System und Modell. System und Modell. System und Modell. System und Modell. Beispiel 2: Fail-Save-Überprüfung einer Presse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "System und Modell. System und Modell. System und Modell. System und Modell. Beispiel 2: Fail-Save-Überprüfung einer Presse"

Transkript

1 und und Beispiel 1: Der unbequeme Philosoph Beispiel 2: Fail-Save-Überprüfung einer Presse? : ẋ d = p a A K p b A R F = Komponentenmodelle, physikalische Gleichungen : x y : mensch(x) trinkt(x, y) gift(y) tot(x) gift(schierling) mensch(sokrates) x : Eq(x, x) x y : Eq(x, y) Eq(y, x) x y z : Eq(x, y) Eq(y, z) Eq(x, z) x y f : Eq(x, y) Eq( f(t 1,,t i,x,t i1,,t n ), f(t 1,,t i,y,t i1,,t n )) Axiome, Umformungsregeln VI-1, Model, and Deduction c STEIN 2003/04 VI-2, Model, and Deduction c STEIN 2003/04 und und Definition 4 () Ein ist ein Ausschnitt aus der realen Welt. Jedes besitzt eine ()Grenze, aufgrund dessen für jedes Objekt der Welt festgestellt werden kann, ob es zu dem gehört oder nicht. verhalten Ein problem zu lösen, bedeutet, n bzgl. eines s zu beantworten. Beispiele: Was ist kaputt an dem Motor? Wie verhält sich die Anlage im Grenzbereich? Wann ist die Betriebstemperatur erreicht? Um eine zu erhalten, kann man ein an dem machen und die se des es interpretieren. Definition 5 () An experiment is the process of extracting data from a system by exerting it through its inputs. [Cellier 1995] Ausführung eines s am? dagegen spricht: existiert nicht veränderungen zu schnell oder langsam am zu teuer durch das entstehen große Gefahren zu klein oder zu groß verändert das zu stark Voraussage ist erwünscht Ausweg: wird nicht am, sondern an einem des s durchgeführt. VI-3, Model, and Deduction c STEIN 2003/04 VI-4, Model, and Deduction c STEIN 2003/04

2 ieren zum Schlußfolgern ieren zum Schlußfolgern Definition 6 (Model, ) Beispiel 1: Der unbequeme Philosoph To an observer B, an object A is a model of an object A to the extent that B can use A to answer questions that interest him about A. [Minsky 1965] x y: mensch(sokrates) verhalten tot(sokrates) verhalten verhalten (= Realität) verhalten Definition 7 () A simulation is an experiment performed on a model. [Korn/Wait 1978] VI-5, Model, and Deduction c STEIN 2003/04 VI-6, Model, and Deduction c STEIN 2003/04 ieren zum Schlußfolgern ieren zum Schlußfolgern Beispiel 2: Fail-Save-Überprüfung einer Presse v d = pa Ak - pb x: Eq(x,x) v=0 Nahezu alle Situationen, in denen wir einen Sachverhalt analysieren, basieren auf dem Konzept der logischen Folgerung. Beispiele: Ist Schierling für den Philosophen Sokrates giftig? Wie verhält sich ein technisches? Sind 10 EUR mehr wert als 19,50 DM? Man bildet zunächst ein des Gegenstandsbereiches (Domäne) und prüft dann vor dem Hintergrund des s für interessierende Fakten deren Wahrheitswert (= Schlußfolgern).? : Wie sieht das für die Problemklasse der Synthese aus? (= Realität) v = 0 (Presse steht) verhalten verhalten Bemerkung: Numerische ist auch Schlußfolgern. VI-7, Model, and Deduction c STEIN 2003/04 VI-8, Model, and Deduction c STEIN 2003/04

3 Formale Verfahren zum ieren und Schlußfolgern Formale Verfahren zum ieren und Schlußfolgern In den Beispielen gibt es einen grundlegenden Schlußfolgerungsmechanismus. Dieser Schlußfolgerungsmechanismus ist unabhängig von Rahmenbedingungen, von der Art der Objekte, ihren Eigenschaften, dem Verhalten und ihren Abhängigkeiten, vom Beobachter oder Anwender des Mechanismus. Ansatz. Die Beschreibung des Wissens über ein (Realität) geschieht formal, durch festgelegte Symbole. abstrakt, losgelöst von einer konkreten Situation. exakt, ohne unzulässigen Verallgemeinerungen. vollständig, kein zusätzliches Wissen erforderlich. Es regnet gerade. R Wenn es regnet, ist die Straße naß. R SN Bemerkung: Einhaltung der genannten Eigenschaften in vernünftigen Grenzen. VI-9, Model, and Deduction c STEIN 2003/04 VI-10, Model, and Deduction c STEIN 2003/04 Klassifikation von en hinsichtlich ihrer Repräsentation: Model Ablauf der Top-Down-: Abstrakte e werden auf weniger abstrakte e abgebildet. Mental model Physical model Symbolic model Question Scale model Graphical model Iconic model Analogical model Mathematical model Verbal model High abstraction Mental model Structure model of the concrete model in terms of the abstract model. Unter (ierung) versteht man den Prozeß, von einem ein zu erstellen. Hierzu gehören folgende Schritte: 1. Identifizierung der grenzen Black-Box- 2. Identifizierung der Untersysteme und ihrer Beziehungen zueinander Strukturmodell 3. Charakterisierung von Relationen zwischen Variablen der Untersysteme Verhaltensmodell Low abstraction Behavior model Algorithmic model Computer model VI-11, Model, and Deduction c STEIN 2003/04 VI-12, Model, and Deduction c STEIN 2003/04

4 raum und raum raum und raum Ein Syntheseproblem zu lösen, bedeutet, n bzgl. einer Menge von en zu beantworten. Beispiele: Aus welchen Komponenten besteht eine Konfiguration, die alle Anforderungen erfüllt? Was ist der kürzeste Bauplan? Läßt sich die Anlage so verändern, daß sie nicht heiß wird? Ausweg: Synthese von en für die interessierenden e (raum) und Suche nach einem geeigneten. Suche Um eine zu erhalten, kann man die e bauen und mittels en ihre Eigenschaften analysieren. raum raumbildung raum, Entwurf raum, Entwurf Gegen diese Vorgehensweise spricht vieles. VI-13, Model, and Deduction c STEIN 2003/04 VI-14, Model, and Deduction c STEIN 2003/04 raum und raum Adäquate ierung Klassifikation von räumen hinsichtlich ihrer Repräsentation: Model space Mental model space Physical model space Miniature lab Construction kit Symbolic model space CAE-system Virtual prototyping system Welches ist geeignet für das interessierende und die frage? Wie generiert man den raum für den interessierenden raum und die Synthesefrage? Wie spielen, raum und Problemlösungsmethoden zusammen? Notwendige Schritte zur Erzeugung eines raums: Problemlösungsmethoden für aufgaben Problemlösungsmethoden für Syntheseaufgaben 1. Identifizierung von bausteinen Subsysteme statistische Struktur- Generate und Test 2. Identifizierung von Konstruktionsprinzipien raum 3. Abbildung der bausteine und Konstruktionsprinzipien auf bausteine und Operatoren raum (Suchraum) fallbasierte assoziative funktionsbas. verhaltensbas. Logik- modell Fehler- Verhaltens- Regel- Fuzzy- Vorschlagen & Verbessern fallbasierte Assoziative Ursache/ Wirkungs- Skelett- VI-15, Model, and Deduction c STEIN 2003/04 VI-16, Model, and Deduction c STEIN 2003/04

5 Adäquate ierung Wieviel ist bekannt über das? Black box Gray box White box Assoziative e: statistische Verfahren, neuronale Netze, identifikation Input Output Black box Verhaltensbasierte e: Zustandsraummodelle, Gleichungsmodelle, sonstige Constraints Input Output White box VI-17, Model, and Deduction c STEIN 2003/04 VI-18, Model, and Deduction c STEIN 2003/04 VI-19, Model, and Deduction c STEIN 2003/04 VI-20, Model, and Deduction c STEIN 2003/04

Kapitel MK:III. III. Begriffe der Modellierung

Kapitel MK:III. III. Begriffe der Modellierung Kapitel MK:III III. Begriffe der Modellierung System und Modell Modellieren zum Schlussfolgern Modellbildung Systemraum und Modellraum Adäquate Modellierung MK:III-1 Modeling Concepts STEIN 2000-2015 Beispiel

Mehr

Kapitel MK:III. III. Begriffe der Modellierung

Kapitel MK:III. III. Begriffe der Modellierung Kapitel MK:III III. Begriffe der Modellierung System und Modell Modellieren zum Schlussfolgern Modellbildung Systemraum und Modellraum Adäquate Modellierung MK:III-19 Modeling Concepts STEIN 2000-2015

Mehr

Literatur. Wissenbasierte Systeme WS 03. Expertensysteme, Logik und Regelverarbeitung. Benno Stein

Literatur. Wissenbasierte Systeme WS 03. Expertensysteme, Logik und Regelverarbeitung. Benno Stein Literatur Wissenbasierte Systeme WS 03 Expertensysteme, Logik und Regelverarbeitung Benno Stein 1. Künstliche Intelligenz (Begriff, Geschichte, Gebiete) 2. Wissensformen (sub/symbolisch, Problemlösung),

Mehr

Kapitel MK:V. V. Diagnoseansätze

Kapitel MK:V. V. Diagnoseansätze Kapitel MK:V V. Diagnoseansätze Diagnoseproblemstellung Diagnose mit Bayes Evidenztheorie von Dempster/Shafer Diagnose mit Dempster/Shafer Truth Maintenance Assumption-Based TMS Diagnosis Setting Diagnosis

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse Statistische Einordnung: Problemklasse Analyse Kernfrage bzgl. der Modellierung: Wieviel ist bekannt über das zu diagnostizierende System? Begriffe der : System. Ausschnitt aus der realen Welt. Hier: System

Mehr

Computational Neuroscience

Computational Neuroscience Computational Neuroscience Vorlesung WS 2005/2006 Josef Ammermüller Jutta Kretzberg http://www.uni-oldenburg.de/sinnesphysiologie/ 14508.html Begriffsdefinitionen Computational Neuroscience Churchland

Mehr

Kapitel MK:II. II. Wissensrepräsentation

Kapitel MK:II. II. Wissensrepräsentation Kapitel MK:II II. Wissensrepräsentation Wissensrepräsentation in der Klassifikation Symbolisch versus subsymbolisch Problemlösungswissen Kennzeichen von Problemlösungswissen Prinzipien wissensbasierter

Mehr

Kapitel 2 - Die Definitionsphase

Kapitel 2 - Die Definitionsphase Kapitel 2 - Die Definitionsphase SWT I Sommersemester 2010 Walter F. Tichy, Andreas Höfer, Korbinian Molitorisz IPD Tichy, Fakultät für Informatik KIT die Kooperation von Forschungszentrum Karlsruhe GmbH

Mehr

Einführung in die Modellierung

Einführung in die Modellierung Informatik II: Modellierung Prof. Dr. Martin Glinz Kapitel 1 Einführung in die Modellierung Universität Zürich Institut für Informatik Inhalt 1.1 Der Modellbegriff 1.2 Wozu Modelle? 1.3 Modellbildung 1.4

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 1. Einführung: Was ist Künstliche Intelligenz? Malte Helmert Universität Basel 20. Februar 2015 Einführung: Überblick Kapitelüberblick Einführung: 1. Was ist Künstliche

Mehr

1.1 Was ist KI? 1.1 Was ist KI? Grundlagen der Künstlichen Intelligenz. 1.2 Menschlich handeln. 1.3 Menschlich denken. 1.

1.1 Was ist KI? 1.1 Was ist KI? Grundlagen der Künstlichen Intelligenz. 1.2 Menschlich handeln. 1.3 Menschlich denken. 1. Grundlagen der Künstlichen Intelligenz 20. Februar 2015 1. Einführung: Was ist Künstliche Intelligenz? Grundlagen der Künstlichen Intelligenz 1. Einführung: Was ist Künstliche Intelligenz? Malte Helmert

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Kapitel 2 Die Definitionsphase Prof. Walter F. Tichy Wo sind wir gerade? Planung Lastenheft (funktionales Modell) Definition (Analyse) Pflichtenheft

Mehr

Große Simulink-Modelle mit Bus Objects effizienter gestalten

Große Simulink-Modelle mit Bus Objects effizienter gestalten Große Simulink-Modelle mit Bus Objects effizienter gestalten Sebastian Bewersdorff Product Manager, TESIS DYNAware GmbH, München Matlab Expo 2015, 12.05.2015 TESIS DYNAware GmbH, www.tesis-dynaware.com

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Kapitel DB:IV (Fortsetzung)

Kapitel DB:IV (Fortsetzung) Kapitel DB:IV (Fortsetzung) IV. Logischer Datenbankentwurf mit dem relationalen Modell Das relationale Modell Integritätsbedingungen Umsetzung ER-Schema in relationales Schema DB:IV-46 Relational Design

Mehr

Software-Engineering

Software-Engineering SWE2 Slide 1 Software-Engineering Sebastian Iwanowski FH Wedel Kapitel 2: Grundbegriffe und Prinzipien SWE2 Slide 2 Grundbegriffe der Software-Entwicklung: Systeme System Ausschnitt aus der realen oder

Mehr

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation Entscheidungsverfahren mit Anwendungen in der Softwareverifikation I: Einführung Dr. Stephan Falke Institut für Theoretische Informatik Dr. Carsten Sinz 15.04.2013 Ist mein Programm korrekt? Beispiel:

Mehr

Systemtheorie 1. Formale Systeme 1 # WS 2006/2007 Johannes Kepler Universität Linz, Österreich

Systemtheorie 1. Formale Systeme 1 # WS 2006/2007 Johannes Kepler Universität Linz, Österreich Einführung 1 Systemtheorie 1 Formale Systeme 1 #342234 http://fmv.jku.at/fs1 WS 2006/2007 Johannes Kepler Universität Linz, Österreich Univ. Prof. Dr. Armin Biere Institut für Formale Modelle und Verifikation

Mehr

Einführung Grundbegriffe

Einführung Grundbegriffe Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

SWP Logische Programme

SWP Logische Programme SWP Logische Programme Alexander Felfernig, Stephan Gspandl Institut für Softwaretechnologie {alexander.felfernig,sgspandl}@ist.tugraz.at Institute for Software Technology Inhalt Motivation Logische Programme

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Ben-Alexander Bohnke

Ben-Alexander Bohnke Ben-Alexander Bohnke 03.04.2012 INTEGRALE LOGIK - die wichtigsten Themen und Theorien Ich habe ein vollständiges eigenes Logik-System die Integrale Logik entworfen, dadurch habe ich natürlich an sehr vielen

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. Christoph Beierle, Prof. Dr. Gabriele Kern-Isberner Kurs 01845 Methoden der Wissensrepräsentation und -verarbeitung LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt.

Mehr

SWP Logische Programme

SWP Logische Programme SWP Logische Programme Bernhard Aichernig Institut für Softwaretechnologie aichernig@ist.tugraz.at Institute for Software Technology Inhalt Motivation Logische Programme (LP) Resolution Unifikation Logische

Mehr

Systemtheorie 1. Einführung Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.4

Systemtheorie 1. Einführung Systemtheorie 1 Formale Systeme 1 # WS 2006/2007 Armin Biere JKU Linz Revision: 1.4 Einführung intro 1 Grobklassifizierung r Methoden in der Informatik intro 2 Systemtheorie 1 Systeme 1 #342234 http://fmv.jku.at/fs1 WS 2006/2007 Johannes Kepler Universität Linz, Österreich Univ. Prof.

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

Ausgabe: Eine DBMS unabhängige high-level Repräsentation der Anforderungen, das "konzeptuelle Schema".

Ausgabe: Eine DBMS unabhängige high-level Repräsentation der Anforderungen, das konzeptuelle Schema. Phasen des Datenbanken-Designs Konzeptuelles Design Eingabe: Anforderungen Ausgabe: Eine DBMS unabhängige high-level Repräsentation der Anforderungen, das "konzeptuelle Schema". Qualität: Richtigkeit und

Mehr

INSPIRE - Modellierung

INSPIRE - Modellierung INSPIRE - Modellierung Inhalt Motivation Modellierung UML Diagramme INSPIRE-Schulung LKROS 2 Motivation Was ist ein Modell, und warum wollen wir modellieren? Warum brauchen wir eine Modellierungssprache

Mehr

Einführung in die Linguistik, Teil 4

Einführung in die Linguistik, Teil 4 Einführung in die Linguistik, Teil 4 Menschliche Sprachverarbeitung im Rahmen der Kognitionswissenschaft Markus Bader, Frans Plank, Henning Reetz, Björn Wiemer Einführung in die Linguistik, Teil 4 p. 1/19

Mehr

Entwicklung des räumlichen Denkens nach Piaget (Jean Piaget, zit. nach Franke, Didaktik der Geometrie, S. 93ff.)

Entwicklung des räumlichen Denkens nach Piaget (Jean Piaget, zit. nach Franke, Didaktik der Geometrie, S. 93ff.) Entwicklung des räumlichen Denkens nach Piaget (Jean Piaget, zit. nach Franke, Didaktik der Geometrie, S. 93ff.) Stufentheorie Piagets gilt auch für geometrische Erfahrungen, grobe Einteilung: o 5/6 Jahre

Mehr

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden

Problemlösen. Zahl Ebene und Raum Größen Daten und Vorhersagen. Fachsprache, Symbole und Arbeitsmittel anwenden Curriculum Mathematik 3. Klasse Aus den Rahmenrichtlinien Die Schülerin, der Schüler kann Vorstellungen von natürlichen, ganzen rationalen Zahlen nutzen mit diesen schriftlich im Kopf rechnen geometrische

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Knowledge-Based system. Inference Engine. Prof. Dr. T. Nouri.

Knowledge-Based system. Inference Engine. Prof. Dr. T. Nouri. 12.01.2008 Knowledge-Based system Inference Engine Prof. Dr. T. Nouri Taoufik.Nouri@FHN.CH 2 / 30 Inhalt Grundlagen Wozu Inference? Aufbau Knowledge Based System Strategien für Folgerungen Suchstrategien

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

Das Modellierungstool Scitor Process 3.0

Das Modellierungstool Scitor Process 3.0 Das Modellierungstool Scitor Process 3.0 Prozessmodellierung und -simulation in der Praxis Scitor Process 3.0 zur lokalen Installation (I) Pv303aTD.exe pv3flow.exe pv3sim.exe pv3swim.exe http://www.sciforma.com/

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

1.3 Charakteristische Eigenschaften von objektorientierten Systemen

1.3 Charakteristische Eigenschaften von objektorientierten Systemen 1.3 Charakteristische Eigenschaften von objektorientierten Systemen Einkapselung (Encapsulation) Geheimhaltungsprinzip (Information / Implementation hiding) Persistenz (State retention) Objektidentität

Mehr

Tilman Bauer. 4. September 2007

Tilman Bauer. 4. September 2007 Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus)

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Beschleunigte Entwicklung und Prüfung von BMS durch Einsatz einer HIL-Umgebung

Beschleunigte Entwicklung und Prüfung von BMS durch Einsatz einer HIL-Umgebung Beschleunigte Entwicklung und Prüfung von BMS durch Einsatz einer HIL-Umgebung CAE-Forum Hannover Messe 2017 Dipl.-Wirtsch.-Ing. C. Kettenring Dipl.-Ing. M. Puchta Dr. rer. nat. M. Schwalm Hardware in

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Kernprozess zur System- und Softwareentwicklung. Logische Systemarchitektur f 1. f 2 f 3. f 4 Funktion. Technische Systemarchitektur SG 1 SG 2 SG 3

Kernprozess zur System- und Softwareentwicklung. Logische Systemarchitektur f 1. f 2 f 3. f 4 Funktion. Technische Systemarchitektur SG 1 SG 2 SG 3 Systems Engineering Systems Engineering ist die gezielte Anwendung von wissenschaftlichen und technischen Ressourcen! zur Transformation eines operationellen Bedürfnisses in die Beschreibung einer Systemkonfiguration

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Einführung in Datenbanken Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Grundlegende Begriffe der Datenbanktechnologie

Mehr

Nichtklassische Logiken

Nichtklassische Logiken Nichtklassische Logiken Peter H. Schmitt pschmitt@ira.uka.de UNIVERSITÄT KARLSRUHE Sommersemester 2004 P. H. Schmitt: Nichtklassische Logiken p.1 Inhalt Wiederholung P. H. Schmitt: Nichtklassische Logiken

Mehr

Design Thinking. Berner Fachhochschule Institut Unternehmensentwicklung Prof. Dr. Andreas Ninck

Design Thinking. Berner Fachhochschule Institut Unternehmensentwicklung Prof. Dr. Andreas Ninck Design Thinking Die Fähigkeit, schneller zu lernen als die Konkurrenz, ist vielleicht der einzige wirklich dauerhafte Wettbewerbsvorteil. Arie de Geus, Royal Dutch Shell Innovation Machbarkeit Nützlichkeit

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Grundkurs C++ Objektmodellierung. Grundkurs C++

Lehrstuhl für Datenverarbeitung. Technische Universität München. Grundkurs C++ Objektmodellierung. Grundkurs C++ Grundkurs C++ Objektmodellierung Grundkurs C++ Objektmodellierung welche Objekte bzw. Klassen werden benötigt? welche Information wird benötigt, um ein Objekt zu beschreiben? welche Beziehungen bestehen

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Ziele und Tätigkeiten von Architekten

Ziele und Tätigkeiten von Architekten Ziele und Tätigkeiten von Architekten Definition Software Architektur o A software architecture provides a model of a whole software system that is composed of internal behavioral units (i.e. components)

Mehr

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme

Kapitel IR:II. II. Grundlagen des Information Retrieval. Retrieval-Evaluierung Indexterme Kapitel IR:II II. Grundlagen des Information Retrieval Retrieval-Evaluierung Indexterme IR:II-1 Basics STEIN 2005-2010 Batch-Mode-Retrieval einmaliges Absetzen einer Anfrage; nur eine Antwort wird geliefert

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches

Mehr

Seminar Kognitive Robotik. Interne Modelle I Vorwärtsmodelle Vortragender: Rüdiger Timpe

Seminar Kognitive Robotik. Interne Modelle I Vorwärtsmodelle Vortragender: Rüdiger Timpe Seminar Kognitive Robotik Interne Modelle I Vortragender: Rüdiger Timpe Quellen Miall/Wolpert: Forward Models for Physiological Motor Control (1996) Blakemore/Wolpert/Frith: Why can't you tickle yourself?

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 16. Oktober 2014 1 Einleitung Literatur Paul.R. Halmos, Naive Set Theory Ralf Schindler, Logische Grundlagen der Mathematik Peter J. Cameron,

Mehr

Einführung in die Fuzzy Logik

Einführung in die Fuzzy Logik Einführung in die Fuzzy Logik Einleitung und Motivation Unscharfe Mengen fuzzy sets Zugehörigkeitsfunktionen Logische Operatoren IF-THEN-Regel Entscheidungsfindung mit dem Fuzzy Inferenz-System Schlußbemerkungen

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Empirische Strategien

Empirische Strategien Empirische Strategien Julian Raschke 07.04.2009 Übersicht Einordnung die Strategien im Detail Vergleich Kontext Software-Engineering Empirische Strategien 07.04.2009 2 Einordnung Situation: Software-Entwicklungsprozess

Mehr

Kybernetik Das Kybernetische Modell

Kybernetik Das Kybernetische Modell Kybernetik Das Kybernetische Modell Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 05. 06. 2012 Das Modell Das Modell Was ist ein Modell? Ein Modell

Mehr

Funktionen: Einleitung

Funktionen: Einleitung Funktionen: Einleitung Funktionen sind fundamentale Instrumente der Mathematik zur Beschreibung verschiedener Zusammenhänge. E 1 E 2 E 3 Der Abbildungsbegriff Abb. 1 1: Darstellung einer Abbildung Oft

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

1. Wissenschaftstheoretische Grundlagen Soziologische Theorie als erfahrungswissenschaftliche

1. Wissenschaftstheoretische Grundlagen Soziologische Theorie als erfahrungswissenschaftliche 1. Wissenschaftstheoretische Grundlagen 1.1. Soziologische Theorie als erfahrungswissenschaftliche Theorie 1.1.1. Was sind keine erfahrungswissenschaftlichen Theorien? Aussagen der Logik und der Mathematik

Mehr

Technische Universität Kaiserslautern Lehrstuhl für Virtuelle Produktentwicklung

Technische Universität Kaiserslautern Lehrstuhl für Virtuelle Produktentwicklung functions in SysML 2.0 La Jolla, 22.05.2014 12/10/2015 Technische Universität Kaiserslautern Lehrstuhl für Virtuelle Produktentwicklung Dipl. Wirtsch.-Ing. Christian Muggeo Dipl. Wirtsch.-Ing. Michael

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methoden der computergestützten Produktion und Logistik 1. Modelle Prof. Dr.-Ing. habil. Wilhelm Dangelmaier Modul W 2336 SS 2016 Modellbegriff Definition nach Klaus und Buhr Ein Modell ist ein bewusst

Mehr

Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel

Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel Dieses Skript ist die allgemeine Basis eines Modells zur Simulation der ökonomischen Folgen technischer

Mehr

Modell zur Einflussanalyse Ein Modell zur Einflussanalyse von Methodenänderungen in Entwicklungsprozessen

Modell zur Einflussanalyse Ein Modell zur Einflussanalyse von Methodenänderungen in Entwicklungsprozessen Modell zur Einflussanalyse Ein Modell zur Einflussanalyse von Methodenänderungen in Entwicklungsprozessen Roland Koppe, Stefan Häusler, Axel Hahn 2 Übersicht Einleitung und Motivation Ansatz und Methodik

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Sozialwissenschaftliche Modelle und Daten SoSe 2010

Sozialwissenschaftliche Modelle und Daten SoSe 2010 Sozialwissenschaftliche Modelle und Daten SoSe 2010 LS Sozialwissenschaftliche Methodenlehre und Sozialstatistik C. Dudel C. Dudel Sozialwissenschaftliche Modelle und Daten SoSe 2010 1 23 1 Formalia 2

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Mathematische Grundlagen I Logik und Algebra

Mathematische Grundlagen I Logik und Algebra Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte

Mehr

Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt. Antje Rogalla Freie Universität Berlin

Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt. Antje Rogalla Freie Universität Berlin Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt Antje Rogalla Freie Universität Berlin 31.10.2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Die Formelsprache der NSA 4 3 Das

Mehr

HIR Method & Tools for Fit Gap analysis

HIR Method & Tools for Fit Gap analysis HIR Method & Tools for Fit Gap analysis Based on a Powermax APML example 1 Base for all: The Processes HIR-Method for Template Checks, Fit Gap-Analysis, Change-, Quality- & Risk- Management etc. Main processes

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Diskrete Strukturen Kapitel 1: Einleitung

Diskrete Strukturen Kapitel 1: Einleitung WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

1. Methoden der Hirnforschung 2. Mechanistische Erklärung 3. Neuronale Mechanismen 4. Erklärung des Bewusstseins?

1. Methoden der Hirnforschung 2. Mechanistische Erklärung 3. Neuronale Mechanismen 4. Erklärung des Bewusstseins? 1. Methoden der Hirnforschung 2. Mechanistische Erklärung 3. Neuronale Mechanismen 4. Erklärung des Bewusstseins? Brigitte Falkenburg 1 1. Methoden der Hirnforschung 2 top-down down/analytisch: Atomistisch

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Software Engineering

Software Engineering Software Engineering Gustav Pomberger, Wolfgang Pree Architektur-Design und Prozessorientierung ISBN 3-446-22429-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22429-7 sowie

Mehr

Information für Mitarbeiter/innen zum Thema Prozessmanagement Teil 2

Information für Mitarbeiter/innen zum Thema Prozessmanagement Teil 2 Information für Mitarbeiter/innen zum Thema Prozessmanagement Teil 2 Version 1.0 - ENTWURF - Schriftenreihe des Kompetenzzentrums Prozessmanagement KÖLN, 15.03.2013 I m p r e s s u m Herausgeber: Bundesverwaltungsamt

Mehr

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP Inhalt SWP Logische Programme Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Motivation Sprache LP Resolution Unifikation Datenbanken und logische Programme Semantik 2 Motivation Bsp

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Einführung in die Artificial Intelligence

Einführung in die Artificial Intelligence Einführung in die Artificial Intelligence Institut für Computertechnik ICT Institute of Computer Technology Roland Lang mailto:langr@ict.tuwien.ac.at Definition: Was ist AI? ISO 4177: Artificial Intelligence

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

OO Programmiersprache vs relationales Model. DBIS/Dr. Karsten Tolle

OO Programmiersprache vs relationales Model. DBIS/Dr. Karsten Tolle OO Programmiersprache vs relationales Model Vorgehen bisher Erstellen eines ER-Diagramms Übersetzen in das relationale Datenmodell Zugriff auf das relationale Datenmodell aus z.b. Java ER rel. Modell OO

Mehr

Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz wissensbasierte Systeme

Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz wissensbasierte Systeme Woher Methoden der KI stammen Gebiete der Künstlichen Intelligenz (induktives) Lernen Aus einer anwendungsorientierten Sicht spielen in der Künstlichen Intelligenz insbesondere folgende Gebiete eine Rolle:

Mehr

5.4 Hamilton-Mechanik

5.4 Hamilton-Mechanik 5.4 Hamilton-Mechanik 157 5.4 Hamilton-Mechanik Die Lagrangegleichung ist das Mittel zur Wahl zum Lösen allgemeiner mechanischer Aufgaben, wobei es unerheblich ist, welches konkrete Problem und unter Benutzung

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr