oberhalb des Mittelwertes, aber nicht im oberen Viertel, denn das obere Quartil ist 32. (Vergleiche den Wissenskasten Streuungsmaße auf derselben Seite des Schülerbandes). Die Spannweite zwischen minimaler und maximaler Punktzahl ist 35. Peter ist 15 Punkte vom Minimum entfernt, aber vom Maximum 25 Punkte. Die beiden Spitzenspieler verzerren das Leistungsbild der Gruppe. 16. a) Schulwegzeiten nach Zeitdauer ordnen (in min): Minimum = 2; Maximum = 35; Median = 10 unteres Quartil = 9; oberes Quartil = 14 b) Monatliche Durchschnittswassertemperaturen nach ihrer Höhe geordnet (in C): 7,1 7,2 8,3 8,4 9,5 10,2 11,4 13,2 14,2 15,9 16,6 17,3 Minimum = 7,1; Maximum = 17,3; Median = 10,8 unteres Quartil = 8,35; oberes Quartil = 15,1 c) Anzahl Haustiere geordnet: Minimum = 0; Maximum = 8; Median = 1; arithmetisches Mittel = 1,75 unteres Quartil = 1; oberes Quartil = 2,5

5 Nur die Datenliste 1 passt zum Boxplot. 18. Histogramm A wird vom Boxplot 3 wiedergegeben, Histogramm B wird vom Boxplot 1 wiedergegeben. Histogramm C wird vom Boxplot 2 wiedergegeben. 19. Zum Vergleich des Benzinverbrauchs zweier Autos vom Typ A und Typ B werden die Daten (Liter/100 km) aus dem Beispiel B (S. 231) verwendet. Typ A: Minimum 6,0; Maximum 8,3; Median 7,2; unteres Quartil 6,8; oberes Quartil 7,4 Typ B: Minimum 6,6; Maximum 7,7; Median 7,0; unteres Quartil 6,8; oberes Quartil 7, Das Textfeld auf dem Seitenrand neben der Aufgabe im Schülerband hilft, die gesuchten Aufgaben zu finden. Eine Boxplot-Darstellung könnte von Nutzen sein für Handy-Hotlines (Aufgabe 1), Ballweitwurf (Aufgabe 9, aber nur getrennt für Jungen und Mädchen), Pulsfrequenzen (Aufgabe 11), Supervision Warteschlagen im Supermarkt (Aufgabe 13). 21. Alte Oscargewinnerin Stängel-Blatt-Diagramm: Minimum Maximum Median unteres Quartil 29,5 5 0 oberes Quartil 42, Alter Oscargewinner Stängel-Blatt-Diagramm: Minimum Maximum Median unteres Quartil oberes Quartil 50

6 b) Schauspieler warten länger auf einen Oskar als ihre Kolleginnen; jung und schön ist eher bei Schauspielerinnen gefragt. 22. a) Ein Gepard wiegt ca. 50 kg, ein Elefant wiegt ca kg. b) An 6. Stelle befindet sich der Medianwert; ein Elch wiegt ca. 300 kg. c) Zwischen dem oberen Quartil und dem Maximum können nur noch zwei Werte liegen, d. h. die oberen drei Werte streuen sehr stark. Andererseits streuen die Daten für die fünf leichtesten von den elf Tieren nur sehr wenig um ihren Mittelwert 150 kg. d) Die Werte für das siebt- und achtschwerste Tier liegen zwischen Median und oberen Quartil. Wegen der großen Länge der oberen Antenne dürften die Gewichte von Pferdeantilope und Rothirsch knapp rechts vom Median liegen, also bei 400 kg a) Stängel-Blatt-Diagramm für die mittlere Laufgeschwindigkeit von Raubtieren und Huftieren: Raubtiere Huftiere Raubtiere Huftiere Minimum Maximum Median Unteres Quartil Oberes Quartil b) Boxplots:

7 c) Stängel-Blatt-Diagramm für die mittlere Laufgeschwindigkeit (km/h) aller Tiere: alle Tiere Minimum Maximum Median Unteres Quartil 37, Oberes Quartil d) Stängel-Blatt-Diagramm für die mittlere Laufgeschwindigkeit (in km/h) von Raubtieren und von Nagetieren: Raubtiere Nagetiere 1 0; 3; Minimum 30 Maximum 110 Median 57 unteres Quartil 48 oberes Quartil 67 Minimum 10 Maximum 20 Median 14,5 unteres Quartil 11,5 oberes Quartil 18

8 Infolge der extremen Spannweite bei den Körpergewichten (0,02 kg bis kg) ist es nicht sinnvoll, die Daten in einem einzigen Diagramm darzustellen. Auch die Kennwerte wie arithmetisches Mittel (443 kg) und Median (55 kg) sind nicht sehr aussagekräftig. Die Quartile Q 1 (20 kg) und Q 2 (250 kg) liefern immerhin eine sinnvolle Aussage: Die Hälfte der betrachteten Wildtiere wiegt zwischen 20 kg und 250 kg. Tragfähiger ist es, ähnlich wie in Übung 23 und 24 verschieden Tierarten in Diagrammen einander gegenüberzustellen. Ferner kann es für eine vergleichende Übersicht sinnvoll sein, Extremwerte auszuschließen. Raubtiere Huftiere (Körpergewicht größer als 6 kg und kleiner als 3000 kg): Zwar gibt es bei beiden Tierarten immer noch Ausreißer nach oben, aber nun lassen sie sich recht gut vergleichen. Mann erkennt sofort, dass die Raubtiere im Mittel deutlich leichter sind als die Huftiere und dass ihre Körpergewichte nur wenig streuen Mittelwerte (Bezugsjahr für das Alter bei den Herren: 2006, bei den Damen: 2007): arithmetisches Mittel Median Herren 27,0 26 Damen 26,5 27 Boxplots: Das arithmetische Mittel ist bei den Herren etwas höher, der Median aber bei den Damen. Die Grenzen der mittleren Datenbereiche stimmen bei Damen und Herren exakt überein. Die unterschiedlichen Antennen rühren von relativ jungen Spielerinnen (zwei 19-jährige) und relativ alten Spielern (zwei 37-jährige) her. Auffällig ist bei beiden Mannschaften das relativ hohe Alter der Torhüter. Im übrigen lassen sich keine Unterschiede zwischen Damen und Herren in den Altersverteilungen erkennen, auch innerhalb der einzelnen Bereiche Abwehr, Mittelfeld und Angriff nicht.

9 Der Durchschnittsverdienst der elf Sportler mit dem höchsten Einkommen liegt bei 31 Millionen /Jahr. Einen besseren Einblick liefert auch hier das Boxplot-Diagramm: Man erkennt, dass es einen Sportler mit extrem hohem Einkommen (73 Mio. Euro) gibt, alle übrigen streuen relativ wenig und liegen zwischen 21 und 35 Mio. Bedingt durch den Ausreißer liegt das arithmetische Mittel deutlich höher als der Median (29 Mio. Euro). Auch die Leistungen der Topscorer im Basketball streuen insgesamt nicht sehr stark: Die lange rechte Antenne rührt von zwei Ausreißern mit besonders herausragenden Leistungen her. Arithmetisches Mittel (17,4) und Median (16,7) liegen dicht beieinander.

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten.

a) x = 1150 ; x = 950 ; x = 800 b) Die Lagemaße unterscheiden sich voneinander. c) Der Median charakterisiert die Stichprobe am besten. R. Brinkmann http://brinkmann-du.de Seite 6.0.2009 Lösungen Mittelwert, Median II se: E E2 E3 E4 E5 E6 a) Notendurchschnitt 2,6 b) Säulendiagramm siehe ausführliche Lösung. c) Kreisdiagramm siehe ausführliche

Mehr

9.4 Boxplots zeichnen, beschreiben und interpretieren Bearbeitung unterschiedlich schwieriger Übungsaufgaben mittels der Methode Lerntempoduett

9.4 Boxplots zeichnen, beschreiben und interpretieren Bearbeitung unterschiedlich schwieriger Übungsaufgaben mittels der Methode Lerntempoduett 9.4 Boxplots zeichnen, beschreiben und interpretieren Bearbeitung unterschiedlich schwieriger Übungsaufgaben mittels der Methode Lerntempoduett Thema der Unterrichtsstunde Ich bestimme mein individuelles

Mehr

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht.

benötigen. Die Zeit wird dabei in Minuten angegeben und in einem Boxplot-Diagramm veranschaulicht. , D 1 Kreuze die richtige Aussage an und stelle die anderen Aussagen richtig. A Das arithmetische Mittel kennzeichnet den mittleren Wert einer geordneten Datenliste. B Die Varianz erhält man, wenn man

Mehr

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5.

13,86. Schritt 4: Berechnung des Quartilsabstandes. Unteres Quartil! #5,5. Lösung Aufgabe A1 Detaillierter Lösungsweg: Schritt 1: Prüfung, ob die gegebene Messreihe sortiert ist, In diesem Beispiel ist dies der Fall und wir haben insgesamt 22 Messungen. Schritt 2: Berechnen des

Mehr

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man:

Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: Die erhobenen Daten werden zunächst in einer Urliste angeschrieben. Daraus ermittelt man: a) Die absoluten Häufigkeit: Sie gibt an, wie oft ein Variablenwert vorkommt b) Die relative Häufigkeit: Sie erhält

Mehr

BOXPLOT 1. Begründung. Boxplot A B C

BOXPLOT 1. Begründung. Boxplot A B C BOXPLOT 1 In nachstehender Tabelle sind drei sortierte Datenreihen gegeben. Zu welchem Boxplot gehört die jeweilige Datenreihe? Kreuze an und begründe Deine Entscheidung! Boxplot A B C Begründung 1 1 1

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Statistik Skalen (Gurtner 2004)

Statistik Skalen (Gurtner 2004) Statistik Skalen (Gurtner 2004) Nominalskala: Daten haben nur Namen(Nomen) und (eigentlich) keinen Zahlenwert Es kann nur der Modus ( ofteste Wert) berechnet werden Beispiel 1: Die Befragung von 48 Personen

Mehr

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik

8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik

Mehr

Die erhobenen Daten (Urliste) werden mithilfe einer Strichliste geordnet. Damit kann die absolute Häufigkeit einfach und schnell erfasst werden.

Die erhobenen Daten (Urliste) werden mithilfe einer Strichliste geordnet. Damit kann die absolute Häufigkeit einfach und schnell erfasst werden. Kennzahlen der Statistik Die Aufgabe der Statistik besteht in der Analyse und der Deutung von Daten. Dies geschieht mit bestimmten Kennzahlen wie: en, arithmetischer Mittelwert, Modalwert, Zentralwert,

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durc SS 2017 Torsten Schreiber 222 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Aufgrund einer statistischen Untersuchung entsteht eine geordnete bzw. ungeordnete, die durch Summierung je Ausprägung

Mehr

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25

8a 41,5 27, , ,5 8b ,5 41,5 36, ,5 29, ,5 25 8 Aufgaben im Dokument Aufgabe P7/2009 Die Jungen der Klassen 8a und 8b werden gemeinsam in einer Sportgruppe unterrichtet. Beim Ballwurf werden von den 10 Schülern der 8a und den 13 Schülern der 8b folgende

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Spiele im MU - sinnvoll oder Zeitverschwendung?

Spiele im MU - sinnvoll oder Zeitverschwendung? Dieses Spiel besteht aus Datensätzen in sieben unterschiedlichen Darstellungsformen: Urliste; Tabelle, Histogramm; Kreisdiagramm; Boxplot; Prozentstreifen und Sprache Je nach Leistungsfähigkeit einer Lerngruppe

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

Daten systematisch auswerten und vergleichen

Daten systematisch auswerten und vergleichen 1 Vertiefen 1 Daten systematisch auswerten und vergleichen zu Aufgabe 1 1 Zufriedenheit in verschiedenen Berufen Welche Berufe machen glücklich? Für die folgenden vier Berufsgruppen wurde die Zufriedenheit

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Arbeitsblatt: Erstellen von Boxplots. Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008)

Arbeitsblatt: Erstellen von Boxplots. Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008) Arbeitsblatt: Erstellen von Boxplots Aufgabe: Frisörbesuch (Lernstandserhebung NRW 2008) Aufgabe: Klimazonen (Hinweis: Löst die Aufgabe arbeitsteilig in Kleingruppen.) Aus vier en in Europa liegen Durchschnittstemperaturen

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Statistik. Jahr Mittlerer Wasserstand in cm

Statistik. Jahr Mittlerer Wasserstand in cm Statistik 1. In der folgenden Tabelle sind die mittleren Wasserstände der Donau an einer bestimmten Stelle in cm von 2007 bis 2014 dokumentiert: Jahr 2007 2008 2009 2010 2011 2012 2013 2014 Mittlerer Wasserstand

Mehr

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert

Median 2. Modus < Median < Mittelwert. Mittelwert < Median < Modus. 2 Modalwerte oder Modus viel größer bzw. viel kleiner als Mittelwert Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Modus oder Modalwert (D) : - Geeignet für nominalskalierte Daten - Wert der häufigsten Merkmalsausprägung - Es kann mehrere Modalwerte

Mehr

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen?

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen? STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme 1 Kurze Wiederholung Warum nur zwei grafische Darstellungsformen? Im Rahmen der Vorlesungen haben wir kurz eine ganze Reihe grafischer Darstellungsformen

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Beispiel 4 (Einige weitere Aufgaben)

Beispiel 4 (Einige weitere Aufgaben) 1 Beispiel 4 (Einige weitere Aufgaben) Aufgabe 1 Bestimmen Sie für die folgenden Zweierstichproben, d. h. Stichproben, die jeweils aus zwei Beobachtungen bestehen, a) den Durchschnitt x b) die mittlere

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben?

Thema: Mittelwert einer Häufigkeitsverteilung. Welche Informationen kann der Mittelwert geben? Thema: Mittelwert einer Häufigkeitsverteilung Beispiel: Im Mittel werden deutsche Männer 75,1 Jahre alt; sie essen im Mittel pro Jahr 71 kg Kartoffel(-produkte) und trinken im Mittel pro Tag 0.35 l Bier.

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

STATISTIK I Übung 04 Spannweite und IQR. 1 Kurze Wiederholung. Was sind Dispersionsparameter?

STATISTIK I Übung 04 Spannweite und IQR. 1 Kurze Wiederholung. Was sind Dispersionsparameter? STATISTIK I Übung 04 Spannweite und IQR 1 Kurze Wiederholung Was sind Dispersionsparameter? Die sogenannten Dispersionsparameter oder statistischen Streuungsmaße geben Auskunft darüber, wie die Werte einer

Mehr

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Epertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung) Im Folgenden wird mit Hilfe des Programms EXEL, Version 007, der Firma Microsoft gearbeitet. Die meisten

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 10 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 22. Dezember 2008 1 / 21 Online-Materialien Die Materialien

Mehr

Phallosan-Studie. Statistischer Bericht

Phallosan-Studie. Statistischer Bericht Phallosan-Studie Statistischer Bericht Verfasser: Dr. Clemens Tilke 15.04.2005 1/36 Inhaltsverzeichnis Inhaltsverzeichnis... 2 Einleitung... 3 Alter der Patienten... 4 Körpergewicht... 6 Penisumfang...

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016

Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 Tutorium Mathematik in der gymnasialen Oberstufe 1. Veranstaltung: Beschreibende Statistik 19. Oktober 2016 1. Daten erfassen 1. Aufgabe: Würfeln Sie 30-mal mit einem regelmäßigen Oktaeder und dokumentieren

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

1 Beschreibende Statistik

1 Beschreibende Statistik 1 1 Beschreibende Statistik In der beschreibenden Statistik geht es darum, grosse und unübersichtliche Datenmengen so aufzubereiten, dass wenige aussagekräftige Kenngrössen und Graphiken entstehen. 1.1

Mehr

Arithmetischer Mittelwert

Arithmetischer Mittelwert Lies dir folgende Informationen zu einer statistischen Kenngröße gut durch. Rechne auch die angegebenen Beispiele noch einmal durch. Du bist der Experte für diese Kenngröße in deiner Gruppe! Überlege dir

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Musterlösung zur Übungsklausur Statistik

Musterlösung zur Übungsklausur Statistik Musterlösung zur Übungsklausur Statistik WMS15B Oettinger 9/216 Aufgabe 1 (a) Falsch: der Modus ist die am häufigsten auftretende Merkmalsausprägung in einer Stichprobe. (b) Falsch: die beiden Größen sind

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

1 Beschreibende Statistik

1 Beschreibende Statistik 1 1 Beschreibende Statistik In der beschreibenden Statistik geht es darum, grosse und unübersichtliche Datenmengen so aufzubereiten, dass wenige aussagekräftige Kenngrössen und Graphiken entstehen. 1.1

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

2. Beschreibung von eindimensionalen (univariaten) Stichproben

2. Beschreibung von eindimensionalen (univariaten) Stichproben 1 2. Beschreibung von eindimensionalen (univariaten) Stichproben Bei eindimensionalen (univariaten) Daten wird nur ein Merkmal untersucht. Der Fall von zwei- oder mehrdimensionalen Daten wird im nächsten

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2

beruflicher Bildungsabschluss incl. Hochschulabschl. 4Kat.(m) Häufigkeit Prozent Gültig Lehre/Beruffachgesundh.Schule ,2 59,2 59,2 Häufigkeiten Deskriptive Statistiken Häufigkeiten Beruflicher Bildungsabschluss (Mbfbil4) Zielvariablenliste OK Er erscheint: Statistiken beruflicher Bildungsabschluss incl. N Gültig 3445 Fehlend 0 beruflicher

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen

Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Skript 6 Häufigkeiten und Deskriptive Statistiken einer Variablen Ziel: Charakterisierung der Verteilung einer Variablen. Je nach Variablentyp geschieht dies durch Häufigkeitsauszählung und Modus (Nominale

Mehr

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a

Harry Potter und die Kammer des Schreckens : m, s, g, a, a, a, sg, g, a, g, m, m, g, g, sg, s, a, a, a, g, a, a, g, g, a Aufgabe 1: Harry Potters Filmkritik 25 Schüler und Schülerinnen der Klasse 9 sollten die ersten beiden Harry-Potter- Filme mit ausgezeichnet (a), sehr gut (sg), gut (g), mittelprächtig (m), schlecht (s)

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

3.5 Beschreibende Statistik. Inhaltsverzeichnis

3.5 Beschreibende Statistik. Inhaltsverzeichnis 3.5 Beschreibende Statistik Inhaltsverzeichnis 1 beschreibende Statistik 26.02.2009 Theorie und Übungen 2 1 Die Darstellung von Daten 1.1 Das Kreisdiagramm Wir beginnen mit einem Beispiel, welches uns

Mehr

Statistik I für Betriebswirte Vorlesung 9

Statistik I für Betriebswirte Vorlesung 9 Statistik I für Betriebswirte Vorlesung 9 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik Vorlesung am 8. Juni 2017 im Audi-Max (AUD-1001) Dr. Andreas Wünsche Statistik I für Betriebswirte

Mehr

Vorsicht, Boxplots! Wie aussagekräftig sind Kastenschaubilder? Dr. Bernhard Salzger. St. Pölten, 17. Feber 2016

Vorsicht, Boxplots! Wie aussagekräftig sind Kastenschaubilder? Dr. Bernhard Salzger. St. Pölten, 17. Feber 2016 Vorsicht, Boxplots! Wie aussagekräftig sind Kastenschaubilder? Dr. Bernhard Salzger St. Pölten, 17. Feber 2016 Grundlagen Ein Kastenschaubild (Boxplot) ist eine grafische Darstellung einer Zusammenfassung

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt

Kapitel 3: Lagemaße. Ziel. Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Kapitel 3: Lagemaße Ziel Komprimierung der Daten zu einer Kenngröße, welche die Lage, das Zentrum der Daten beschreibt Dr. Matthias Arnold 52 Definition 3.1 Seien x 1,...,x n Ausprägungen eines kardinal

Mehr

Empirische Softwaretechnik. Boxplots. Graphische Darstellung. Median

Empirische Softwaretechnik. Boxplots. Graphische Darstellung. Median Empirische Softwaretechnik Boxplots Prof. Dr. Walter F. Tichy Fakultät für Informatik 1 Graphische Darstellung Median gegeben eine sortierte Stichprobe Median gibt den mittleren Wert der sortierten Stichprobe

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Lösungen zur Klausur zur Statistik Übung am

Lösungen zur Klausur zur Statistik Übung am Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I

Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I Ausgewählte Lösungen zu den Tutoriumsaufgaben zu Statistik I Rechnen mit dem Summenzeichen Zum Ausdruck 5X (x i 3) i=2 Der Ausdruck rechts vom Summenzeichen bedeutet, dass von den einzelnen Datenwerten

Mehr

Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick

Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick Vergleichsarbeit Chemie Schuljahrgang 8 im Schuljahr 2007/2008 Ergebnisse im Überblick Dr. M. Pötter, LISA Halle 0. Vorbemerkungen Mit der vielschichtigen Auswertung der Vergleichsarbeit Chemie Schuljahrgang

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Vorwort Statistik Spannweite und Zentralwert Modalwert...7. Vierfeldertafeln Mittelwert Säulendiagramme...

Vorwort Statistik Spannweite und Zentralwert Modalwert...7. Vierfeldertafeln Mittelwert Säulendiagramme... Inhaltsverzeichnis Vorwort...5 1 Statistik Spannweite und Zentralwert...6 2 Modalwert...7 3 Boxplots...8/9 4 Vierfeldertafeln...10 5 Mittelwert...11 6 Säulendiagramme...12 Statistik 7 8 9 10 11 12 13 14

Mehr

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1

SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 1 SBP Mathe Aufbaukurs 1 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr

Voransicht. Diagramme lesen aber richtig

Voransicht. Diagramme lesen aber richtig Diagramme lesen aber richtig Diagramme und andere Darstellungen von Daten sind oft in Zeitungen oder Prospekten veröffentlicht. Je nach Zeichnung entstehen dabei sehr unterschiedliche Eindrücke. Suche

Mehr

Erfassen und Auswerten von Daten Klasse 7

Erfassen und Auswerten von Daten Klasse 7 Erfassen und Auswerten von Daten Klasse 7 Erfassen und Auswerten von Daten Klasse 7 Wiederholung aus 5/ Statistische Kenngrößen 0, m Zu Seite a) arithmetische Mittel = =,8 m Spannweite = 0,0 m b) Zentralwert

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl

Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Technische Universität München SS 2006 Zentrum Mathematik Blatt 2 Prof. Dr. J. Hartl Höhere Mathematik 2 (Weihenstephan) 1. Die Gemeinde Fronhausen besteht aus drei Ortsteilen: Neudorf, Wulling und Marking.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 20. Oktober 2010 1 empirische Verteilung 2 Lageparameter Modalwert Arithmetisches Mittel Median 3 Streuungsparameter

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Kennwerte zur Charakterisierung von Datenreihen. Mittelwerte

Kennwerte zur Charakterisierung von Datenreihen. Mittelwerte Kennwerte zur Charakterisierung von Datenreihen Um die häufig großen Datenmengen von Stichproben übersichtlich zu machen, lassen sich Kennwerte berechnen, welche diese Daten repräsentieren und charakterisieren.

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Statistik für SoziologInnen 1 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen

Mehr

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden.

b) falsch. Das arithmetische Mittel kann bei nominal skalierten Merkmalen überhaupt nicht berechnet werden. Aufgabe 1: Nehmen Sie Stellung zu den nachfolgenden Behauptungen (richtig/falsch mit kurzer Begründung): a) Die normierte Entropie ist gleich Eins, wenn alle Beobachtungen gleich häufig sind. b) Bei einem

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen:

Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: Relative Häufigkeiten: Grundlagenaufgaben: Weitere tolle Übungsbeispiele mit Lösungen: http://www.serlo.org/ 1. In einer Schulklasse ergaben sich bei einer Mathematikschulaufgabe folgende Noten: Note 1

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr