Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen"

Transkript

1 Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten mit der Eigenschaft, dass für alle i {0, 1,..., n 1} die aufeinanderfolgenden Knoten {a i, a i+1 } eine Kante bilden. Ein Kantenzug (a 0,..., a n ) heißt offen, falls a 0 a n ist und anderenfalls geschlossen. (Im Unterschied zum Weg müssen die Knoten in einem Kantenzug nicht paarweise verschieden sein.) Ein Kantenzug, in dem jede Kante des Graphen genau einmal auftritt und der alle Knoten durchläuft, wird eine Eulersche Linie genannt. Das Haus vom Nikolaus 1

2 Eulersche Linien Welche Figuren lassen sich in einem Zug zeichnen, d.h. ohne den Stift abzusetzen? Diese Frage kann in die Sprache der Graphendiagramme übersetzt werden und lautet dann: Welche Graphen besitzen eine Eulersche Linie? Diese Frage wurde als das Königsberger Brückenproblem bekannt und 1736 von Leonhard Euler beantwortet. Eulers Ergebnis Satz 1 (Euler 1736). Ein endlicher Graph besitzt genau dann eine geschlossene Eulersche Linie, wenn er zusammenhängend ist und jeder seiner Knoten geraden Grad hat. Ein endlicher Graph besitzt genau dann eine offene Eulersche Linie, wenn er zusammenhängend ist und genau zwei Knoten ungeraden Grades hat. Zu diesem Satz geben wir einen Beweis und einen Algorithmus an. 2

3 Beweisvorbereitung (1) Notation: Ist Z := (a 0, a 1,..., a n ) ein Kantenzug, dann soll V (Z) die Menge der in Z auftretenden Knoten und E(Z) die Menge der in Z auftretenden Kanten bezeichnen. Der folgende Hilfssatz ist offensichtlich: Hilfssatz 1. Ist Z := (a 0, a 1,..., a n ) ein Kantenzug, in dem keine Kante zweimal vorkommt, dann ist jeder der Knoten a 1, a 2,..., a n 1 in gerade vielen Kanten aus E(Z) enthalten. Die Knoten a 0 und a n kommen beide in ungerade vielen Kanten des Kantenzuges vor, wenn a 0 a n ist, und in gerade vielen, wenn der Kantenzug geschlossen ist. Beweisvorbereitung (2) Hilfssatz 2. Haben alle Knoten eines (endlichen) Graphen geraden Grad, dann ist jeder maximale Kantenzug, der keine Kante zweimal enthält, geschlossen. Beweis. Jeder offene Kantenzug Z := (a 0, a 1,..., a n ), der keine Kante zweimal enthält, enthält ungerade viele Kanten durch a n. Das können nicht alle Kanten sein, die a n enthalten, denn a n hat geraden Grad. Also kann der Kantenzug nicht maximal sein. Beweisteil 1 Zu beweisen ist: Ein Graph, der eine geschlossene Eulersche Linie besitzt, ist zusammenhängend und alle seine Knoten haben geraden Knotengrad. Beweis: Weil vorausgesetzt wurde, dass eine Eulersche Linie alle Knoten durchläuft, muss ein solcher Graph zusammenhängend sein. Ein beliebiger Knoten v V des Graphen kommt nach dem ersten Hilfssatz in gerade vielen Kanten des Kantenzuges vor. Da der Kantenzug alle Kanten des Graphen enthält, ist also der Knotengrad von v gerade. Beweisteil 2 Zu beweisen ist: Ein zusammenhängender endlicher Graph, in dem alle Knoten geraden Grad haben, besitzt eine geschlossene Eulersche Linie. Beweis: Wähle einen beliebigen Knoten a 0 des Graphen (der Fall des 3

4 leeren Graphen ist trivial). Betrachte einen Kantenzug (a 0, a 1,..., a n ). Nach dem Hilfssatz Wir dürfen E annehmen. Nach der Vorüberlegung enthält (V, E) dann einen Kreis und damit einen nichtleeren geschlossenen Kantenzug, der jede Kante höchstens einmal durchläuft. Sei Z ein solcher Kantenzug maximaler Kantenanzahl. Wenn Z alle Kanten des Graphen enthält, sind wir fertig. Beweisteil 2, Fortsetzung Wenn der maximale Kantenzug Z nicht alle Kanten enthält, dann gibt es eine Kante, die nicht zu Z gehört. Weil (V, E) zusammenhängend ist, muss es sogar eine solche Kante geben, die mit dem Kantenzug einen Knoten gemeinsam hat, sagen wir u. Der Graph (V, E \ E(Z)), also der Graph, der entsteht, wenn man den Kantenzug Z in (V, E) löscht, hat ebenfalls nur Knoten von geradem Grad. Deshalb gibt es einen geschlossenen Kantenzug durch u in (V, E \E(Z)), der jede Kante höchstens einmal enthält. Dieser Kantenzug kann beim Durchlaufen des Knotens u in Z eingeschoben werden, im Widerspruch zur Maximalität von Z. Beweisteil 3: Offene Eulersche Linien Ist (V, E) ein endlicher zusammenhängender Graph mit genau zwei Knoten u, v von ungeradem Grad, und ist w / V, dann ist (V {w}, E {{u, w}, {w, v}}) ein endlicher zusammenhängender Graph, in dem alle Knoten geraden Grad haben. Nach dem, was wir bereits bewiesen haben, muss dieser Graph eine geschlossene Eulersche Linie besitzen. Streicht man darin den Knoten w und die beiden Kanten durch w, so erhält man eine offene Eulersche Linie in (V, E). Umgekehrt sind die genannten Bedingungen (endlich, zusammenhängend, genau zwei Knoten von ungeradem Grad) offenbar notwendig für die Existenz einer offenen Eulerschen Linie. Quod erat demonstrandum. Existenz und Konstruktion 4

5 Wir haben (u.a.) einen Existenzbeweis geführt, der nachweist, dass unter den genannten Bedingungen eine Eulersche Linie existiert. Ein solcher Beweis ist nicht notwendig konstruktiv, d.h., er gibt keinen Algorithmus an, eine Eulersche Linie tatsächlich zu konstruieren. Wie findet man eine Eulersche Linie? Einfach losmarschieren führt nicht sicher zum Ziel, wie nebenstehendes Beispiel zeigt. Alle Voraussetzungen sind erfüllt: Der Graph ist zusammenhängend, endlich und alle Knoten haben geraden Grad. Ein Algorithmus zur Konstruktion einer Eulerschen Linie Der folgende Algorithmus konstruiert zu jedem endlichen zusammenhängenden Graphen (V, E), in dem alle Knotengrade gerade sind, eine geschlossene Eulersche Linie. Unter einer Brücke in einem Graphen versteht man eine Kante, deren Wegnahme die Anzahl der Zusammenhangskomponenten erhöht. 1. Starte in einem beliebigen Knoten a 0, setze i := 0 und Z 0 := (a 0 ). 2. Ist Z i := (a 0,..., a i ) bereits konstruiert, verfahre wie folgt: Wenn Z i alle Kanten des Graphen durchläuft, stopp. Ansonsten wähle eine Kante {a i, w} / E(Z i ). Wenn es möglich ist, wähle diese Kante so, dass sie keine Brücke im Graphen (V, E \ E(Z i )) ist. Setze i i + 1, a i := w und Z i := (a 0,..., a i ). 3. Iteriere (2). Funktioniert das? Es ist gar nicht klar, dass der angegebene Algorithmus zum gewünschten Ergebnis führt. Ja, es ist nicht einmal klar, dass er überhaupt durchführbar ist. Betrachten wir z.b. Schritt (2). Dort heißt es: 5

6 Wenn Z i alle Kanten des Graphen durchläuft, stopp. Ansonsten wähle eine Kante {a i, w} / E(Z i )... Aber wieso muss es eine solche Kante überhaupt geben? Offenbar ist es erforderlich, einen sorgfältigen Korrektheitsbeweis für diesen Algorithmus anzugeben. Korrektheitsbeweis (1) Zu beweisen ist, dass der Algorithmus durchführbar ist und zu einer Eulerschen Linie führt. Offensichtlich ist, dass für alle i die konstruierte Folge Z i ein Kantenzug ist, in dem wegen {a i, w} / E(Z i ) keine Kante zweimal vorkommt. Da der Algorithmus erst stoppt, wenn Z i alle Kanten von (V, E) durchläuft, muss das Ergebnis eine (geschlossene) Eulersche Linie sein. Zu beweisen ist also nur, dass der Algorithmus durchführbar ist, also dass immer dann, wenn der konstruierte Kantenzug Z i = (a 0,..., a i ) nicht alle Kanten durchläuft, noch eine Kante {a i, w} / E(Z i ) existiert. Korrektheitsbeweis (2) Nehmen wir also an, der Kantenzug Z i = (a 0,..., a i ) sei nach den Regeln des Algorithmus konstruiert, es sei E(Z i ) E, aber es gäbe keine Kante {a i, w} / E(Z i ). Weil a i geraden Knotengrad hat, muss es auch gerade viele Kanten in E(Z i ) geben, die a i enthalten. Das erzwingt a i = a 0. a 0 ist deshalb ein Knoten, der in keiner Kante aus E \ E(Z i ) vorkommt. Es kann nicht sein, dass alle a j, 0 j i, diese Eigenschaft haben. Sonst wäre nämlich {a 0,..., a i } eine nicht triviale Zusammenhangskomponente des Graphen (V, E). Es muss also eine Kante {a j, b} E \ E(Z i ) geben. 6

7 Verschnaufpause Weil die Sache so langsam unübersichtlich wird, veranschaulichen wir das bisher Erreichte. Der Algorithmus hat einen geschlossenen Kantenzug (a 0, a 1,..., a i ) konstruiert, der nicht alle Kanten enthält. Es gibt eine Kante {a j, b}, die nicht zum Kantenzug gehört, und wir dürfen annehmen, dass der Index j dabei größtmöglich gewählt wurde und ungleich i ist. Was nun gezeigt wird ist, dass beim Schritt von j auf j + 1 ein Fehler gemacht wurde: Die Kante {a j, a j+1 } hätte nicht gewählt werden dürfen, weil sie eine Brücke ist, die Kante {a j, b} aber nicht! a 1 a 2 a 0 = a i a j+1 a j b Korrektheitsbeweis (3) Im Schritt j des Algorithmus ist der kantenzug Z j := (a 0,..., a j ) konstruiert und es wird der Graph (V, E \ E(Z j ) betrachtet, die blauen Kanten fehlen also. Weil j der höchste Index ist, für den es eine Kante {a j, b} gibt, die nicht zum Kantenzug gehört, ist {a j, a j+1 } eine Brücke. Die Kante {a j, b} ist deshalb keine Brücke, weil in dieser Zusammenhangskomponente des Graphen (V, E \ E(Z j )) alle Knoten geraden Grad haben. Ein mit {a j, b} beginneder Kantenzug kann fortgesetzt werden, bis er a j wieder erreicht. Es muss deshalb eine zweite Kante {a j, c} in der gleichen Komponente geben. a 1 a 2 a 0 = a i a j+1 a j b Korrektheitsbeweis (Schluss) Wir haben beweisen: Der Algorithmus liefert einen geschlossenen Kantenzug, in dem jede Kante höchstens einmal vorkommt. Wenn dieser Kantenzug nicht alle Kanten enthält, muss bei der Durchführung ein Fehler gemacht worden sein. Bei korrekter Durchführung liefert der Algorithmus also eine geschlossene Eulersche Linie. 7

8 In dem bereits zitierten Buch von Krumke und Noltemeier findet man auch eine Untersuchung der Komplexität. Das Bestimmen einer Eulerschen Linie in einem Eulerschen Graphen mit n Konten und m Kanten ist in O(m + n) Schritten möglich. Nachbemerkungen Der Algorithmus liefert für endliche zusammenhängende Graphen, in denen alle Knotengrade gerade sind, einen Kantenzug, der jede Kante genau einmal durchläuft. Diese Aufgabe stellt sich in vielen Zusammenhängen auch dann, wenn die Voraussetzung nicht erfüllt ist (Postbote, Müllabfuhr, Google Street View). Dazu gibt es zahlreiche Untersuchungen. Man kann den Algorithmus problemlos auf Multigraphen (bei denen es zwischen zwei Knoten mehr als eine Kante geben darf) erweitern. Damit löst man solche Probleme sogar mit zusätzlichen Bedingungen (Kostenfunktion). 2 Hamiltonsche Graphen Eine scheinbar ganz ähnliches Problem Als Eulersche Linie in einem zusammenhängenden Graphen bezeichnet hatten wir einen Kantenzug bezeichnet, der jeden Kante genau einmal durchläuft. Einen geschlossenen Kantenzug, der alle Knoten genau einmal durchläuft, nennt man einen hamiltonschen Kreis, einen offenen Kantenzug, der alle Knoten genau einmal durchläuft, einen offenen hamiltonschen Weg. Einen Graphen, der einen Hamiltonschen Kreis enthält, nennt man hamiltonsch. Das TSP Verallgemeinert man auf Graphen mit (positiv) gewichteten Kanten, so stellt sich das Problem des Handlungsreisenden (engl.: Travelling Salesman Problem, TSP). 8

9 Gesucht ist dabei ein gewichtsminimaler hamiltonscher Kreis. Quelle: Thore Husfeldt (Wikipedia) Griechenland Die nebenstehende Graphik zeigt eine kürzeste Tour durch 9882 Ortschaften in Griechenland. Das Bild stammt aus der Bibliothek von The Traveling Salesman Problem is one of the most intensively studied problems in computational mathematics. xkcd 9

10 Satz 2 (Stirling Formel). n! = ( n ) ( n 2πn 1 + O e ( )) 1. n Wie kann man erkennen, ob ein Graph hamiltonsch ist? Es gibt viele hinreichende Bedingungen. Offenbar ist der vollständige Graph mit n Knoten hamiltonsch für jedes n 3. Satz 3 (Bondy und Chvátal). Es sein (V, E) ein Graph mit n 3 Knoten. u und v seien zwei nicht adjazente Knoten mit deg(u) + deg(v) n. Dann gilt: Der Graph (V, E {{u, v}}), der aus (V, E) entsteht, indem man die Kante {u, v} hinzunimmt, ist genau dann hamiltonsch, wenn (V, E) hamiltonsch ist. Beweis der nicht trivialen Richtung Falls es in (V, E {{u, v}}) einen hamiltonschen Kreis gibt, der die Kante {u, v} nicht enthält, dann enthält auch (V, E) diesen Kreis. Wir nehmen an, dass jeder hamiltonsche Kreis in (V, E {{u, v}}) die Kante {u, v} benutzt. (a 0, a 1,..., a n 1, a 0 ) sei ein solcher Kreis und o.b.d.a. sei a 0 = u und a n 1 = v. Wir betrachten die Mengen A := {1 i n 3 {v, a i } E} B := {1 i n 3 {u, a i+1 } E}. 10

11 Dann gilt A deg(v) 1 und B deg(u) 1. Da A, B {1,..., n 3} und A + B deg(v) + deg(u) 2 n 2 gilt, muss es ein i A B geben, also mit {v, a i } E und {u, v i } E. (u = a 0, a i,... a i 1, v, a n 1..., a i, u) ist dann hamiltonscher Kreis. Als Korollar: Ein Satz von Dirac Satz 4 (Dirac). Sei (V, E) ein Graph mit n 3 Knoten, von denen jeder Knotengrad n 2 hat. Dann ist (V, E) hamiltonsch. Das folgt sofort aus dem folgenden allgemeineren Satz: Satz 5. Sei (V, E) ein Graph mit n 3 Knoten, in dem für je zwei nicht adjazente Knoten u und v gilt, dass deg(v) + deg(v) n ist. Dann ist (V, E) hamiltonsch. Dieser wiederum folgt mühelos aus dem Satz von Bondy und Chvátal. Charakterisierung Die genannten Bedingungen sind hinreichend, aber nicht notwendig. Eine leicht überprüfbare Bedingung, die notwendig und hinreichend dafür ist, dass ein Graph hamiltonsch ist, ist nicht bekannt. Es gibt auch keinen bekannten Algorithmus, der schnell überprüfen kann, ob ein eingegebener Graph hamiltonsch ist oder nicht. Satz 6. Das Entscheidungsproblem, ob ein beliebiger vorgelegter Graph hamiltonsch ist, ist N P-vollständig. 11

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Graphentheorie Mathe-Club Klasse 5/6

Graphentheorie Mathe-Club Klasse 5/6 Graphentheorie Mathe-Club Klasse 5/6 Thomas Krakow Rostock, den 26. April 2006 Inhaltsverzeichnis 1 Einleitung 3 2 Grundbegriffe und einfache Sätze über Graphen 5 2.1 Der Knotengrad.................................

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet

9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet 9. Algorithmus der Woche Die Eulertour Wie Leonhard Euler das Haus vom Nikolaus zeichnet Autoren Michael Behrisch, Humboldt-Universität zu Berlin Amin Coja-Oghlan, Humboldt-Universität zu Berlin, Humboldt-Universität

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht

Elementargeometrie. Prof. Dr. Andreas Meister SS digital von: Frank Lieberknecht Prof. Dr. Andreas Meister SS 2004 digital von: Frank Lieberknecht Geplanter Vorlesungsverlauf...1 Graphentheorie...1 Beispiel 1.1: (Königsberger Brückenproblem)... 1 Beispiel 1.2: (GEW - Problem)... 2

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Algorithmen und Datenstrukturen (WS 2007/08) 63

Algorithmen und Datenstrukturen (WS 2007/08) 63 Kapitel 6 Graphen Beziehungen zwischen Objekten werden sehr oft durch binäre Relationen modelliert. Wir beschäftigen uns in diesem Kapitel mit speziellen binären Relationen, die nicht nur nur besonders

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Graphen und Algorithmen

Graphen und Algorithmen Graphen und Algorithmen Vorlesung #6: Eulersche Touren und Hamiltonsche Graphen Dr. Armin Fügenschuh Technische Universität Darmstadt WS 2007/2008 Übersicht Eulersche Touren Sätze von Euler und Hierholzer

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien.

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel. Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. Lösungen Übung 13 Aufgabe 1. Wir geben nur zwei von sehr vielen möglichen Strategien. a) Strategie 1 (nächster Nachbar): Jedes Mal reist der Reisende vom Punkt, wo er gerade ist, zur nächstgelegenen Stadt,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Lösungen zur Vorrundenprüfung 2004

Lösungen zur Vorrundenprüfung 2004 Lösungen zur Vorrundenprüfung 2004 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Beispiellösungen zu Blatt 7

Beispiellösungen zu Blatt 7 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Die handelsüblichen Papierformate DIN A0, DIN A usw. haben folgende praktische

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007

Graphentheorie. Organisatorisches. Organisatorisches. Organisatorisches. Rainer Schrader. 23. Oktober 2007 Graphentheorie Rainer Schrader Organisatorisches Zentrum für Angewandte Informatik Köln 23. Oktober 2007 1 / 79 2 / 79 Organisatorisches Organisatorisches Dozent: Prof. Dr. Rainer Schrader Weyertal 80

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Transportnetze Bernhard Ganter WS 2013/14 1 Transportnetze Gerichtete Graphen Ein schlingenloser gerichteter Graph ist ein Paar (V, A), wobei V eine beliebige Menge ist, deren

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

2.2A. Das allgemeine Dreieck

2.2A. Das allgemeine Dreieck .A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt 11, Aufgabe 1 I Aufgabenstellung Es sei I =[a, b] ein kompaktes Intervall. (a) Zeigen Sie, daß eine stetige Funktion f : I R genau dann injektiv ist, wenn sie strikt monoton ist.

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr