Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Größe: px
Ab Seite anzeigen:

Download "Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze"

Transkript

1 Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der modernen Physik: Mathematisch beschrieben wird eine Symmetrie durch eine Symmetrie-Transformation (z. B. kontinuierliche Koordinatentransformationen wie Verschiebung (Translation) oder Rotation, aber auch diskrete Transformationen wie z. B. Spiegelung). Hierbei muss zwischen Symmetrien der grundlegenden Theorien und Symmetrien konkreter Systeme (z. B. Moleküle, Festkörper) unterschieden werden. Eine Symmetrie der grundliegenden Theorie liegt dann vor, wenn sich die physikalischen Gesetze, die das Verhalten eines Systems beschreiben, bei Anwendung der Symmetrietransformation nicht verändern (also etwa die Physik in einem gespiegelten Universum dieselbe wäre wie in unserem); man spricht auch von der Invarianz des Systems unter der entsprechenden Symmetrieoperation. Ein konkretes physikalisches System muss dabei diese grundlegenden Symmetrien nicht zwingend aufweisen.

2 Wir wollen in dieser Vorlesung der Frage nachgehen, ob die Newton schen Gesetze tatsächlich in allen Koordinatensystemen gleich aussehen. In der Experimentalphysik-Vorlesung haben Sie die Newton schen Gesetze kennengelernt: Die Newton schen Gesetze Jeder Körper beharrt in seinem Zustand der Ruhe oder gleichförmigen geradlinigen Bewegung, wenn er nicht durch einwirkende Kräfte gezwungen wird, seinen Zustand zu ändern. in Formeln: v = const, wenn F = 0. Die Änderung der Bewegung ist der Einwirkung der bewegenden Kraft proportional und erfolgt in der Richtung derjenigen Linie, in welcher jene Kraft wirkt. in Formeln: m a = F. Die Wirkung ist stets der Gegenwirkung gleich, oder die Wirkungen zweier Körper aufeinander sind stets gleich und von entgegengesetzter Richtung. in Formeln: F ij = F ji Kräfte addieren sich wie Vektoren. in Formeln: F = i F i

3 In obiger Beschreibung von Symmetrie wurden als (kontinuierliche) Symmetrietransformationen die Translation und die Rotation genannt. Wir wenden uns zunächst der Translation zu. Translation Betrachte einen mechanischen Vorgang, den wir in zwei gegeneinander verschobenen Koordinatensystemen (Translation) betrachten: r r = r K K Die Koordinaten gehen durch die Koordinatentransformation r = r K mit dem konstanten Verschiebungsvektor K ineinander über.

4 Für die Geschwindigkeiten gilt dann: v = d dt ( r K) = v, in beiden Koordinatensystemen hat das Teilchen dieselbe Geschwindigkeit. Für kräftefreie Teilchen gilt dann das erste Newton sche Gesetz in gleicher Weise: v = v 0 = v. Wenn Kräfte auftreten, so sind sie in beiden Koordinatensystemen gleich: F = F. Da die Geschwindigkeit des Teilchens in beiden Koordinatensystemen gleich ist, sind auch die Beschleunigungen gleich: a = d dt v = d v = a. dt Gilt also in dem einen Koordinatensystem das zweite Newton sche Gesetz, m a = F, so gilt in dem verschobenen Koordinatensystem ebenfalls m a = F = F ). Das erste und das zweite Newton sche Gesetz sind als invariant unter Translationen. Das dritte (und vierte) Newton sche Gesetz gelten automatisch, da Kräfte, die in einem Koordinatensystem gleich sind auch in einem verschobenen Koordinatensystem gleich sind. Rotation Wir betrachten der Einfachheit halber zwei Koordinatensysteme, die in der z-achse übereinstimmen und bei denen die x- und y-achsen gegeneinander gedreht sind.

5 y 3 2 α 1: x cos( α ) 2: y sin( α ) 3: x sin( α ) 4: y cos( α ) y 4 α 1 α α x x Bei Drehungen um die z-achse gelten die Transformationsformeln für die Koordinaten: x = x cos(α) + y sin(α) y = y cos(α) x sin(α). (1) z = z Diese Gleichung kann man auch in Vektorschreibweise formulieren: r = cos(α) sin(α) 0 sin(α) cos(α) r = D r. Hierbei bezeichnet D die Drehmatrix für Drehungen um die z-achse. Betrachten wir nun die Kraft, die auf ein Teilchen wirkt. Bezüglich der neuen Koordinatenachsen hat auch die Kraft eine veränderte Koordinatendarstellung: F x = F x cos(α) + F y sin(α) F y = F y cos(α) F x sin(α) F z = F z (2) oder F = D F.

6 Nebenbemerkung: Den Tatbestand, dass sich bestimmte Größen in der Mathematik/Physik unter Drehungen genauso transformieren wie Verschiebungsvektoren, benutzt man auch, um eine alternative Definition von Vektoren einzuführen. Man bezeichnet als Vektoren diejenigen Größen, deren Koordinaten sich unter Drehungen genauso transformieren wie die Koordinaten von Verschiebungsvektoren. Als Skalare bezeichnet man Größen, die unter Drehungen invariant (=unverändert) bleiben. Gilt nun in dem ursprünglichen (ungestrichenen) Koordinatensystem das zweite Newton sche Gesetz, m a = F, so berechnen wir die Kraft im gedrehten (gestrichenen) Koordinatensystem zu F x = ma x cos(α) + ma y sin(α) = mẍ cos(α) + mÿ sin(α) F y = ma y cos(α) ma x sin(α) = mÿ cos(α) mẍ sin(α) F z = ma z = m z. (3) Durch weitere Umformungen erhalten wir F x F y = m d2 (x cos(α) + y sin(α)) = mẍ dt 2 = m d2 (y cos(α) x sin(α)) = mÿ dt 2 F z = = m z. (4) Das zweite Newton sche Gesetz lautet also in den neuen Koordinaten m a = F, d.h. es ist invariant unter Drehungen. Galilei-Transformationen Bisher haben wir Koordinatentransformationen betrachtet, die sich zeitlich nicht verändern. Wir betrachten nun zwei Koordinatensysteme, die sich mit konstanter Geschwindigkeit zueinander bewegen. Zwischen den beiden Koordinatensystemen gilt dann die Koordinatentransformation r = r + K + v 0 t.

7 Für die Geschwindingkeiten, die in den beiden Systemen gemessen werden, gilt dann v = d ( r + K dt ) + v K t = v + v 0. Wir finden hier das Superpositionsgesetz (= Gesetz von der Überlagerung) der Bewegungen wieder. Bewegt sich ein kräftefreier Körper in dem ungestrichenen Koordinatensystem mit der konstanten Geschwindigkeit v 0, so ist seine Geschwindigkeit auch in dem bewegten Koordinatensystem konstant, v = v 0 v K. Das erste Newton sche Gesetz gilt also in beiden Systemen. Das Verharren in Ruhe stellt also nur eine spezielle Form der geradlinig gleichförmigen Bewegung dar. Für die Beschleunigungen gilt in beiden Koordinatensystemen die Beziehung r = d 2 ( dt 2 r + K ) + v K t = r. Da Galilei-Transformationen keine Drehungen beinhalten, haben die Kräfte in beiden Koordinatensystemen dieselbe Darstellung, d.h. F = F. Damit gilt F = m a = m a = F, d.h. auch das zweite Newton sche Gesetz gilt in beiden Koordinatensystemen in gleicher Weise. Die Newton schen Bewegungsgleichungen sind also invariant unter Galilei-Transformationen. Koordinatensysteme, die sich relativ zueinander mit konstanter Geschwindigkeit bewegen kann man durch keine Messung voneinander unterscheiden, da in beiden die gleichen physikalischen Gesetze gelten. Derartige Koordinatensysteme bezeichnet man als Inertialsysteme. Beschleunigte Bezugssysteme Betrachte zwei Koordinatensysteme, die zum Zeitpunkt t = 0

8 zusammenfallen und mit konstanter Beschleunigung relativ zueinander bewegt sind. Zwischen ihnen gilt dann die Koordinatentransformation r = r a K t 2. Für die zugehörigen Beschleunigungen gilt dann Dann folgt aus r = r + b. F = m a = m r + m b. Im beschleunigten Bezugssystem gilt dann m r = F m b = F m b, d.h. in diesem Bezugssystem erfährt das Teilchen neben den auf es einwirkenden Kräften eine zusätzliche Beschleunigung, die man auf sog. Scheinkräfte zurückführt. Die im obigen Beispiel auftretende Scheinkraft bezeichnet man auch als Trägheitskraft. Rotierende Bezugssysteme Wir betrachten nun ein Bezugssystem, welches sich gegenüber einem Inertialsystem mit konstanter Winkelgeschwindigkeit um die z-achse dreht. Die Koordinatentransformation lautet dann r = cos(ωt) sin(ωt) 0 sin(ωt) cos(ωt) r = D(ωt) r. Nun berechnen wir für die Geschwindigkeit im rotierenden Koordinatensystem r = D(ωt) r + Ḋ(ωt) r. Die im rotierenden Bezugssystem gemessene Geschwindigkeit setzt sich also aus zwei Anteilen zusammen: dem transformierten Geschwindigkeitsvektor D(ωt) r und einem Zusatzterm, der die Geschwindigkeit des rotierenden Koordinatensystems darstellt, Ḋ(ωt) r. Durch nochmaliges Differenzieren der Geschwindigkeit ergibt sich für die Beschleunigung im rotierenden Bezugssystem zu r = D(ωt) r+ḋ(ωt) r+ḋ(ωt) r+ D(ωt) r = D(ωt) r+2ḋ(ωt) r+ D(ωt) r.

9 Wir berechnen nun die Zeitableitungen der Drehmatrix: Ḋ(ωt) = d cos(ωt) sin(ωt) 0 sin(ωt) cos(ωt) 0 sin(ωt) cos(ωt) 0 = ω cos(ωt) sin(ωt) 0 dt Durch komponentenweises Nachrechnen (Übungsaufgabe) kann man zeigen, dass die folgende Identität gilt: Ḋ(ωt) u = ω (D u), wobei wir im Vektor ω = ωê z die Drehachse und die Winkelgeschwindigkeit zusammengefasst haben. Damit lässt sich der Ausdruck für die Geschwindigkeit umformen zu r = D r ω (D r) = D r ω r. Für ein Teilchen, das im Inertialsystem ruht, r = 0, ergibt sich damit im rotierenden Bezugssystem die eine Kreisgeschwindigkeit von r = ω r. Beachte: das Minuszeichen in dieser Gleichung deutet an, dass das Teilchen im rotierenden Bezugssystem eine Kreisbewegung in Richtung des Uhrzeigersinns vollführt. Betrachten wir nun die Beschleunigung. Hier treten zwei Zusatzterme neben der transformierten Beschleunigung, D r, auf. Den ersten Term können wir mit obiger Identität leicht umformen. Es gilt: Ḋ(ωt) r = ω ( ) D r = ω ( r ω r ). Die zweite Zeitableitung der Drehmatrix ergibt sich zu D(ωt) = ω 2 cos(ωt) sin(ωt) 0 sin(ωt) cos(ωt) = ω 2 D+ω Dann ist D(ωt) r = ω 2 D r+ω 2 zê z = ω 2 r +ω 2 z ê z = ω( ω r ) r ( ω ω) = ω ( ω r ),

10 wobei wir ausgenutzt haben, dass bei Drehungen um die z-achse z = z gilt. Fassen wir die Ergebnisse zusammen, so erhalten wir r = D r 2 ω r ω ( ω r ). Gilt im Inertialsystem F = m a, so erhalten wir m r = DF 2m ω r m ω ( ω r ). Nun ist D F = F die Koordinatendarstellung der Kraft im rotierenden Koordinatensystem, so dass letztlich gilt m r = F 2m ω r m ω ( ω r ). Im rotierenden Bezugssystem erfährt ein Teilchen neben den auf es einwirkenden Kräften eine zusätzliche Beschleunigung durch die beiden Scheinkräfte und Corioliskraft FCoriolis = 2m ω r Zentrifugalkraft FZentrifugal = m ω ( ω r ).

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

I.3 Inertialsysteme. Galilei-Transformationen

I.3 Inertialsysteme. Galilei-Transformationen I.3 Inertialsysteme. Galilei-Transformationen 17 I.3 Inertialsysteme. Galilei-Transformationen Das erste und das zweite Newton sche Gesetz beruhen auf der Existenz von besonderen Bezugssystemen, nämlich

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme Kapitel 1 Bezugssysteme Wenn wir die Bewegung eines Teilchens messen oder vorausberechnen, liefern wir eine Reihe von Ereignissen (r i, t i ), die jeweils aus einem Ortsvektor r i und der dazugehörenden

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

Klassische Theoretische Physik: Mechanik

Klassische Theoretische Physik: Mechanik Klassische Theoretische Physik: Mechanik Patrick Simon Argelander-Institut für Astronomie Auf dem Hügel 71 psimon@astro.uni-bonn.de 21. November 2013 1 Beschleunigte Bezugssysteme Die Forminvarianz der

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm 2. Kinematik Physikalische Grundlagen Vorlesung 2.1. Mechanische Bewegung Zusammenfassung 1. Semester / 2. Thema /

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

2.6 Mechanik in bewegten Bezugsystemen

2.6 Mechanik in bewegten Bezugsystemen - 66-2.6 Mechanik in bewegten Bezugsystemen 2.6.1 Galilei'sche Relativität Die Beschreibung einer Bewegung hängt ab vom verwendeten Bezugssystem: Wenn jemand in einem Eisenbahnwagen einen Ball aufwirft

Mehr

Inertialsystem und Wechselwirkungsgesetz

Inertialsystem und Wechselwirkungsgesetz Inertialsystem und Wechselwirkungsgesetz Friedrich Herrmann Karlsruher Institut für Technologie Eigentlich geht es im folgenden Vortrag noch einmal um dasselbe Thema wie im vorangehenden. Nämlich um die

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze

Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze Physik Newton s Gesetze http://de.wikipedia.org/wiki/philosophiae_naturalis_principia_mathematica Philosophiae Naturalis Principia Mathematica Mathematische Prinzipien der Naturphilosophie Im Sprachgebrauch

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r)

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya Vektoren: Grundbegriffe 6-E Ma 1 Lubov Vassilevskaya Parallele Vektoren Abb. 6-1: Vektoren a, b, c und d liegen auf drei zueinander parallelen Linien l, l' und l'' und haben gleiche Richtung Linien l,

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht

Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I. Übersicht Kurzzusammenfassung Physik I (Vorlesung und Ergänzung) Wintersemester 2005/06, Teil I Übersicht Messungen, Einheiten (1) Mathematische Grundlagen (3, E1, E2, E4, E5) Kinematik von Punktteilchen (2+4, E2,

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10.

Wir werden folgende Feststellungen erläutern und begründen: 2. Gravitationskräfte sind äquivalent zu Trägheitskräften. 1 m s. z.t/ D. g t 2 (10. 10 Äquivalenzprinzip Die physikalische Grundlage der Allgemeinen Relativitätstheorie (ART) ist das von Einstein postulierte Äquivalenzprinzip 1. Dieses Prinzip besagt, dass Gravitationskräfte äquivalent

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

Theoretische Physik I und II

Theoretische Physik I und II Theoretische Physik I und II gelesen von Dr. F. Spanier Sommersemester 2009 L A TEX von Maximilian Michel 22. April 2009 Inhaltsverzeichnis I. Theoretische Physik 1 Mechanik 4 1. Historische Einführung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Dynamik des Massenpunktes

Dynamik des Massenpunktes Dynamik des Massenpunktes Dynamik: Beschreibt die Bewegung von Körpern unter Berücksichtigung der auf die Körper wirkenden Kräfte. Damit versucht die Dynamik, Ursachen für die Bewegung von Körpern zu beschreiben.

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

3.5 Nichtinertiale Koordinatensysteme

3.5 Nichtinertiale Koordinatensysteme 3.5-1 3.5 Nichtinertiale Koordinatensysteme Das erste Newtonsche Gesetz gilt nicht für alle Koordinatensysteme, vgl. 2.1.2, aber man kann immer Bezugssysteme finden, in denen es gilt. Derartige Systeme

Mehr

3. Vorlesung Wintersemester

3. Vorlesung Wintersemester 3. Vorlesung Wintersemester 1 Parameterdarstellung von Kurven Wir haben gesehen, dass man die Bewegung von Punktteilchen durch einen zeitabhängigen Ortsvektor darstellen kann. Genauso kann man aber auch

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr