9. Übung Algorithmen I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "9. Übung Algorithmen I"

Transkript

1 Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische Informatik

2 Übersicht Statistik der Mittsemesterklausur Grundlagen der Graphentheorie Bäume Eulersche und Hamiltonsche Kreise Bellman-Ford-Algorithmus Negative Kreise finden 2 Timo Bingmann, Christian Schulz

3 Statistik der Mittsemesterklausur 3 Timo Bingmann, Christian Schulz

4 Punkteverteilung 20 Teilnehmer Punkte 4 Timo Bingmann, Christian Schulz

5 Punkte pro Aufgabe Prozent der Punktzahl DList Invariante Karatsuba-Ofman Heap Formeln Hashtabelle erzeugen Duplikat finden unbeschränktes Array Zweierpotenz Kreis im DAG markieren Hash-Kollisionen Sorts Vor/Nachteile Master-Theorem Matrixmultiplikation Listen/Arrays Vor/Nachteile HT verkettet vs offen Listen in HTs Sentinels Heap deletemin 5 Timo Bingmann, Christian Schulz

6 Grundlagen der Graphentheorie 6 Timo Bingmann, Christian Schulz

7 Graphen und Relationen Relation Ist eine Menge M gegeben, dann heißt R M M eine Relation und man schreibt auch x R y, falls (x, y) R. Spezielle Relationen: symmetrisch, transitiv, antisymmetrisch, Äquivalenz-Relationen, etc. Beispiele: x = y, x y oder x y (teilt). gerichteter Graph Ein gerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E V V ist. ungerichteter Graph Ein ungerichteter Graph G = (V, E) besteht aus Knoten V und Kanten E, wobei V nicht leer ist und E {{x, y} x, y V, x y} ist. 7 Timo Bingmann, Christian Schulz

8 Teilbarkeitsgraph Ein gerichteter Graph G = (V, E) mit V = {1,..., 9} und E = {(x, y) x, y V, x y und x y}, wobei x y genau dann, wenn x teilt y, also n N : xn = y gilt Timo Bingmann, Christian Schulz

9 Der Hyperwürfel Q 3 Ein ungerichteter Graph G = (V, E) mit V = {{0, 1} 3 } und E = {{x, y} x, y V und x y {100, 010, 001}} Zwei Knoten x, y V sind also adjazent, wenn x und y sich in genau einer Ziffer unterscheiden. 9 Timo Bingmann, Christian Schulz

10 Adjazenz und Knotengrad Sei G = (V, E) ein ungerichteter Graph. Bereits bekannt: Zwei Knoten x, y V mit x y heißen genau dann adjazent, wenn {x, y} E. Ein Knoten x V und eine Kante e E heißen genau dann inzident, wenn x e. Für ein Knoten x V ist die Adjazenzmenge oder Nachbarn-Menge also Adj(x) = {y V x y und {x, y} E}. Der Grad eines Knoten x V ist deg(x) := Adj(x). (auch deg G (x) oder d G (x) oder γ G (x) oder...) 10 Timo Bingmann, Christian Schulz

11 Knoten mit speziellem Knotengrad Ein Knoten v V mit deg(v) = 0 heißt isoliert. Ein Knoten v V mit deg(v) = 1 heißt Randknoten. Ein Graph G = (V, E) heißt knotenregulär vom Grad r, wenn deg(v) = r für alle v V gilt. Beispiel: der Hyperwürfel Q 3 ist 3-knotenregulär. Ein ( V 1)-knotenregulärer Graph heißt vollständig. K 6 K 4 K 5 11 Timo Bingmann, Christian Schulz

12 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V 12 Timo Bingmann, Christian Schulz

13 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. 12 Timo Bingmann, Christian Schulz

14 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. 12 Timo Bingmann, Christian Schulz

15 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). 12 Timo Bingmann, Christian Schulz

16 Handshake-Lemma Lemma: Ist G = (V, E) ein ungerichteter Graph, dann gilt deg(v) = 2 E. v V Beweis: Betrachte die Menge M := {(v, e) v V, e E mit v e}. Für jede Kante e E sind genau zwei Paare in M, also M = 2 E. Für jeden Knoten v V sind genau alle ausgehenden Kanten in M, also M = v V deg(v). Korollar: In jedem Graph gibt es eine gerade Anzahl von Knoten mit ungeradem Knotengrad. 12 Timo Bingmann, Christian Schulz

17 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt eine Folge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) mit v i V und e i E eine Kantenfolge, ein Kantenweg oder nur Weg (path), wenn e i = {v i 1, v i } für i = 1,..., n. Alternativ, kann man in Graphen ohne Mehrfachkanten eine Kantenfolge auch durch die Knotenspur (v 0,..., v n ) beschreiben. heißt eine Kantenfolge ein Kantenpfad oder nur Pfad (simple path), wenn alle besuchten Knoten verschieden sind. heißen zwei Knoten x, y V verbindbar (connected), wenn es einen Weg mit x = v 0 und y = v n gibt. heißt der Graph G zusammenhängend (connected), wenn jedes Paar (x, y) V V verbindbar ist. 13 Timo Bingmann, Christian Schulz

18 Wege, Kreise und Zusammenhang Ist G = (V, E) ein ungerichteter Graph, dann heißt ein Kantenfolge (v 0, e 1, v 1, e 2,..., v n 1, e n, v n ) ein Kantenkreis oder Kantenzyklus (cycle), wenn v 0 = v n. heißt der Graph G kreisfrei, kreislos oder zykelfrei (cycle free), wenn G keinen Kantenkreis enthält. 14 Timo Bingmann, Christian Schulz

19 Bäume 15 Timo Bingmann, Christian Schulz

20 Warum Bäume? H H H H H H H H H H H H C C C C C C C C H H H H H H H H H Oktan H H H H C H H C C C C C H C H C H H H H H H H ein Isooktan H H H H H C H H H C C C C C H H H C H H H H C H H H ein anderes Isooktan 16 Timo Bingmann, Christian Schulz

21 Charakterisierung von Bäumen Definition: Ein ungerichteter Graph heißt Baum, wenn es von jedem Knoten zu jedem anderen Knoten genau einen Kantenweg gibt. Satz: Für einen ungerichteten Graphen G = (V, E) sind äquivalent: 1 G ist ein Baum. 2 G ist zusammenhängend und E = V 1. 3 G ist zusammenhängend und kreislos. 4 G ist kreislos und E = V 1. 5 G ist maximal kreislos: G ist kreislos und jede zusätzliche Kante zwischen nicht-adjazenten Knoten ergibt einen Kreis. 6 G ist minimal zusammenhängend: G ist zusammenhängend und bei Entfernen einer beliebige Kante zerfällt G. 17 Timo Bingmann, Christian Schulz

22 Satz von Cayley Ist G = (V, E) ein zusammenhängender ungerichteter Graph, dann heißt ein Untergraph (V, E ) mit E E ein G aufspannender Baum, wenn dieser ein Baum ist. Satz von Cayley Im vollständigen Graph K n gibt es genau n n 2 verschiedene K n aufspannende Bäume. Beispiel: K 4 hat folgende 16 aufspannende Bäume: 18 Timo Bingmann, Christian Schulz

23 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 19 Timo Bingmann, Christian Schulz

24 Eulersche und Hamiltonsche Kreise Ein Kantenkreis heißt Eulersch, wenn er alle Kanten des Graphen genau einmal enthält. Ein Kantenkreis heißt Hamiltonsch, wenn er alle Knoten des Graphen genau einmal enthält (Beginn und Ende einmal gezählt). Ein Graph heißt Eulersch/Hamiltonsch, wenn er einen Eulerschen/Hamiltonschen Kreis enthält. 19 Timo Bingmann, Christian Schulz

25 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. 20 Timo Bingmann, Christian Schulz

26 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Klar, denn G muss zusammenhängend sein und beim Passieren eines Knoten wird dieser durch eine Kante betreten und durch eine andere verlassen. Da jede Kante genau einmal verwendet wird, muss der Knotengrad aller Knoten gerade sein. 20 Timo Bingmann, Christian Schulz

27 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. 20 Timo Bingmann, Christian Schulz

28 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenpfad P = (v 0, e 1, v 1, e 2,..., v r 1, e r, v r ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 1: v 0 = v r. Wäre v 0 v r, dann ist v 0 zu einer ungeraden Anzahl Kanten in P inzident. Da v 0 aber geraden Knotengrad hat, gibt es eine inzidente Kante e / P. Der Pfad P kann mit e verlängert werden, ist also nicht maximal! Widerspruch = v 0 = v r, also ist P ein Kreis. 20 Timo Bingmann, Christian Schulz

29 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. 20 Timo Bingmann, Christian Schulz

30 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. 20 Timo Bingmann, Christian Schulz

31 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. 20 Timo Bingmann, Christian Schulz

32 Satz von Euler (Graphen) Satz: Ein Graph G = (V, E) mit E ist genau dann Eulersch, wenn G zusammenhängend ist und alle Knoten geraden Knotengrad haben. Beweis: = Angenommen der Graph hat diese Eigenschaften, so betrachtet man eine Kantenkreis C = (v 0, e 1, v 1, e 2,..., v r 1, e r, v 0 ) maximaler Länge, in dem also keine Kante zweimal vorkommt. Behauptung 2: E(C) := {e i i = 1,..., r} = E. Angenommen E(C) E, so betrachten wir G := (V, E \ E(C)). Da G zusammenhängt, muss G und C einen gemeinsamen Knoten w mit deg G (w) > 0 haben. Alle Knoten in G haben geraden Knotengrad, also kann man in G einen Kreis C finden, der durch w geht. C kann an Knoten w mit C verlängert werden. Widerspruch zur Maximalität = E(C) = E. 20 Timo Bingmann, Christian Schulz

33 Algorithmus: Eulersche Kreise Idee: Erweitere einen Kantenpfad solange, bis er Eulersch wird. Überprüfe, ob jeder Knoten geraden Grad hat. Wähle v 0 V beliebig, setze P := (v 0 ). Sei P = (v 0, e 1, v 1,..., e i, v i ) der bisher konstruierte Pfad und G = (V, E \ E(P)) der Restgraph. 21 Timo Bingmann, Christian Schulz

34 Algorithmus: Eulersche Kreise Idee: Erweitere einen Kantenpfad solange, bis er Eulersch wird. Überprüfe, ob jeder Knoten geraden Grad hat. Wähle v 0 V beliebig, setze P := (v 0 ). Sei P = (v 0, e 1, v 1,..., e i, v i ) der bisher konstruierte Pfad und G = (V, E \ E(P)) der Restgraph. Ist E = E(P) so ist P ein gesuchter Eulerscher Kreis. Fertig. Sonst wähle eine zum Knoten v i inzident Kante e i+1 E \ E(P), wobei Kanten bevorzugt werden, die keine Brücken sind. Eine Kante ist keine Brücke, wenn G und (V, E \ {e 1,..., e i, e i+1 }) gleich viele Komponenten haben. Verlängere P mit der Kante e i+1 und wiederhole diesen Schnitt. 21 Timo Bingmann, Christian Schulz

35 Schmankerl: Graph-Isomorphie Welche Graphen sind gleich (isomorph)? 22 Timo Bingmann, Christian Schulz

36 Schmankerl: Graph-Isomorphie Welche Graphen sind gleich (isomorph)? Tipp: Es gibt fünf Klassen. 22 Timo Bingmann, Christian Schulz

37 Bellman-Ford-Algorithmus Wiederholung Ausgehend von einem Knoten s berechne kürzesten Wege-Baum 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: 8: forall e = (u, v) E do 9: if d[u] + c(e) < d[v] then infect(v) 10: return (d, parent) Erinnerung Kante (u, v) relaxieren: 1 wenn d[u] + c(u, v) < d[v] dann d[v] := d[u] + c(u, v), parent[v] := u 23 Timo Bingmann, Christian Schulz

38 Bellman-Ford-Algorithmus Wiederholung 1: procedure infect(v : NodeId) 2: if d[v] > then 3: d[v] = 4: forall e = (v, w) E do infect(w) 5: return (d, parent) Ziel: Korrektheit beweisen 1 zeige dies für Knoten v mit < µ[v] < 2 zeige dies für Knoten v mit = µ[v] 3 zeige dies für Knoten v mit = µ[v] (trivial) 24 Timo Bingmann, Christian Schulz

39 Bellman-Ford-Algorithmus Fall 1 relaxiere alle Kanten (in bel. Reihenfolge) n 1-mal alle kürzesten Pfade in G haben höchstens n 1 Kanten jeder kürzeste Pfad ist Teilfolge dieser Relaxierungen 25 Timo Bingmann, Christian Schulz

40 Bellman-Ford-Algorithmus Fall 1 jeder kürzeste Pfad ist eine Teilfolge dieser Relaxierungen t 1 t 2 {}}{{}}{{}}{ R =... relax(e 1 )... relax(e 2 )... relax(e k )..., R = (n 1) E. p = e 1, e 2,..., e k = s, v 1, v 2,..., v k ein kürzester Weg t k 25 Timo Bingmann, Christian Schulz

41 Bellman-Ford-Algorithmus Fall 2 Korrektheit für Knoten v mit = µ[v] sei e = (u, v) mit d[u] + c(e) < d[v] nach Relaxierungen (Zeile 7) d[v] = (kürzeste Wege ändern sich nicht mehr, siehe Fall 1) mittels infect: alle von v erreichbaren Knoten w d[w] = falls d[v] im post-processing nicht auf gesetzt gilt: d[x] + c(e) d[y] für jede Kante (x, y) von jedem Pfad von s nach v damit d[s] + c(p) d[v] für jeden Pfad p von s nach v damit d[v] µ(v) und damit d[v] = µ(v) 26 Timo Bingmann, Christian Schulz

42 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return negativer Kreis ist gerichteter Kreis mit Gewicht < 0 Fragestellung: negativer Kreis in G (und gebe einen aus) 27 Timo Bingmann, Christian Schulz

43 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return Timo Bingmann, Christian Schulz s 2

44 Negative Kreise finden 1: procedure BellmanFord(s : NodeId) : NodeArray NodeArray 2: d =,..., : NodeArray of R {, } 3: parent =,..., : NodeArray of NodeId 4: d[s] := 0; parent[s] := s 5: for i := 1 to n 1 do 6: forall e E do relax(e) 7: Find negative cycle 8:... 9: return Reachability? s R 27 Timo Bingmann, Christian Schulz

45 Negative Kreise finden Allgemein Hilfsknoten H + Kanten (H, v) für v V mit Gewicht 0 H Nach Ausführung von Bellman-Ford (in Zeile 7): negativen Kreise C: (u, v) C : d[u] + c(e) < d[v] 28 Timo Bingmann, Christian Schulz

46 Negativen Kreis ausgeben Nach Ausführung von Bellman-Ford (in Zeile 7): negativen Kreise C: (u, v) C : d[u] + c(e) < d[v] Ausgabe eines negativen Kreises: Übungsblatt 29 Timo Bingmann, Christian Schulz

47 30 Timo Bingmann, Christian Schulz

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung

Mehr

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege

Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Effiziente Algorithmen und Datenstrukturen: Kürzeste Wege Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 15.7.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Wiederholung bzw. Zusammenfassung der Übung Effizienz

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt:

Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: Der K 4 lässt sich auch kreuzungsfrei zeichnen: Für die Anzahl der Kanten in einem vollständigen Graphen (und damit für die maximale Anzahl von Kanten in einem einfachen Graphen) gilt: ( ) n n (n 1) E

Mehr

4. Kreis- und Wegeprobleme

4. Kreis- und Wegeprobleme 4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2 1 Graphen Definition: Ein Graph G = (V,E) setzt sich aus einer Knotenmenge V und einer (Multi)Menge E V V, die als Kantenmenge bezeichnet wird, zusammen. Falls E symmetrisch ist, d.h.( u,v V)[(u,v) E (v,u)

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Graphen. Leonhard Euler ( )

Graphen. Leonhard Euler ( ) Graphen Leonhard Euler (1707-1783) 2 Graph Ein Graph besteht aus Knoten (nodes, vertices) die durch Kanten (edges) miteinander verbunden sind. 3 Nachbarschaftsbeziehungen Zwei Knoten heissen adjazent (adjacent),

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

1. Einige Begriffe aus der Graphentheorie

1. Einige Begriffe aus der Graphentheorie . Einige Begriffe aus der Graphentheorie Notation. Sei M eine Menge, n N 0. Dann bezeichnet P n (M) die Menge aller n- elementigen Teilmengen von M, und P(M) die Menge aller Teilmengen von M, d.h. die

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen

Zentralübung zur Vorlesung Diskrete Strukturen WS 2010/11 Zentralübung zur Vorlesung Diskrete Strukturen Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/uebung/ 2. Februar 2011 ZÜ DS ZÜ XIII 1. Übungsbetrieb:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Euler und Hamiltonkreise

Euler und Hamiltonkreise Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Graphen. Graphen und ihre Darstellungen

Graphen. Graphen und ihre Darstellungen Graphen Graphen und ihre Darstellungen Ein Graph beschreibt Beziehungen zwischen den Elementen einer Menge von Objekten. Die Objekte werden als Knoten des Graphen bezeichnet; besteht zwischen zwei Knoten

Mehr

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht 1. Einführung Kapitelübersicht 1. Einführung Grundbegriffe und Bezeichnungen Beispiele Bäume gerichtete Graphen Graphentheorie HS Bonn-Rhein-Sieg, WS 2014/15 15 Das Königsberger Brückenproblem Beispiel

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt

Diskrete Mathematik. Hamiltonsche Graphen Teil I. Karina Arndt Diskrete Mathematik Hamiltonsche Graphen Teil I Karina Arndt 21.06.2006 Übersicht Einleitung Hamiltonsch und eulersch Hamiltonsche Kreise Hamiltonsche Graphen neu zeichnen Kreise und Wege Reguläre Graphen

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007

Graphentheorie. Zusammenhang. Zusammenhang. Zusammenhang. Rainer Schrader. 13. November 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 13. November 2007 1 / 84 2 / 84 Gliederung stest und Schnittkanten älder und Bäume minimal aufspannende Bäume Der Satz von Menger 2-zusammenhängende

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen

André Krischke Helge Röpcke. Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen André Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen Methoden Anwendungen 8 Grundbegriffe der Graphentheorie für die Kante, die die beiden Knoten und verbindet. Der linke Graph in Bild. kann

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2010/11

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Grundlegende Algorithmen Kapitel 4: Kürzeste Wege

Grundlegende Algorithmen Kapitel 4: Kürzeste Wege Grundlegende Algorithmen Kapitel 4: Kürzeste Wege Christian Scheideler WS 009 08.0.00 Kapitel 4 Kürzeste Wege Zentrale Frage: Wie komme ich am schnellsten von A nach B? B A 08.0.00 Kapitel 4 Kürzeste Wege

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

12. Übung Algorithmen I

12. Übung Algorithmen I 12. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und 12. Übung Algorithmen

Mehr

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Graphenalgorithmen I

Graphenalgorithmen I enalgorithmen I Tobias Pröger 21. Dezember 2016 Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch auf Vollständigkeit und Korrektheit. Wir sind froh über

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr