Was gibt es in Vorlesung 4 zu lernen?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was gibt es in Vorlesung 4 zu lernen?"

Transkript

1 Was gibt es in Vorlesung 4 zu lernen? inelastischer Stoß - keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden) - Geschwindigkeit Gewehrkugel - Rakete Rotationsbewegung - Umlaufgeschwindigkeit v ändert dauernd die Richtung => beschleunigte Bewegung (Zentripetalbeschleunigung zeigt zur Drehachse) - Winkelgeschwindigkeit ω entspricht v für Linearbewegungen 1

2 Was gibt es in Vorlesung 4 zu lernen? Zentrifugalkraft - Trägheitskraft für Drehbewegungen, wirkt nach außen (Hammerwerfer) Drehmoment - entspricht der Kraft für Linearbewegungen Dreharbeit Drehimpuls - es gilt ein Erhaltungssatz

3 Was gibt es in Vorlesung 4 zu lernen? Trägheitsmoment - ersetzt Masse für die Rotation ausgedehnter Körper Steinerscher Satz - aus dem Trägheitsmoment für eine Achse kann Trägheitsmoment für parallele Achse berechnet werden 3

4 inelastischer Stoß vorher nachher m v m, 1+ m v, Vollständig inelastisch: beide Massen kleben nachher zusammen Klebung Experiment Ealing-Bahn: m 1 = m, v = 0 Impulserhaltung 1 mv = ( m + m ) v = mv => v = v Energiebilanz E = mv E = ( m + m ) v = ( m )( v ) = mv = E 4 kin, vor 1 1 kin, nach kin, vor 4

5 inelastischer Stoß es geht kinetische Energie verloren es kann ein beträchtlicher Bruchteil sein sie wird nicht in potenzielle Energie umgewandelt steckt in der Verformung der Knete (Wärme) verallgemeinerter Energiesatz gilt weiterhin, aber schwierig anzuwenden Knete kann keinen gerichteten Impuls aufnehmen => Impulssatz gilt weiterhin 5

6 Bestimmung Kugelgeschwindigkeit Experiment Ealing-Bahn: mit Luftgewehr in Holzklotz m v 1 vorher nachher M v =0 m+m v 6

7 Bestimmung Kugelgeschwindigkeit Experiment Ealing-Bahn: mit Luftgewehr in Holzklotz m v 1 vorher nachher M v =0 m+m v Impulserhaltung m mv = ( m + M ) v => v = v ( m+ M) 1 1 Energiebilanz m 1 m E mv E m M v m M v v m+ M m+ M Ekin, vor m+ M = >> 1 E m kin, vor = 1 kin, nach = ( + ) = ( + )( 1) = 1 kin, nach 7

8 Inelastischer Stoß: Rückstoß Versuch: Rakete Wie wird eigentlich eine Rakete angetrieben? Treibstoff wird in eine Richtung ausgestoßen => Rakete muss sich in andere Richtung bewegen Treibstoff wird kontinuierlich ausgestoßen => Treibstoffgeschwindigkeit nicht konstant => Mathematik etwas aufwändiger M R Μ Τ vorher M R Μ Τ aller Treibstoff verbraucht v R v T Impulserhaltung (grobe Abschätzung) MT 0 = M v + M v => v = v M R R T T R T R Schnelle Rakete mit: a) leichter Rakete, b) schwerem Treibstoff c) hoher Ausstoßgeschwindigkeit! 8

9 Zusatzinformation: Erweiterung auf zwei-dimensionale Probleme Wenn man Zusammenstöße in der Ebene zulässt, muss man Geschwindigkeitskomponenten betrachten und berücksichtigen, dass es nicht-zentrale Stöße geben kann (z.b. im Billard-Spiel): vorher: V 1 m 1 m m 1 nachher: ' v 1 Bei elastischem Stoß gilt der Energiesatz m m m 1 1 V = V' 1 + V' 1 m V ' Der Impulssatz muss vektoriell geschrieben werden und komponentenweise gelöst werden. Außerdem Zusatzbedingung notwendig. m1 v1 = m1v1' + m v' 9

10 Rotationsbewegungen DTL Betrachte zunächst Rotation eines Massepunktes auf einer Kreisbahn mit Radius r Die Geschwindigkeit v des Punktes ändert dauernd ihre Richtung => Rotationsbewegungen sind immer beschleunigte Bewegungen Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen. 10

11 Rotationsbewegungen: Winkelgeschwindigkeit Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen. ω = dϕ dt DTL ϕ r m v 11

12 DTL Rotationsbewegungen: Winkelgeschwindigkeit Für Rotationsbewegungen übernimmt die Winkelgeschwindigkeit ω die Rolle der Geschwindigkeit v bei Linearbewegungen. ω = ϕ r dϕ dt m v Umlaufgeschwindigkeit v: π T = (Zeit für einen Umlauf) ω U = π r (Kreisumfang) U πrω mit v= => v= = rω T π In Vektorschreibweise: v = ω r Hergeleitet nur für gleichförmige Rotation! Gilt aber allgemein! Umlaufgeschwindigkeit ändert dauernd ihre Richtung => Rotationsbewegungen sind beschleunigt! 1

13 Rotationsbewegungen: Winkelgeschwindigkeit Analogien zwischen Linearbewegung und Rotationsbewegungen helfen (hoffentlich), sich die einzelnen Formeln und Größen zu merken und zu verdeutlichen, Analogie: Geschwindigkeit v (linear) Winkelgeschwindigkeit ω (Rotation) 13

14 Radial- bzw. Zentripetalbeschleunigung Die Zentripetalbeschleunigung ist zum Mittelpunkt hin gerichtet. v DTL Δϕ r e r v 1 Δv v Δϕ v 1 14

15 DTL Radial- bzw. Zentripetalbeschleunigung Die Zentripetalbeschleunigung ist zum Mittelpunkt hin gerichtet. v Δv Δϕ sin( ) = v für kleine Winkel gilt sin ϕ ϕ => Δ v= vδϕ Δϕ e r außerdem ist Δv parallel zu er also gilt r dv = vdϕ( er ) v 1 für die Zentripedalbeschleunigung gilt dv dϕ ar = = v ( er) = rω ( er) Δv dt rω dt ω v Δϕ v 1 Die Trägheitskraft (Zentrifugalkraft) wirkt der Zentripetalkraft entgegen. 15

16 Zentrifugalkraft: Looping Achterbahn Der höchste Punkt ist kritisch. Dort muss gelten Ft > Fg ω r > g DTL => Hängt nicht von der Masse ab! Wie groß muss die Starthöhe sein? Umfrage!!! r Ft = mrω er F g = mg Experiment: Starthöhe Looping 16

17 Drehmoment In Analogie zur Kraft F bei der linearen Bewegung definieren wir für die Rotationsbewegung das Drehmoment M. M = r F [ M] = Nm ("rechte Hand Regel") Drehmoment ist Hebelarm x Kraft senkrecht zum Hebelarm! Kraftkomponente entlang des Hebelarms führt nicht zu einem Drehmoment Analogie: Kraft (linear) Drehmoment (Rotation) 17

18 Drehmoment 18

19 Drehmoment Drehachse Für M Kraft senkrecht zur Achse => F senkrecht zu r M = r F sin Θ= r F M = r F - Drehmoment M erzeugt eine Winkelbeschleunigung ω - Richtung von ω durch "recht-hand-schraube" - wenn M = 0 dann auch ω (Analog zu F = 0 <=> a = 0 im linearen Fall) - Beachte ω ist nicht die Zentripedalbeschleunigung Analogie: Kraft (linear) Drehmoment (Rotation) r F Θ FsinΘ Angriffspunkt Kraft 19

20 Folgsame Rolle Versuch: Folgsame Rolle DTL 0

21 Dreharbeit Drehmoment M verrichtet bei der Drehung um ϕ Dreharbeit! dw = Fdr = F rdϕ = Mdϕ = Mdϕ r W = dw = Mdϕ Für ein konstantes Drehmoment (nicht konstante Kraft, da Kraft DTL permanent die Richtung ändern muss, um senkrecht zum Hebelarm zu bleiben) ergibt sich W = Mϕ Dreharbeit führt zu einer Zunahme der Winkelgeschwindigkeit ω Analogie: Fs (linear) Mϕ (Rotation) 1

22 Drehimpuls An Stelle des Impuls für die Linearbewegung tritt der Drehimpuls für die Rotationsbewegung. DTL L = r p = mr v für den Betrag gilt L = mrv= mr ω je größer m, desto größer L je größer ω, desto größer L L ~ r!!!!

23 Drehimpulserhaltung Der Drehimpuls ist eine Erhaltungsgröße! DTL 3

24 Drehimpulserhaltung DTL Der Drehimpuls ist eine Erhaltungsgröße! dp dp F = damit gilt r F =+ r dt dt damit läßt sich M schreiben als dp d dl M = r F = r = ( r p) = dt dt dt dr letzte Umformung gilt, da p = 0 dt dr da p für eine Drehbewegung dt dl für M = 0 ändert sich L nicht da 0 dt = 4

25 Drehimpulserhaltung Ohne äußeres Drehmoment gilt für ein abgeschlossenes mechanisches System: L i i = const. DTL Das Grundgesetz der Dynamik für Drehbewegungen lautet: i L i dt = i M i Analogie: Impuls (linear) Drehimpuls (Rotation) 5

26 Experimente zur Drehimpulserhaltung kreisende Kugel am Faden variabler Länge (Radius): L = mr ω r m Wenn man den Radius verkürzt, wird die Umlauffrequenz höher. Nach dem Drehimpulserhaltungssatz gilt ω 1 / ω =(r /r 1 ) Kugel in Trichter Genau wie oben wird die Umlauffrequenz der Kugel nach unten immer größer r g 6

27 Experimente zur Drehimpulserhaltung Drehstuhlexperiment Das Schwungrad auf dem Drehstuhl und die Person auf dem Drehstuhl bilden ein geschlossenes mechanisches System, Drehstuhl und Rad drehen sich in entgegen gesetzter Richtung vorher: nachher: L = 0 ω =0 L ω L = 0 1 ω 1 =0 L 1 ω 1 7

28 Trägheitsmoment starrer Körper Bis jetzt nur rotierenden Massepunkt betrachtet DTL ω = r ϕ dϕ dt m v L = mr ω =Θω Θ für einen MP also mit = Trägheitsmoment Θ= mr Analogie: Masse (linear) Trägheitsmoment (Rotation) Wie sieht es für einen ausgedehnten Köper aus? 8

29 Wir zerlegen den Körper in viele kleinen Massen Δm i und verallgemeinern dann: ω r i Trägheitsmoment starrer Körper Δm i Θ = Δ i m ir i Hier ist r i immer der Abstand senkrecht zur Drehachse. Beim Übergang zu infinitesimalen Massen dm erhält man wieder ein Volumenintegral: Θ = Δmiri = r dm = i V ρ V r dv Analogie: Masse (linear) Trägheitsmoment (Rotation) 9

30 Trägheitsmoment starrer Körper Drehstuhl-Experiment mit Hanteln Es gilt Drehimpulserhaltung => Trägheitsmoment kleiner ω größer Die äußeren Massen tragen relativ viel zum Trägheitsmoment bei, die Massen nahe der Drehachse fast nichts! Bei Heranziehen der Arme wird Arbeit gegen die Zentrifugalkraft geleistet. 30

31 Beispiele für θ Für einfache Geometrien kann man das Integral leicht auswerten: 1.Beispiel: dünner Stab, Fläche A=a, Länge L>>a, gedreht um ein Ende z ω Fläche A=a y L a x 31

32 Beispiele für θ Für einfache Geometrien kann man das Integral leicht auswerten: 1.Beispiel: dünner Stab, Fläche A=a, Länge L>>a, gedreht um ein Ende z ω Fläche A=a y L a x Θ = ρ V r dv = = ρ V x M L dv / 3 = ρ a 0 dy a 0 dz L 0 x dx = ρ a a L 3 / 3 (Mit der Gesamtmasse M=ρ a L) 3

33 . Beispiel: Rotation Walze (Höhe H; Radius R) um Symmetrieachse z: x ω z R H y Die kartesischen Koordinaten sind für dieses Problem nicht gut angepasst, wir gehen deshalb zu Zylinderkoordinaten über (siehe Diagramm). kartesische Koordinaten Zylinderkoordinaten : (x,y,z) (a,ϕ,z) x Umrechnung: x = a cos(ϕ); y = a sin(ϕ) ϕ z r a y 33

34 Das Volumenelement in den Volumenintegralen dv muss ebenfalls noch in den Zylinderkoordinaten geschrieben werden: dϕ a da adϕ y Das rot gestrichelte Flächenelement in der x-y-ebene hat die Fläche da=a dϕ da. Wenn man ϕ von 0 bis 360 variiert und a von 0 bis R, überdecken die Flächenelemente da die Zylinder-Basisfläche x Wir können jetzt das Volumenintegral in Zylinderkoordinaten ausdrücken: Θ = ρ V a dv 4 R =ρ π 4 also gilt Θ = ρ H V Zylinder a a dϕda dz = R M / = ρ R 0 a 3 da π 0 dϕ H 0 dz (mit ρπr H=M (Gesamtmasse)) Beispiel: Mensch als Vollzylinder angenähert, um zentrale Längsachse rotiert mit M = 64kg und R = 0.5m ergibt nur Θ = kgm! 34

35 Andere Beispiele für Trägheitsmomente ω c Quader (a,b,c) Q=1/1M(a +b ) ω l a ω r b Drehachse parallel zur c-kante Vollzylinder Drehachse senkrecht zur Zylinderachse Vollkugel Q=1/1M(3r +l ) Q=/5MR R Drehachse durch Mittelpunkt ω Hohlkugel Q=/3MR R Drehachse durch Mittelpunkt 35

36 Steinerscher Satz Das Trägheitsmoment einer Massenverteilung hängt natürlich von der Lage der Drehachse ab. Wenn die Achse durch den Schwerpunkt geht (ausgezeichnete Achse mit Trägheitsmoment Θ S ), ist das Trägheitsmoment am kleinsten.. Wir betrachten nun eine parallele Achse A im Abstand a : ω S A Es gilt für das Trägheitsmoment bei Drehung um die Achse A und um die Achse S (M ist Gesamtmasse) S Θ A = Θ S + Ma a Zur Anschauung: Der Satz gilt offensichtlich für a = 0 (keine Achsverschiebung) und für Θ S = 0 (Punktmasse M im Abstand a). 36

37 Hauptträgheitsachsen Trägheitsmoment hängt von Drehachse ab bei Körpern mit homogener Masseverteilung gibt es immer eine Achse durch den Schwerpunkt mit minimalem und eine Achse mit maximalem Trägheitsmoment (Hauptträgheitsachsen) nur um diese Achsen stabile Rotation. Sonst Unwucht! Experimente: Hauptträgheitsachsen eines Quaders, Stabilität der Rotation 37

38 Was sollten Sie aus Vorlesung 4 mindestens gelernt haben/lernen? Winkelgeschwindigkeit - Analogie ω v - gibt an, wie viel Radiant pro Sekunde überstrichen werden - Orientiert entlang der Drehachse, rechte-hand-schraube Umlaufzeit, Frequenz - Zeit für eine Umdrehung = Umlaufzeit T, [T] = s - Umdrehungen pro Zeiteinheit = Frequenz f, [f] = s -1 = Hz - f = 1/T = ω/π Umlaufgeschwindigkeit - Momentangeschwindigkeit v eines Masseelementes auf seiner Umlaufbahn - v = ω r 38

39 Was sollten Sie aus Vorlesung 4 mindestens gelernt haben/lernen? Zentripetal- / Zetrifugalkraft -a Z = ω r Drehmoment - M = r F - Analogie : M F Dreharbeit W = dw = Mdϕ - Analogie: dw = Fds Mdϕ, da F M und s ϕ 39

40 Was sollten Sie aus Vorlesung 4 mindestens gelernt haben/lernen? Drehimpuls L = r p - Analogie: L = p Drehimpulserhaltung L i i = const Grundgesetz der Dynamik für Drehbewegungen i dl dt i = i M i 40

41 Was sollten Sie aus Vorlesung 4 mindestens gelernt haben/lernen? Trägheitsmoment starrer Körper Θ = Δmiri = r dm = ρ i - Analogie: θ m Steinerscher Satz Θ A = Θ S + Ma - θ S = Trägheitsmoment bei Achse durch Schwerpunkt, θ A = Trägheitsmoment bei paralleler Achse im Abstand a Hauptträgheitsachsen V V r dv 41

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Kreisbewegung Ein Bild sagt mehr als tausend Worte.

Kreisbewegung Ein Bild sagt mehr als tausend Worte. Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Übungen zu Physik I für Physiker Serie 6 Musterlösungen

Übungen zu Physik I für Physiker Serie 6 Musterlösungen Übungen zu Physik I für Physiker Serie 6 Musterlösungen Allgemeine Fragen. Wie kann eine Person, die auf einem reibungslosen Tisch sitzt, jemals aus eigener Kraft von diesem herunterkommen? Unter praktischer

Mehr

Experiment: Inelastischer Stoß

Experiment: Inelastischer Stoß Experiment: Inelastischer Stoß Langer Gleiter auf der Luftkissenbahn stößt inelastisch auf einen ruhenden von gleicher Masse. Gleiter kleben nach dem Stoß zusammen (Klebwachs). Messung der Geschwindigkeiten

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Pendel, starre Körper und Drehmoment

Pendel, starre Körper und Drehmoment Pendel, starre Körper und Drehmoment Pendel, starre Körper, Dremoment (Ruhr-Universität Bochum) 20. November 2013 1/ 27 Lernziele Ein rotierendes System ist immer auch ein beschleunigtes System Die Schwingungsdauer

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

1.2 Eindimensionale Bewegung

1.2 Eindimensionale Bewegung . Eindimensionale Bewegung Bewegungen von Körpern (gleichförmige oder beschleunigte) sind uns aus dem Alltag her bekannt (Versuch Luftkissenbahn). Beispiel Schnecke, Autofahrt Zur Analyse einer Bewegung

Mehr

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen. Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D)

Welche der Darstellungen hat das oberflächlichste Niveau? ( ) A) ( ) B) ( ) C) ( ) D) Welche der Größen ist extensiv? ( ) Lautstärke eines Kopfhörers ( ) Rasenfläche eines Fußballplatzes ( ) Farbe der Wand in Ihrer Küche ( ) Geschmack eines Kuchens Welche der Darstellungen hat das oberflächlichste

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

1 Krummlinige Koordinatensysteme

1 Krummlinige Koordinatensysteme 1 Krummlinige Koordinatensysteme 1.1 Ebene Polarkoordinaten Ebene Polarkoordinaten sind für zweidimensionale rotationssymmetrische Probleme geeignet. Die Länge der gedachten Verbindungslinie eines Punktes

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

Versuch 3: Das Trägheitsmoment

Versuch 3: Das Trägheitsmoment Versuch 3: Das Trägheitsmoment Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Trägheitsmoment und Satz von Steiner.................... 3 2.2 Kinematik der Rotationsbewegung...................... 3 3

Mehr

Ferienkurs Experimentalphysik Übung 2

Ferienkurs Experimentalphysik Übung 2 Ferienkurs Experimentalphysik 1 2012 Übung 2 1. Masse am Zylinder Ein Zylinder mit dem Radius R, der Masse M und dem Trägheitsmoment I = 1 2 MR2 ist raumfest so gelagert, dass er um seine horizontal liegende

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 3 - Lösung WS 2014/2015 25.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht (

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

12 Integralrechnung, Schwerpunkt

12 Integralrechnung, Schwerpunkt Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 03: Kreiselpräzession UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 03 Kreiselpräzession

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr