Formel X Leistungskurs Physik 2001/2002

Größe: px
Ab Seite anzeigen:

Download "Formel X Leistungskurs Physik 2001/2002"

Transkript

1 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm - Innendurchmesser der Schläuche: 6 mm - Volumen zwischen Eichstrich und Stopfen: 15, ml - Volumen des Pyknometers: 500 ml - Spezielle Gaskonstante der Luft: 287,2 J/(kg K) 1 DIN : Grafische Symbole und Kennbuchstaben für die Prozessleittechnik, T Temperatur, I Anzeige, P Druck 2 Py k no me ter das; -s, -: Glasgefäß mit genau bestimmten Volumen Ein Thermostat ist ein Gerät mit Temperaturregler zum Einstellen und Konstanthalten einer gewählten Temperatur 1

2 Zustand 1: Das thermodynamische System ist ein abgegrenzter Bereich im Raum, auf den sich die Untersuchungen beziehen sollen. Alles außerhalb des Systems ist die Umgebung. Das System wird von seiner Umgebung durch die Systemgrenze abgegrenzt. Bei einem geschlossenen System ist die Systemgrenze undurchlässig für Materie. Das System enthält daher immer dieselbe Menge Materie. Aufgabe: Systemgrenze einzeichnen Die Luft wird als ideales Gas betrachtet. Ein ideales Gas ist ein Gas für das die thermische Zustandsgleichung des idealen Gases gilt: pv = mr i T. TI Bild 2: Zustand 1 PI Der Zustand des Systems wird durch messbare Größen beschrieben d. h. es wird die klassische Thermodynamik angewendet. In der klassischen Thermodynamik werden die Modelle und deren mathematische Formulierungen aus beobachteten Phänomenen und aus experimentellen Erfahrungen entwickelt, d. h. ihre Begriffe sind durch ein physikalisches Experiment, d. h. durch eine Messvorschrift definiert. Messbare Größen sind z. B. die Temperatur T, der Druck p und das Volumen V: Aufgabe: Temperatur Messen t 1 =20 0 C, Problem: Temperatur des Wasserbades wird gemessen und nicht die Temperatur der Luft. Die Temperatur der Luft im System ist nicht überall gleich. Aufgabe: Druck Messen p amb = 101,25 kpa (genau am Barometer ablesen!) Aufgabe: Volumen bestimmen π d π 0,006 m V Schlauch = l = 0,615 m 4 4 V Schlauch = 178, 10 5 m V Schlauch = 17,89 ml V zus 15,00 ml V Behälter = 500,000 ml V = 52,689 ml + 2

3 Aufgabe: Masse berechnen Thermische Zustandsgleichung des idealen Gases: (Gl 2.) pv 1 = mr i T 1 m = m = pv1 R T i 1 T2.1 R i = 287,2 J/(kg K) 10125, 10 Pa 287, 2 29, 15 m = 0,641 g 52,7 m K 10 6 kg K J Regel für das Arbeiten mit Größengleichungen: Formeln werden solange umgeformt, bis auf der linken Seite nur noch die gesuchte Größe steht und auf der rechten Seite nur noch bekannte Größen stehen. Alle Größen werden mit Zahlenwert und Einheit eingesetzt. Nur SI-Basiseinheiten oder abgeleitete SI-Einheiten einsetzen ohne Vorsätze für dezimale Vielfache o- der Teile (Ausnahme: kg und kmol; nicht MPa sondern 10 6 Pa). Abgeleitete Einheiten, die im Nenner stehen und als Bruch geschrieben sind, gleich als Kehrwert mit in den Zähler schreiben. Erst zum Schluss Werte in den Rechner geben. Ergebnis zweimal unterstreichen. Aufgaben, die einen thermischen Zustand eines idealen Gases behandeln werden von denen, die eine Zustandsänderung behandeln unterschieden! Die Zustandsgrößen erhalten bei einer Zustandsänderung im Ausgangszustand den Index 1 im Endzustand den Index 2. Falls sich die Zustandsgröße nicht ändert, erhält sie keinen Index. Zustandsänderungen immer mit zwei Benennungen angeben (z. B. isotherme Expansion).

4 Zustandsänderung 1 2: Eine Zustandsänderung ist ein geordnetes Paar von Zuständen. Ein Ausgangszustand ( Index 1) und ein Endzustand (Index 2). Ein Prozess ist dadurch definiert, welche Vorgänge bei dem Übergang vom Zustand 1 zum Zustand 2 ablaufen. Eine Zustandsänderung kann durch unterschliedliche Prozesse hervorgerufen werden. Ein Gleichgewichtszustand ist dadurch definiert, dass die extensiven Zustandsgrößen (z. B. m, V) zeitlich konstante Werte haben, die intensiven Zustandsgößen (z. B. p, T) zeitlich und räumlich konstante Werte haben und dass nach einer Isolation des Systems keine Veränderungen im System mehr ablaufen. Ändert sich der Zustand eines Systems, so befindet es sich streng genommen in einem Nichtgleichgewichtszustand. Erfolgt die Änderung aber viel langsamer als die im System ablaufenden Ausgleichsvorgänge, so durchläuft das System quasi eine Folge von Gleichgewichtszuständen und man spricht von einer quasistatischen Zustandsänderung. Eine intensive Zustandsgröße ist eine Zustandsgröße, die unabhängig vom Quantum der Stoffportion des zugehörigen Systems ist. Eine extensive Zustandsgröße ist eine Zustandsgröße, die vom Quantum der Stoffportion des zugehörigen Systems abhängig ist. Zustand 1 Zustand 2 PI PI TI TI Bild : Zustandsänderung 4

5 Eine Zustandsänderungung wird mit zwei Worten benannt z. B.: - isobare Temperaturerhöhung, - isobare Expansion. Expansion 4 heißt, das Volumen nimmt zu. Bei einer Verdichtung (Kompression) nimmt die Massendichte zu. Bei konstanter Masse nimmt bei der Verdichtung das Volumen ab. Eine Isobare ist eine Verbindungslinie zwischen Orten mit gleichem Druck. Eine Isotherme ist eine Verbindungslinie zwischen Orten mit gleichem Temperatur. p 101,25 kpa 1 2 V 1 = 52,7 ml t =0 0 C t =20 0 C Bild 4: isobare Zustandänderung V Aufgabe: Berechnung der Volumenänderung Thermische Zustandsgleichung des idealen Gases: (Gl 2.) pv 1 = mr i T 1 - (Gl 2.) pv 2 = mr i T 2 p (V 2 -V 1 ) = m R i (T 2 T 1 ) : p V 2 -V 1 = m R i p (T 2 T 1 ) T2.1 R i = 287,2 J/(kg K) t 2 =0 0 C gemessen V 2 -V 1 = 0,641kg 287, 2 J 10 K ,25 10 Pa kg K V 2 -V 1 = 1817, 10 5 m V 2 -V 1 = 18,17 ml Nur die Temperatur des idealen s ergibt eine genaue Temperatur, weil die thermische Ausdehnung des idealen Gases linear von der Temperatur abhängt. 4 Ex pan si on die; -, -en: das Expandieren, räumliche Ausdehnung 5

6 Eine Temperaturskala erhält man, indem man zwei Fixpunkten Temperaturwerte zuordnet und den Bereich dazwischen linear teilt. Quecksilber- Thermometer Alkohol- Thermometer Gas-Thermometer C 90 0 C 80 0 C 70 0 C 60 0 C 50 0 C 40 0 C 0 0 C 20 0 C 10 0 C 0 0 C Schmelzpunkt des Eises Siedepunkt des Wassers 0 0 C C 50 0 C Bild 5: Celsius-Skala arbeiten bei konstantem Volumen oder bei konstantem Druck Bei konstantem Druck gilt: (Gl 2.) pv = mr i T V ~ T p = const p ~ T V = const An den Messkolben könnte man eine Kelvin-Skala aufbringen (keine Celsius-Skala!!) 6

7 Fehlerquellen: - Luft hat nicht überall die gleiche Temperatur - Temperatur wird nicht direkt in der Luft gemessen - Thermometer wird nicht ganz eintauchend benutzt - System kann undicht sein - Luft ist feucht - Umgebungsdruck ändert sich - Ablesefehler (U-Rohr, Kolben) 7

8 Kontrollfragen: 1. Was versteht man unter einem thermodynamischen System? 2. Wodurch zeichnet sich ein geschlossenes System aus?. Was ist ideales Gas? 4. Erläutern Sie die Arbeitsweise der klassischen Thermodynamik. 5. Wie lautet die thermische Zustandsgleichung des idealen Gases? 6. Was ist eine Zustandsänderung? 7. Was ist ein Prozess? 8. Wodurch zeichnet sich ein Gleichgewichtszustand aus? 9. Was ist eine quasistatische Zustandsänderung? 10. Was ist eine intensive und was eine extensive Zustandsgröße? Nennen Sie Beispiele. 11. Was ist eine Expansion und was eine Kompression? 12. Was ist eine Isobare? 1. Was ist eine Temperaturskala? 14. Wodurch zeichnet sich die Temperatur des idealen s aus? 8

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Formel X Leistungskurs Physik WS 2005/2006

Formel X Leistungskurs Physik WS 2005/2006 Die Therodynaik ist die Lehre von der Energie. Sie lehrt Energieforen zu unterscheiden, sie zeigt deren Verknüfungen auf (Energiebilanz, 1. Hautsatz) und sie klärt die Bedingungen und Grenzen für die Uwandelbarkeit

Mehr

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder W07 Gasthermometer Das Gasthermometer ist zur Untersuchung der Gesetzmäßigkeiten idealer Gase geeignet. Insbesondere ermöglicht es eine experimentelle Einführung der absoluten Temperaturskala und gestattet

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Versuch C2: Gasthermometer

Versuch C2: Gasthermometer Physikalisch-chemisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!). Kurzbeschreibung In diesem Versuch werden

Mehr

MOL - Bestimmung der Molaren Masse nach Dumas

MOL - Bestimmung der Molaren Masse nach Dumas MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz!

TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz! 1 Klassenarbeit Chemie 1/5 TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz! 1 Stoffe und Stoffgemische 1.1 Ordne die Begriffe Verbindung, Element, Stoff, Mischung, Reinstoff, Metall, Nichtmetall,

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Hydr. Druck, Luftdruck

Hydr. Druck, Luftdruck Hydr. Druck, Luftdruck Den Begriff Druck verwenden wir oft im täglichen Leben. Wir hören im Zusammenhang mit den Wettervorhersagen täglich vom. oder. (z.b.oder..). Wir haben einen bestimmten.in unseren

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Reales Gas und kritischer Punkt Seite 1

Reales Gas und kritischer Punkt Seite 1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

Versuch 302. 1.2 Bestimmen Sie die charakteristischen Merkmale (Empfindlichkeit, Temperaturkoeffizient u.ä.) für alle drei Meßfühler!

Versuch 302. 1.2 Bestimmen Sie die charakteristischen Merkmale (Empfindlichkeit, Temperaturkoeffizient u.ä.) für alle drei Meßfühler! 1 Elektrische Thermometer 1. Aufgaben: Versuch 302 1.1 Nehmen Sie die Kennlinien (U-T bzw. R-T) von Thermoelement, Thermistor und Widerstandsthermometer im Temperaturbereich 25...80 C auf und stellen Sie

Mehr

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch.

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel Bachelorprüfung Prüfungsfach: Geologie, Werkstoffe und Bauchemie Prüfungsteil:

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 26. 30. April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Messung der Wärmekapazität von Nieten

Messung der Wärmekapazität von Nieten 1/1 29.09.00,21:47 Erstellt von Oliver Stamm Messung der Wärmekapazität von Nieten 1. Einleitung 1.1. Die Ausgangslage zum Experiment 1.2. Die Vorgehensweise 2. Theorie 2.1. Begriffe und Variablen 2.2.

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten W1 Thermische Ausdehnung ie Volumenausdehnung von Flüssigkeiten und die Längenänderung von festen Körpern in Abhängigkeit von der Temperatur sollen nachgewiesen. 1. Theoretische Grundlagen 1.1 Allgemeines

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Versuch Nr. 7. = q + p dv

Versuch Nr. 7. = q + p dv Hochschule Augsburg Versuch Nr. 7 Physikalisches Aufbauten 7 a bzw. 27 a Praktikum Spezifische Verdampfungsenthalpie - Dampfdruckkurve 1. Grundlagen_und_Versuchsidee 1.1 Definition der Verdampfungsenthalpie:E

Mehr

M5 Viskosität von Flüssigkeiten

M5 Viskosität von Flüssigkeiten Christian Müller Jan Philipp Dietrich M5 Viskosität von Flüssigkeiten I. Dynamische Viskosität a) Erläuterung b) Berechnung der dynamischen Viskosität c) Fehlerrechnung II. Kinematische Viskosität a) Gerätekonstanten

Mehr

Lernziele zu SoL: Druck, Auftrieb

Lernziele zu SoL: Druck, Auftrieb Lernziele zu SoL: Druck, Auftrieb Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Teilchenmodell b) Wie erklärt man die Aggregatzustände im Teilchenmodell?

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 1 Dichtebestimmung. Gruppe Nr.: 1 Andreas Bott (Protokollant)

Protokoll. zum Physikpraktikum. Versuch Nr.: 1 Dichtebestimmung. Gruppe Nr.: 1 Andreas Bott (Protokollant) Protokoll zum Physikpraktikum Versuch Nr.: 1 Dichtebestimmung Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Masse: Die Masse ist eine SI-Basiseinheit. Ihr Formelziechen

Mehr

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts

Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Protokoll zum Versuch W1: Reale Gase / Verflüssigung

Protokoll zum Versuch W1: Reale Gase / Verflüssigung Protokoll zum Versuch W1: Reale Gase / Verflüssigung Sven E Tobias F Abgabedatum: 24. April 2007 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalischer Zusammenhang 2 2.1 Ideale Gase................................

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

1. EIN MOTOR LÄUFT MIT HEIßER LUFT

1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stirling-Motor 1. EIN MOTOR LÄUFT MIT HEIßER LUFT Stellt man den Kolben in Abb. 1 von dem kalten in das heiße Wasserbad, so dehnt sich die Luft im Kolben aus. Der Stempel kann eine Last hochheben, das

Mehr

Luftdichte und Luftfeuchte

Luftdichte und Luftfeuchte M2 Luftdichte und Luftfeuchte Durch äun werden Masse und Volumen der Luft in einem Glaskolben bestimmt und unter Berücksichtiun des Luftdrucks und der Luftfeuchtikeit die Luftnormdichte berechnet. 1. Theoretische

Mehr

Versuchsprotokoll: Neutralisationsenthalpie

Versuchsprotokoll: Neutralisationsenthalpie Versuchsprotokoll: Neutralisationsenthalpie Patrik Wolfram TId: 0 Alina Heidbüchel TId: 19 Gruppe 10 01.06.13 1 Inhaltsverzeichnis 1. Einleitung...3. Theorie...3 3. Durchführung...6 4.Auswertung...7 4.1

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI

im 1. Fachsemester Vladimir Dyakonov / Volker Drach Professor Dr. Vladimir Dyakonov, Experimentelle Physik VI Physik für Mediziner im 1. Fachsemester #9 02/11/2010 Vladimir Dyakonov / Volker Drach dyakonov@physik.uni-wuerzburg.de Wärmelehre Teil 1 - Energie, Wärmekapazität Def. 1: Lehre der Energie, ihrer Erscheinungsform

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Kapitel 2 Thermodynamik

Kapitel 2 Thermodynamik Kapitel 2 hermodynami Dieses Kapitel soll eine urze Einführung in die hermodynami geben. Das Verständnis der hermodynami ist eine der wichtigsten Grundlagen, um Prozesse zu erlären, bei denen vorhandene

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Versuch Nr.50. Temperatur-Messung

Versuch Nr.50. Temperatur-Messung Versuch Nr.50 Temperatur-Messung Stichworte: Temperatur, Temperaturskalen (Celsius, Kelvin), Fixpunkte, Thermometer : (Gas-, Flüssigkeitsthermometer, Thermoelemente, Widerstandsthermometer, Pyrometer,

Mehr

Ein Geräusch: " Plopp"

Ein Geräusch:  Plopp Ein Geräusch: " Plopp" Zielsetzung: Das Ziel dieses Experiments ist es die Druckveränderungen zu untersuchen, die auftreten, wenn ein Zylinderkolben aus einer kleinen Spritze gezogen wird und die Eigenschaften

Mehr

Aggregatzustand, Wärme, Temperatur

Aggregatzustand, Wärme, Temperatur Charlotte-Wolff-Kolleg Berlin Facharbeit im Profilkurs Physik Fachlehrer: Herr Dr. Degen Schuljahr: 2012/2013 Aggregatzustand, Wärme, Temperatur Jahrgang: A42 Beteiligte Personen: Carolin Hagenau Martin

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher

Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher Tauchphysik Grundlage für das Verständnis der Gegebenheiten unter Wasser Erkennen der sich daraus ableitenden Vorgänge in diesem für den Taucher lebensfeindlichen Milieu Einhaltung wichtiger Verhaltens-regeln,

Mehr

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ.

Wir werden in dieser Vorlesung für Temperaturen in der Kelvinskala das Symbol T verwenden, für Temperaturen in der Celsius-Skala das Symbol θ. Wärmelehre Betrachten wir mehrere Körper, die sich in einem Wärmebad befinden, so sagt uns die Erfahrung, dass sie alle dieselbe Temperatur haben werden. Verbinden wir einen heißen Körper mit einem kalten

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Chemische Grundlagen und Handgriffe

Chemische Grundlagen und Handgriffe Chemische Grundlagen und Handgriffe Beim chemischen Arbeiten gibt es viele spezielle Werkzeuge und Handgriffe. Drei davon wollen wir zu Beginn besonders gut erlernen. Es sind: das Heizen mit dem Gasbrenner

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Dichteanomalie von Wasser

Dichteanomalie von Wasser Prinzip Die Veränderung der Dichte von Wasser bei Änderung der Temperatur lässt sich mit einfachen Mitteln messen. Dazu wird die Volumenänderung in Abhängigkeit von der Temperatur gemessen. Die Daten werden

Mehr

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe

Wärmepumpe DT400-1P. NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe DT400-1P NTL-Schriftenreihe Versuchsanleitung - Wärmepumpe Wärmepumpe Allgemein Eine Wärmepumpe ist eine Wärmekraftmaschine. Sie hebt Wärme von einem Körper tieferer Temperatur T 1 auf einen

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr