Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015"

Transkript

1 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet ist. Bsp. Page Ranking für Suchmaschinen Netz mit 5 Internetseiten und entsprechenden Hyperlinks Melanie Kaspar, Prof. Dr. B. Grabowski 1

2 Wir betrachten das System zu diskreten Zeitpunkten n=1,2,3... Dabei befindet sich das System zu jedem dieser Zeitpunkte in einem der möglichen zustände i1, i2,... im. Ein möglicher Pfad / Zustandsverlauf kann durch eine Folge von Zuständen beschrieben werden: X(0) = i0, X(1) = i1,... X(n) = in Zur Analyse des Systems ist es wesentlich, die Wahrscheinlichkeiten der einzelnen Pfade zu bestimmen. Startet ein Pfad der Länge 1 im Zustand i0 und geht dann über in den Zustand i1, so kann die Wahrscheinlichkeit des Pfades bestimmt werden: Für einen Pfad der Läng 2 gilt: Melanie Kaspar, Prof. Dr. B. Grabowski 2

3 Def.: Eine stochastische Kette heißt Markovkette erster Ordnung, wenn gilt: X(n): zufälliger Zustand, den eine Variable zur Zeit n annimmt E: abzählbarer Zustandsraum pij(n,n+k)=p(x(n+k)=j X(n)=i): Übergangswahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses / Zustandes einer Markovkette erster Ordnung zu irgend einem Zeitpunkt nm+1hängt nur vom Zustand im vorherigen Zeittakt nm ab. Oder: die Zukunft einer Markovkette erster Ordnung hängt nur von der Gegenwart und nicht von der Vergangenheit ab. = Markoveigenschaft Melanie Kaspar, Prof. Dr. B. Grabowski 3

4 Für eine Markovkette muss also bekannt sein: die Übergangswahrscheinlichkeiten von einem Zustand zu einem anderen Zustand zu den einzelnen Zeitpunkten Wahrscheinlichkeit der Zustände zum Zeitpunkt 0 Def.: Eine Markovkette heißt homogen, falls die Übergangswahrscheinlichkeiten pij(n,n+k) nicht vom Zeitpunkt t abhängen, also gilt: pij(n,n+k) = pij(0,k) := pij(k) pij(k) wird als k-schritt-übergangswahrscheinlichkeit bezeichnet Für die 1-Schritt-Übergangswahrscheinlichkeit verwenden wir die Bezeichnung pij(1)=pij Melanie Kaspar, Prof. Dr. B. Grabowski 4

5 Die Übergangswahrscheinlichkeit einer homogenen Markovkette für einen Zeitschritt können in einer Übergangsmatrix P zusammengefasst werden: Die Übergangswahrscheinlichkeit einer homogenen Markovkette können grafisch als sog. Markov-Graf dargestellt werden: Zustände: Übergänge vom Zustand i in den Zustand j: Melanie Kaspar, Prof. Dr. B. Grabowski 5

6 Bsp: Eine Nachricht der Form "Ja" oder "Nein" wird mündlich weitergegeben. Bei jeder Weitergabe wird mit der Wahrscheinlichkeit a "ja" in "Nein" umgewandelt und mit der Wahrscheinlichkeit b "Nein" in "Ja" verfälscht. Markov-Graf: Übergangsmatrix: Melanie Kaspar, Prof. Dr. B. Grabowski 6

7 Die Verteilung des Zustandes der Markovkette im Takt n wird als bezeichnet. Die Einzelwahrscheinlichkeiten lassen sich in einem Vektor zusammenfassen: ist die Wahrscheinlichkeitsverteilung von X(n). Die Verteilung bezeichnet. von X(0) wird als Anfangsverteilung der Markovkette Melanie Kaspar, Prof. Dr. B. Grabowski 7

8 Bsp: Eine Leitung hat folgende Zustände: (1) frei (2) besetzt (3) in wartung / nicht verfügbar Wir nehmen an, dass die Leitung ihre Zustände nur taktweise zu Beginn der Zeitpunkte nt = 1,2,3,... ändern kann. Zum Zeitpunkt t=0 ist die Leitung frei. Der Zustandsverlauf sei eine homogene Markovkette: a) Geben Sie die Übergangsmatrix P an. b) Mit welcher Wahrscheinlichkeit nimmt X(n) im Takt n den Zustand j an, d.h. wie groß ist P(X(n)=j)? Also wie groß ist die Wahrscheinlichkeit, das die Leitung nach n Takten frei, belegt oder in Wartung ist? Melanie Kaspar, Prof. Dr. B. Grabowski 8

9 n p1(n) p2(n) p3(n) n Allgemeine Rekursionsformel: Melanie Kaspar, Prof. Dr. B. Grabowski 9

10 c) Schreiben Sie ein kleines rekursives Programm, welches pj(n) für große n (n-> ) berechnet. D.h. berechnen sie, wie groß die Auslastung der Leitung auf lange Sicht ist. ges: Geben Sie dabei die Wahrscheinlichkeiten pj(n) tabellarisch aus für n=0,1,..., 20, 100,200,300,1000,.... Was stellen Sie fest? d) Ändern Sie die Anfangsverteilung, d.h. die Leitung befindet sich zu Beginn im Wartungszustand. Nutzen Sie ihr Programm aus Teil c) erneut und geben Sie die Wahrscheinlichkeiten pj(n) ebenfalls tabellarisch aus. Was stellen Sie fest? Melanie Kaspar, Prof. Dr. B. Grabowski 10

11 Bsp: Werfen eines Spielwürfels. 1 Einsatz fällt eine Sechs, so bekommt man 2. fällt keine Sechs, so bekommt man nichts. Ziel: weitere 3 zu gewinnen. Abbruch: falls das Ziel erfüllt ist oder kein Geld mehr für den Einsatz zur Verfügung steht. a) Markov-Graf: Melanie Kaspar, Prof. Dr. B. Grabowski 11

12 b) Wie groß ist die Wahrscheinlichkeit, von 1 zu 4 zu kommen? D.h. wie groß sind p14(1), p14(2),... p14(n)? c) Wie groß ist die Wahrscheinlichkeit für einen erfolglosen Abbruch? d) Ist dieser Graf ergodisch? Ursache: Melanie Kaspar, Prof. Dr. B. Grabowski 12

13 1 2 3 Eine Markovkette heißt irreduzibel, falls Ein Zustand heißt transient, falls ein Zustand heißt absorbierend, falls Melanie Kaspar, Prof. Dr. B. Grabowski 13

14 1 3 2 Eine Markovkette heißt periodisch, falls Ein Zustand heißt rekurrent, falls Melanie Kaspar, Prof. Dr. B. Grabowski 14

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

Q4. Markov-Prozesse in diskreter Zeit

Q4. Markov-Prozesse in diskreter Zeit Q4. Markov-Prozesse in diskreter Zeit Gliederung 1.Stochastische Prozesse Ein Überblick 2.Zeitdiskrete Markov-Prozesse 3.Vom Modell zum Markov-Prozess 4.Klassifikation von Zuständen 5.Stationäre und transiente

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

DynaTraffic Einstiegsaufgaben

DynaTraffic Einstiegsaufgaben DynaTraffic Einstiegsaufgaben Bemerkung: Falls nichts anderes erwähnt, sind die Standard-Einstellungen zu einer Verkehrssituation von DynaTraffic zu verwenden. 1. Interpretation von Verkehrssituation und

Mehr

Warteschlangentheorie und Callcenter

Warteschlangentheorie und Callcenter Warteschlangentheorie und Callcenter Vortrag im Rahmen der Lehrerfortbildung,,Stochastik und Matrizen: von Markov-Ketten bis zu Callcentern 23. September 2009 Dr. Alexander Herzog, Institut für Mathematik,

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Warteschlangentheorie und Callcenter

Warteschlangentheorie und Callcenter Warteschlangentheorie und Callcenter Vortrag im Rahmen der Lehrerfortbildung Stochastik und Matrizen: von Markov-Ketten bis zu Callcentern 23 September 2009, Wo treten Warteschlangen auf und warum? Kunden,

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Einführung in die Bayessche Bildanalyse

Einführung in die Bayessche Bildanalyse Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm 8.Mai 2006 1 Motivation Beispielbilder 2 Computergrafiken Bildarten 3 Bayes sches Paradigma

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

1 A dp = P(A B). (1.3)

1 A dp = P(A B). (1.3) Markov-etten Seminar Stochastik vom 4-500 Version Oktober 00 Markus Penz Vorbemerkungen zu bedingten Wahrscheinlichkeiten Sei (Ω, F,P) ein Wahrscheinlichkeitsraum und X : Ω R eine F-messbare sowie integrierbare

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung 5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

Stochastische Modelle

Stochastische Modelle Klausur (Teilprüfung) zur Vorlesung Stochastische Modelle (WS04/05 Februar 2005, Dauer 90 Minuten) 1. Es sollen für eine Zufallsgröße X mit der Dichte Zufallszahlen generiert werden. (a) Zeigen Sie, dass

Mehr

STOCHASTISCHE PROZESSE. Vorlesungsskript

STOCHASTISCHE PROZESSE. Vorlesungsskript STOCHASTISCHE PROZESSE I: Markovketten in diskreter und stetiger Zeit Wolfgang König Vorlesungsskript Universität Leipzig Sommersemester 2005 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Einleitung........................................

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten DynaTraffic Modelle und mathematische Prognosen Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten Worum geht es? Modelle von Verkehrssituationen Graphen: Kanten, Knoten Matrixdarstellung

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

Modellierung und Bewertung von Kreditrisiken

Modellierung und Bewertung von Kreditrisiken Peter Grundke Modellierung und Bewertung von Kreditrisiken Mit einem Geleitwort von Prof. Dr. Thomas Hartmann-Wendels Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

12. Vorlesung Spieltheorie in der Nachrichtentechnik

12. Vorlesung Spieltheorie in der Nachrichtentechnik 12. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Evolutionäre Spieltheorie Hines (1987): Game theory s greatest success to date

Mehr

Stochastische Prozesse und Markow-Ketten

Stochastische Prozesse und Markow-Ketten Molekulare Biotechnologie 04.08.2003 2. Semester Heidelberg Abschlussprojekt Mathematik: Stochastische Prozesse und Markow-Ketten Nora Rieber Jens Keienburg Felix Bonowski Samuel Bandara Inhaltsverzeichnis

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

Kapitel 3 Markov-Ketten

Kapitel 3 Markov-Ketten Kapitel 3 Markov-Ketten 3.1 Grundlegende Eigenschaften, Beispiele 3.1 Grundlegende Eigenschaften, Beispiele Diskreter Parameterraum (Zeit) T = N 0. Zustandsraum S meist diskret (3.1-3.6), manchmal auch

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet.

Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Rückschau 12.11.04 Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Wir haben das Prinzip der Diagonalisierung eingeführt und mit DIAG eine erste nicht rek. aufz. Sprache

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Aufgabenblatt 5 (Schnellübung)

Aufgabenblatt 5 (Schnellübung) Frühlingssemester 0, Aufgabenblatt (Schnellübung) Aufgabenblatt (Schnellübung) 30 Punkte Aufgabe (Kettenbrüche) a) Bestimme [b 0, b,..., b ] = [,... ], die Kettenbruchentwicklung von r = 3/9. b) Bestimme

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

Einführung und Beispiele

Einführung und Beispiele Kapitel 1 Einführung und Beispiele Inhalt: Anwendungsbeispiele erste Definition eines stochastischen Prozesses einige spezielle stochastische Prozesse Ziel: Aufzeigen der Vielfalt stochastischer Prozesse

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung

DIPLOMARBEIT. Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung Studiengang Diplom-Mathematik mit Schwerpunkt Biowissenschaften DIPLOMARBEIT Abschätzungen der Konvergenzgeschwindigkeit von Markov-Ketten gegen die Gleichgewichtsverteilung von: Christina Boll geb. Wolf

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Eine interessante Variante: fix flexibel starr variabel fuzzy hybrid. Copyright by Pierre Basieux Mai 2004

Eine interessante Variante: fix flexibel starr variabel fuzzy hybrid. Copyright by Pierre Basieux Mai 2004 1 NEUNER-ROULETTE Eine interessante Variante: fix flexibel starr variabel fuzzy hybrid DAS KONZEPT Copyright by Pierre Basieux Mai 2004 Inhalt Einleitung: Meine neun Vierer-Gruppen 2 Die fixen Setzbereiche

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Elektronische Sicherheitssysteme

Elektronische Sicherheitssysteme Josef Börcsök Elektronische Sicherheitssysteme Hardwarekonzepte, Modelle und Berechnung f 2., überarbeitete Auflage Hüthig Verlag Heidelberg Inhaltsverzeichnis 1 Einleitung 1 1.1 Gründlegende Forderungen

Mehr

Lufthygienische Überprüfung stationärer Motoren 2007-2009

Lufthygienische Überprüfung stationärer Motoren 2007-2009 Lufthygienische Überprüfung stationärer Motoren 2007-2009 1. Einleitung: Im Anschluss an den letzten Bericht Lufthygienische Überprüfung stationärer Motoren 2005-2007 (Internet: www.vorarlberg.at/luftreinhaltung)

Mehr

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke

Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke Informationstechnik Klaus-Dieter Thies Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse für Computer-Netzwerke Mit einer wahrscheinlichkeitstheoretischen

Mehr

Einführung - Systeme

Einführung - Systeme Systeme Petri-Netze Gliederung Einführung - Systeme System Zustand Arten von Systemen Petri-Netze Low-Level Petri-Netze High-Level Petri-Netze 2 System griechisch: σύστηµα = das Gebilde, Zusammengestellte,

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Web Algorithmen. Ranking. Dr. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik. Wintersemester 2008/09

Web Algorithmen. Ranking. Dr. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik. Wintersemester 2008/09 Web Algorithmen Ranking Dr. Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Wintersemester 2008/09 M.Brinkmeier (TU Ilmenau) Web Algorithmen Wintersemester 2008/09

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten

Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Über Randeffekte bei der Dichteschätzung räumlich verteilter Daten Andreas Fröhlich, Thomas Selhorst, Christoph Staubach FLI-Wusterhausen DVG Tagung Graz, September 2008 Institut für Epidemiologie Gliederung

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

riskkv Scorenalyse riskkv Scoring Seite 1 von 9

riskkv Scorenalyse riskkv Scoring Seite 1 von 9 riskkv Scorenalyse riskkv Scoring Seite 1 von 9 Das Modul dient der flexiblen Erstellung, Auswertung und Verwendung von Scores. Durch vordefinierte Templates können in einer Einklicklösung bspw. versichertenbezogene

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Einführung in die Theorie stochastischer Prozesse

Einführung in die Theorie stochastischer Prozesse Einführung in die Theorie stochastischer Prozesse Dr. Ingo Röder, IMISE, Universität Leipzig Folie 247 Stochastische Prozesse, Grundlagen Motivation Warum Modellierung mittels stochastischer Prozesse?

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Übersicht Die Übersicht zeigt die Zusammenfassung der wichtigsten Daten.

Übersicht Die Übersicht zeigt die Zusammenfassung der wichtigsten Daten. Webalizer Statistik Bedeutung der Begriffe Übersicht Die Übersicht zeigt die Zusammenfassung der wichtigsten Daten. Anfragen Gesamtheit aller Anfragen an Ihren Account. Jede Anfrage auf eine Grafik, eine

Mehr

Stochastische Prozesse

Stochastische Prozesse Stochastische Prozesse Die Mitarbeiter von http://mitschriebwiki.nomeata.de/ 27. Dezember 2016 Inhaltsverzeichnis Inhaltsverzeichnis 3 Vorwort 5 I. Markov-Ketten mit diskretem Zeitparameter 7 1. Elementare

Mehr

Operations Management

Operations Management Operations Management Supply Chain Management und Lagerhaltungsmanagement Prof. Dr. Helmut Dietl Lernziele Nach dieser Veranstaltung sollen Sie wissen, was man unter Supply Chain Management und Lagerhaltungsmanagement

Mehr

Suchmaschinen: Für einen sich rasant ändernden Suchraum gigantischer Größe sind Anfragen ohne merkliche Reaktionszeit zu beantworten.

Suchmaschinen: Für einen sich rasant ändernden Suchraum gigantischer Größe sind Anfragen ohne merkliche Reaktionszeit zu beantworten. Die Größe des Netzes Schätzungen gehen weit auseinander: Über eine Milliarde im Gebrauch befindliche IP-Adressen Zwischen 20 Milliarden und einer Billion indizierte Webseiten. Ungefähr 200 Millionen Websites

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Probabilistisches Tracking mit dem Condensation Algorithmus

Probabilistisches Tracking mit dem Condensation Algorithmus Probabilistisches Tracking mit dem Condensation Algorithmus Seminar Medizinische Bildverarbeitung Axel Janßen Condensation - Conditional Density Propagation for Visual Tracking Michael Isard, Andrew Blake

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Dipl.-Wi.-Inform. (FH) Robert Siegfried

Dipl.-Wi.-Inform. (FH) Robert Siegfried Dipl.-Wi.-Inform. (FH) Robert Siegfried Analyse von multikanonischen Monte Carlo Simulationen für Anwendungen aus dem Gebiet der optischen Nachrichtentechnik Masterarbeit Hochschule Mittweida (FH) University

Mehr

Flussdiagramm / Programmablaufplan (PAP)

Flussdiagramm / Programmablaufplan (PAP) Flussdiagramm / Programmablaufplan (PAP) Basissysmbole Grenzstelle (Anfang, Zwischenhalt oder Ende des Programms/Algorithmus) Verbindung Zur Verdeutlichung der Ablaufrichtung werden Linien mit einer Pfeilspitze

Mehr

11 Monte-Carlo (MC) Simulation

11 Monte-Carlo (MC) Simulation 11 Monte-Carlo (MC) Simulation Literatur zu diesem Teil: neben MD die andere wichtige Simulationsmethode für klassische Vielteilchensysteme. Sehr zu empfehlen ist Frenkel [1], aber auch Landau und Binder

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Stochastische Prozesse. Woche 5

Stochastische Prozesse. Woche 5 FS 2016 Stochastische Prozesse Woche 5 Aufgabe 1 PageRank-Algorithmus von Google Das Herz der Google-Suchmaschine ist ein Algorithmus, der alle Dokumente des WWW nach ihrer Wichtigkeit anordnet. Die Auflistung

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

PG520 - Webpageranking

PG520 - Webpageranking 12. Oktober 2007 Webpageranking - Quellen The PageRank citation ranking: Bringing order to the Web; Page, Brin etal. Technical report, 1998. A Unified Probabilistic Framework for Web Page Scoring Systems;

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Lösen linearer Gleichungssysteme

Lösen linearer Gleichungssysteme Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8

Mehr

Institut für Wirtschaftsinformatik Lehrstuhl Decision Support Prof. Dr. Dirk Christian Mattfeld Simulation und Optimierung von Bike-Sharing-Systemen

Institut für Wirtschaftsinformatik Lehrstuhl Decision Support Prof. Dr. Dirk Christian Mattfeld Simulation und Optimierung von Bike-Sharing-Systemen Simulation und Optimierung von Bike-Sharing-Systemen DoWoNo 2011 Viola Ricker Was ist Bike-Sharing? Bike-Sharing: Fahrräder als nachhaltiges, individuelles, öffentliches Verkehrsmittel Gängigerweise Bereitstellung

Mehr