Geometrie 1. Johanna Schönenberger-Deuel Dr. sc. math. Büro: Y27J30 Tel.: +41(0)

Größe: px
Ab Seite anzeigen:

Download "Geometrie 1. Johanna Schönenberger-Deuel Dr. sc. math. Büro: Y27J30 Tel.: +41(0)"

Transkript

1 M 430 Master UNIZH HS07 Geometrie 1 Johanna Schönenberger-Deuel Dr. sc. math. schoenenbergerdeuel@math.unizh.ch Büro: Y27J30 Tel.: +41(0)

2 2 1. Einführung Die Geometrie ist die älteste, systematisierte mathematische Disziplin. Geometrie bedeutet "Erdmessung". Ursprünglich waren geometrische Figuren Äcker, Wiesen, Felder. Zunächst ist die Geometrie die Lehre vom Messen und Berechnen von Längen, Winkeln, Flächen und Volumina. Schon die Babylonier, die Ägypter und die Griechen haben sich mit geometrischen Sachverhalten der menschlichen Umwelt auseinandergesetzt. ber erst Thales von Milet (ca ca. 547 v. Chr.) erfand, was wir heute Wissenschaft nennen. So waren seine geometrischen Figuren rein abstrakte Gebilde. Er untersuchte das Sammelsurium geometrischer Rezepte, Daumenregeln und empirischer Formeln, die aus Babylon und Ägypten überliefert wurden. Er merkte, dass einige Regeln aus anderen hergeleitet werden konnten und wollte die Geometrie als rein geistige ktivität sehen.

3 3 Pythagoras von Samos (ca v. Chr.) hörte von Thales wissenschaftlichen Ideen. Vor allem dessen Geometrie begeisterte ihn. Er studierte in Ägypten. Später gründete er in Kroton, einer griechischen Stadt in Süditalien, die Schule der Pythagoräer, eine halb religiöse, halb politische Gemeinschaft, wo man sich mathematischen und philosophischen Fragestellungen widmete. In dieser so genannten "Bruderschaft" waren aber Frauen und Männer völlig gleichberechtigt. So wurden Frauen wichtige Personen in der Weiterentwicklung von Mathematik und Naturwissenschaften. Man könnte Pythagoras den ersten "feministischen Philosoph" nennen! Euklid (etwa v. Chr.) lebte in then und wurde später ans Museion in lexandria berufen. lexander der Grosse hatte diese neue Stadt am Nil gegründet. lexandria wurde das aktive Zentrum der Wissenschaften und Mathematik. Euklid hat das bis dahin bekannte Material gesammelt und systematisch aufbereitet. In seinen "Elemente der Mathematik" (insgesamt 13 Bücher) führt er eine axiomatische Begründung der Geometrie ein. Die Schulbücher beruhen auch heute noch mindestens indirekt auf den "Elementen". Euklid versucht zunächst, die Grundbegriffe wie "Punkt", "Gerade" und "Ebene" explizit zu definieren (Ein Punkt ist, was keine Teile hat), führt dann Grundrelationen "inzident", "zwischen" und "kongruent" ein und formuliert in den xiomen (Grundaussagen) die einfachsten Eigenschaften. Damit kann er neue Begriffe explizit definieren und Sätze beweisen, indem er sich nur auf sein xiomensystem stützt. (Euklids xiome werden in Geometrie 2 etwas genauer untersucht.) Zwei nektoten über Euklid: Ein junger Student fragt Euklid: "Was habe ich davon, wenn ich all diese Dinge lerne?" Euklid ruft seinen Diener ruft und sagt zu diesem: "Gib dem Mann eine Münze, denn er muss einen Gewinn ziehen aus dem, was er lernt." König Ptolemaios fragt Euklid: "Gibt es in der Geometrie einen kürzeren Weg als die Elemente?", worauf Euklid antwortet: " Es gibt keinen Königsweg zur Geometrie." Die "Elemente" sind das älteste, uns überlieferte Beispiel eines axiomatischen Systems. Sie etablierten sich als Standardwerk zur Einführung in die Geometrie und wurden mehrmals abgeschrieben und immer wieder etwas verändert.

4 Theon von lexandria (2. Hälfte des 4. Jh. n. Chr.) lehrte auch am Museion. Er war einer der wichtigsten Herausgeber der "Elemente". 700 Jahre nach Euklid revidierte er das Original mit klaren Formulierungen, schob einige Zwischenschritte in den Beweisen der Sätze ein und fand neue Sätze. Theon unterrichtete selbst seine Tochter Hypatia ( ). Er wollte ihr die bestmögliche usbildung geben, obwohl zu dieser Zeit die Frauen wie Sklaven behandelt wurden. Sie sollte ein "vollkommener Mensch" werden. 4 Hypatia studierte bei ihrem Vater, dann aber auch in then und Italien. Zurück in lexandria durfte sie offiziell Mathematik und Philosophie lehren. Ihre Schriften sind Erkärungen und Ergänzungen zu den Büchern von Euklid und Diophant, sowie zu den Lehren von Platon und ristoteles. Studenten aus aller Welt besuchten ihre Vorlesungen, auch Juden und Christen. In dieser Zeit gewannen die Christen im römischen Grossreich immer mehr an Bedeutung. Für sie war Mathematik und Philosophie nur eine Irrlehre. 412 wurde Cyrillus, ein fanatischer Christ, Patriarch von lexandria. Er verlangte von den Gelehrten, dass sie den christlichen Glauben annahmen, denn er wollte die Stadt vom Heidentum reinigen. Hypatia weigerte sich, ihre Lehren und ihre Ideale aufzugeben. So fiel sie einem grausigen Mordkomplott zum Opfer. Dieser brutale Mord setzte der Verbreitung von Platons Lehre im ganzen römischen Reich ein jähes Ende. Hypatia wurde zum Symbol für das Ende der antiken Wissenschaft, denn der Westen leistete für die nächsten tausend Jahre keine wesentlich neuen Erkenntnisse weder in Mathematik noch in Physik noch in stronomie. Dafür interessierte man sich für strologie und Mystizismus. Europa trat ins finstere Mittelalter ein, währenddem die griechische Wissenschaft in Byzanz überlebte und in der arabischen Welt zu neuer Blüte gelangte. Seit 1482 sind mehrere griechische Fassungen der "Elemente" wieder aufgetaucht, die alle auf Theon zurückgehen. Euklids Elemente bestehen aus 13 Büchern. Sie haben kein Vorwort, keine Einleitung. Es werden keine Ziele formuliert, keine Motivation, kein Kommentar. Das Werk beginnt abrupt mit 23 "Definitionen". Definition 1: Ein Punkt ist, was keine Teile hat. Wie gross ist ein Punkt? Euklids Elemente unterscheiden sich von den heutigen axiomatischen Theorien wesentlich. Euklid definiert auch die Grundbegriffe: Punkte, Geraden, Ebenen.

5 Heute verzichtet man meist auf solch exakte Definitionen der Grundbegriffe. Seit David Hilbert( ) werden in xiomensystemen die Grundbegriffe nicht näher definiert, sondern man postuliert Eigenschaften gewisser Relationen zwischen den Grundbegriffen. Euklids Modell hat sich über mehr als 2000 Jahre bewährt in Naturwissenschaft, Technik und Kultur. Es wurde auch für andere Wissenschaften zum Vorbild wissenschaftlicher Darstellung von Theorien. Die sogenannte Euklidische Geometrie kann als die abstrakte Beschreibung unserer ebenen und räumlichen Erfahrung aufgefasst werden. Der nstoss zur weiteren Entwicklung der Geometrie hat das Parallelenaxiom gegeben, das besagt, dass es zu jeder Geraden durch jeden Punkt genau eine Parallele gibt. Man hat lange geglaubt, dass dieses xiom aus den ersten vier hergeleitet werden kann. Erst als man Ende des 18. Jahrhunderts die Unabhängigkeit des Parallelenaxioms nachweisen konnte, war der Weg frei zu anderen Geometrien, den sogenannten nichteuklidischen Geometrien. ls erster erkannte Carl Friedrich Gauss ( ), dass eine in sich widerspruchsfreie Geometrie entsteht, wenn man annimmt, dass zu einer Geraden durch einen nicht auf ihr gelegenen Punkt mehrere Parallelen gezogen werden können. Das war die "Geburt" der nichteuklidischen Geometrie. us Furcht vor dem Geschrei engstirniger Philosophen hat Gauss seine Überlegungen nicht veröffentlicht. Gauss, dann aber auch Janos Bolyai ( ) und Nicolai Lobatschewsky ( ) begründeten mit diesen neuen Gedanken die erste nichteuklidische Geometrie. Felix Klein ( ) kreierte dafür den Namen hyperbolische Geometrie. (hyperbole heisst griechisch der Überschuss: in der neuen Geometrie gibt es einen Überschuss an parallelen zu einer Gerade durch einen Punkt!) Der Raumbegriff in der Mathematik und Physik unterliegt gerade heute vielfältigen Verallgemeinerungen. Es ist notwendig, dass man diesen Begriff nicht nur im Sinne Euklids versteht. Im Gegenteil gibt es viele Räume, die man geometrisch untersuchen kann. In dieser Vorlesung werden wir vor allem die euklidische Geometrie der Ebene studieren. Wir wollen uns aber nicht nur auf Euklid beziehen, wo die starre Kongruenz von Dreiecken wichtig ist, sondern wir werden dynamisch vorgehen und den bbildungsbegriff betonen. Die bbildungsgeometrie geht auf Felix Klein ( ) zurück. In Geometrie 2 werden wir Modelle nichteuklidischer Geometrien kennenlernen. 5

6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. 6 B Eine Figur wird so bewegt, dass sie mit einer anderen Figur B zur Deckung gebracht werden kann. uf diese Weise wird der Kongruenzbegriff auf spezielle geometrische bbildungen zurückgeführt, die Kongruenzabbildungen oder Isometrien, die man auch Bewegungen nennt. Eine Kongruenzabbildung ist somit eine bbildung, die eine geometrische Figur nur verlagert, ihre Grösse und Form aber unverändert lässt. llgemein interessiert man sich für das Verhalten geometrischer Figuren bei gewissen bijektiven bbildungen. Definition Eine bbildung ϕ der Ebene auf sich heisst bijektiv, falls ϕ umkehrbar ist; d.h. es gibt nicht nur für jeden Punkt X genau einen Bildpunkt Y sondern umgekehrt gibt es für jeden Punkt Y genau einen Punkt X, sodass gilt: ϕ(x) = Y. Die bbildung, die jedem Bildpunkt Y sein Urbild X zuordnet, heisst zu ϕ inverse bbildung und wird mit ϕ 1 bezeichnet. ϕ 1 (Y) = X. X ϕ Y ϕ 1 Identische bbildung Die bbildung, die jeden Punkt X auf sich selbst abbildet, nennt man die identische bbildung oder Identität. id(x) = X

7 Verknüpfung von bbildungen Sind ϕ 1 und ϕ 2 bbildungen, so nennt man ϕ 2! ϕ 1 die Verknüpfung (Hintereinanderschachtelung) von ϕ 1 und ϕ 2. (sprich: ϕ 2 nach ϕ 1, ϕ 2 Ring ϕ 1 ) ϕ 2! ϕ 1 bildet jeden Punkt X ab auf ϕ 2 [ϕ 1 (X)]: 7 (! 2!! 1 )(X) =! 2 [! 1 (X)] =! 2 (Y ) = Z Die Verknüpfung von bbildungen ist assoziativ.! 3! (! 2!! 1 ) = (! 3!! 2 )!! 1 Die Verknüpfung von bijektiven bbildungen ist wieder bijektiv. Definition Eine Isometrie oder Kongruenzabbildung ϕ der Ebene (oder des Raumes) auf sich ist eine bijektive, längentreue bbildung. Das heisst: Für zwei Punkte und B und ihre Bildpunkte ' = ϕ() und B' = ϕ (B) sind die Strecken B und 'B' gleich lang: B = ' B' Isometrien sind geradentreue bbildungen, sie bilden Geraden auf Geraden ab. Die Verknüpfung von Isometrien ist wieder eine Isometrie.

8 8 2.2 Geradenspiegelung S g P. S g (P) = P' g P' Da wir unsere bbildungsgeometrie auf der Geradenspiegelung aufbauen, untersuchen wir zuerst diese bbildung. Diese bbildung ist Ihnen von der Schule her sehr bekannt. Die wichtigsten Eigenschaften der Geradenspiegelung S g 1. Zu zwei Punkten P und Q gibt es genau eine Geradenspiegelung, die P auf Q abbildet. Die Spiegelungsachse ist die Mittelsenkrechte von PQ. 2. Die Geradenspiegelung ist eine involutorische bbildung, d.h. sie ist zu sich selbst invers: S g! S g = id 3. Jeder Punkt von g ist Fixpunkt. 4. Jede zu g senkrechte Gerade ist Fixgerade. Für P g liegt der Bildpunkt P' auf der anderen Seite von g. Die Verbindungsgerade PP' steht senkrecht zu g, ist also Fixgerade. 5. Eine geschlossene Figur und ihr Bild haben entgegengesetzten Umlaufsinn. C C' B B' '

9 9 1. Beispiel Gesucht ist der kürzeste Weg vom Punkt nach B via die Gerade g. B g 2. Beispiel Gegeben sind eine Gerade g und zwei Kreise k 1 und k 2. Konstruieren Sie Quadrate, die zwei gegenüberliegende Ecken auf g haben und von denen je eine Ecke auf k 1 und k 2 liegen.

10 Isometrien der Ebene Wir suchen alle Isometrien der Ebene auf sich und wollen die Strukturen dieser Isometrien untersuchen. us ihrem Unterricht in der Sekundarschule oder im Gymnasium kennen Sie die folgenden Isometrien: Geradenspiegelung Punktspiegelung Rotation (Drehung) Translation (Verschiebung) Schubspiegelung (Vielleicht bekannt!) Die Frage lautet: Sind das nun wirklich alle Isometrien der Ebene auf sich? ls erstes suche wir alle Isometrien, die einen Punkt festlassen, also einen Fixpunkt besitzen. Definition Ein Punkt P heisst Fixpunkt der bbildung ϕ, wenn gilt: ϕ (P) = P. Satz 1: Isometrien der Ebene mit mindestens einem Fixpunkt Ist ϕ eine Isometrie der Ebene und O ein Fixpunkt von ϕ: ϕ (O) = O. Dann gilt: - Entweder ist ϕ eine Drehung um O um einen Winkel α mit 0 < α < oder ϕ ist eine Spiegelung an einer Geraden durch O - oder ϕ = id. zum Beweis Der Beweis ist nur so präzis, wie die Begriffe definiert sind (Ebene, Raum, Geradenspiegelung, Drehung,...). Wir gehen nicht auf das xiomensystem ein. (In Geometrie 2 werden wir das xiomensystem studieren) Voraussetzung: ϕ ist eine Isometrie mit einem Fixpunkt O: ϕ (O) = O. Fallunterscheidungen 1. Fall: ϕ besitzt noch einen zweiten Fixpunkt P ( O): ϕ (P) = P. Wir zeigen, dass ϕ dann entweder die Identität oder eine Geradenspiegelung ist. 2. Fall: ϕ hat genau einen Fixpunkt O. Hier zeigen wir, dass dann ϕ eine Rotation ist. Der Satz 1 gibt einen Überblick über alle Isometrien der Ebene, die mindestens einen Punkt fest lassen.

11 Wie erhält man nun alle Isometrien der Ebene, auch z. B. die Translationen? Dazu beweisen wir den folgenden Satz 11 Satz 2: alle Isometrien der Ebene Jede Isometrie der Ebene ist eine Verknüpfung einer Translation und einer Isometrie mit Fixpunkt.! " Iso #! = T! v "$, wobei $ eine Isometrie mit Fixpunkt Damit haben wir im Prinzip alle Isometrien gefunden. Die reine Translation ist die Verknüpfung der Translation mit der Identität; die Schubspiegelung die Verknüpfung einer Geradenspiegelung mit einer Translation (später). Sind 2 Punkte und ihre Bilder bekannt, so beweisen wir, dass es genau zwei zugehörige Isometrien gibt. Satz 3: Ist B und B = ' B', so gibt es genau 2 Isometrien ϕ 1 und ϕ 2, die auf ' und B auf B' abbilden und die sich nur durch eine Spiegelung an der Geraden g' = 'B' unterscheiden. B B' ' ϕ 1 oder ϕ 2 = S g' ϕ 1 g' Mit 3 Punkten und ihren Bildpunkten ist die Isometrie eindeutig bestimmt. C genau eine Isometrie ϕ B C B

12 12 Satz 4: a) Eine Isometrie der Ebene auf sich ist eindeutig festgelegt durch die Bilder dreier nicht kollinearer Punkte. b) Eine Isometrie der Ebene auf sich mit drei nicht kollinearen Fixpunkten ist die Identität. us den Sätzen 3 und 4 folgt nun leicht: Satz 5: a) Jede Isometrie der Ebene auf sich ist darstellbar als Produkt von höchstens 3 Geradenspiegelungen. b) Jede Verknüpfungt von endlich vielen Geradenspiegelungen ist eine Isometrie. c) Jedes Produkt von beliebig vielen Geradenspiegelungen lässt sich darstellen mit höchstens 3 Geradenspiegelungen. Bemerkungen Grundsätzlich unterscheidet sich eine Geradenspiegelung von der Verknüpfung zweier Spiegelungen schon wegen der Fixpunkteigenschaften. Bei der Spiegelung an einer Geraden g sind alle Punkte auf g Fixpunkte, und es gibt keine weiteren Fixpunkte. Bei der Verknüpfung von zwei Spiegelungen muss die Lage der beiden Geraden beachtet werden! Wie können die bekannten 5 Isometrien durch Geradenspiegelungen dargestellt werden? Dazu ist der im nächsten bschnitt behandelte Satz, der so genannte Dreispiegelungssatz sehr nützlich. Nachher wird es ein Leichtes sein, die bekannten Isometrien durch die Verknüpfung von höchstens 3 Geradenspiegelungen darzustellen.

13 Dreispiegelungssatz Wir wissen nun, dass sich jede Isometrie der Ebene auf sich als Verknüpfung von höchstens drei Geradenspiegelungen darstellen lässt. Damit können wir einen Überblick über alle Isometrien der Ebene gewinnen. Die nzahl und die Lage der Spiegelungsachsen wird wesentlich. Zuerst beweisen wir den folgenden wichtigen Satz, der sich auf Dreifachspiegelungen bezieht. Satz 6: Dreispiegelungssatz Die Verknüpfung dreier Geradenspiegelungen, wobei die drei Geraden entweder parallel oder kopunktal (genau einen Schnittpunkt) sind, ist darstellbar mit einer Geradenspiegelung. Gilt für die 3 Geraden g, h, k : Entweder g //h //k oder g h k = {}, dann gibt es eine Gerade m, so dass gilt: S k S h S g = S m k g m h k g h m Bemerkungen 1. Die genaue Lage der Geraden m wird nachher bestimmt. Dazu brauchen wir noch den Begriff der Orientierung. 2. Statt der obigen Gleichung S k S h S g = S,m kann man auch durch Verknüpfung von links mit S k (rsp von rechts mit S g ) die oft nützlichen äquivalenten Darstellungen erhalten. oder S h S g = S k S m S k S h = S,m S g Jetzt gibt es auf jeder Seite der Gleichung 2 Geradenspiegelungen. Man kann also statt an h und k auch an g und m spiegeln. Orientierung

14 Führt man den Begriff der Orientierung ein, so kann man mehr über die Lage der vier Geraden g, h, k, m aussagen, die im Dreispiegelungssatz (Satz 6) vorkommen. Für Winkel und Dreiecke sind zwei Orientierungen möglich. Sie bleiben bei gleichsinnigen Isometrien erhalten, bei ungleichsinnigen werden sie umgekehrt. Im 2-dimensionalen Raum wählen wir die Orientierung positiv (im Gegenuhrzeigersinn) oder negativ (im Uhrzeigersinn). 14 C gleichorientierte Dreiecke B B C gleichorientierte Winkel orientierte Gerade: Punkte auf der Geraden sind mit der Relation "vor" streng linear geordnet; entweder P Q oder Q P. Ist die Relation "vor" (willkürlich) gegeben, z. B. B, dann heisst die Gerade orientiert. B g Zwei parallele Geraden g und h heissen gleichorientiert, wenn folgendes gilt: Seien, B g und B die Orientierung von g und sei C D die Orientierung von h. Sei nun k die Transversale, die g in und h in C schneidet. Liegen B und D in derselben Halbebene von k, dann sind die parallele Geraden g und h gleichorientiert. B g h C D k Diese Definition lässt sich übertragen auf Halbgeraden oder Vektoren, die auf parallelen Trägergeraden liegen. gleichorientierte Vektoren entgegengesetzt orientierte Vektoren

15 15 Satz 6B: g, h, k und m seien vier parallele oder kopunktale Geraden, die nach Satz 6 die Gleichung erfüllen: S h S g = S k S m a) Ist g! h! k = {}, so ist der Winkel zwischen g und h gleich dem Winkel zwischen m und k. k m h g b) Ist g h k m und ist s eine Senkrechte zu diesen Geraden, die g in, h in B,!!! "!!!" m in C und k in D schneidet, so sind die Vektoren B = CD gleichorientiert und kongruent. B C D s g h m k Damit kann man eine Verknüpfung von zwei Geradenspiegelungen ersetzen durch eine andere Verknüpfung mit den entsprechenden Bedingungen. Satz 7: Eine Verknüpfung von vier Geradenspiegelungen ist stets darstellbar als Verknüpfung von genau zwei Geradenspiegelungen. lso ist jede Verknüpfung einer geraden nzahl Geradenspiegelungen mit Hilfe von genau zwei Geradenspiegelungen darstellbar. Bemerkungen 1. Eine Verknüpfung von 3 Geradenspiegelungen kann aber nie durch zwei Geradenspiegelungen dargestellt werden.

16 2. Die Isometrien der Ebene lassen sich in 2 Klassen einteilen: ungleichsinnige Isometrien: Verknüpfung einer ungeraden nzahl Geradenspiegelungen (Umwendungen). gleichsinnige Isometrien: Verknüpfung einer geraden nzahl Geradenspiegelungen (echte Bewegungen) Lage der Spiegelungsachsen Bei den gleichsinnige Isometrien können die beiden Spiegelachsen parallel sein oder sich schneiden, speziell können sie senkrecht aufeinander stehen. Die ungleichsinnige Isometrien können als eine oder als 3 Geradenspiegelungen dargestellt werden.

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

6. Euklidische und nichteuklidische Geometrien

6. Euklidische und nichteuklidische Geometrien 6. Euklidische und nichteuklidische Geometrien 6.1 Axiomensystem der ebenen euklidischen Geometrie 62 Euklids Elemente bestehen aus 13 Büchern. Sie haben kein Vorwort, keine Einleitung. Es werden keine

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

3. Ähnlichkeitsabbildungen

3. Ähnlichkeitsabbildungen 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.

Mehr

Kapitel 2. Abbildungsgeometrie

Kapitel 2. Abbildungsgeometrie Kapitel 2 Abbildungsgeometrie 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

MA 430 Geometrie 1. Universität Zürich Institut für Mathematik

MA 430 Geometrie 1. Universität Zürich Institut für Mathematik Universität Zürich Institut für Mathematik HS09 MA 430 Geometrie 1 Johanna Schönenberger-Deuel Dr. sc. math. Email: schoenenbergerdeuel@math.uzh.ch; scjo@zhaw.ch Büro: Y27J30 Tel.: +41(0)44 63 55863 2

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

MA S410 Geometrie. Johanna Schönenberger-Deuel

MA S410 Geometrie. Johanna Schönenberger-Deuel MA S410 Geometrie Johanna Schönenberger-Deuel 31. Oktober 2010 Inhaltsverzeichnis 1 Einführung 1 2 Isometrien oder Kongruenzabbildungen 7 2.1 Einführende Überlegungen........................... 7 2.2 Geradenspiegelung

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

MA S410 Geometrie und Lineare Algebra. Johanna Schönenberger-Deuel

MA S410 Geometrie und Lineare Algebra. Johanna Schönenberger-Deuel Johanna Schönenberger-Deuel 16. September 2012 Inhaltsverzeichnis 1 Isometrien oder Kongruenzabbildungen 1 1.1 Einführende Überlegungen........................... 1 1.2 Geradenspiegelung S g..............................

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A?

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A? Kapitel 2: Kongruenzabbildungen 2.1 Geradenspiegelungen a) Spiegel Wie wirkt ein Spiegel? Modellvorstellung: Jeder beleuchtete Punkt P sendet nach allen Seiten Lichtstrahlen aus Wie verlaufen die Lichtstrahlen

Mehr

Geometrie 2.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 2.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 2.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 2.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Geometrie 1.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 1.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 1.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 1.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 203 Zusammensetzung von Geradenspiegelungen Symmetriegruppen Hans Walser: Modul 203, Zusammensetzung von Geradenspiegelungen. Symmetriegruppen ii Inhalt

Mehr

Symmetrie als fundamentale Idee

Symmetrie als fundamentale Idee Symmetrie als fundamentale Idee "Ideen, die starke Bezüge zur Wirklichkeit haben, verschiedene Aspekte und Zugänge aufweisen, sich durch hohen inneren Beziehungsreichtum auszeichnen und in den folgenden

Mehr

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber Symmetrie Wiederholung in der Geometrie Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung Martin Huber Symmetrie Wiederholung in der Geometrie Ablauf 1. Wiederholung in der Mathematik

Mehr

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

6. Die Gruppe der Euklidischen Kongruenztransformationen

6. Die Gruppe der Euklidischen Kongruenztransformationen 6. Die Gruppe der Euklidischen Kongruenztransformationen Eine Fahne in der euklidischen Ebene besteht aus einem Tripel (P, g, H), wobei P ein Punkt, g eine Halbgerade mit Anfangspunkt P, und H eine Halbebene

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

Übersicht zur Vorlesung

Übersicht zur Vorlesung Stand: 19.1.2012 Übersicht zur Vorlesung Ausgewählte Kapitel der Geometrie Definitionen/Axiome Anordnungsaxiome Archimedisches Axiom Definition von größer in den reellen Zahlen Intervalle Punkte, Geraden

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg. Vorlesung 2: Kongruenzabbildungen in geometrischen Aufgaben

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg. Vorlesung 2: Kongruenzabbildungen in geometrischen Aufgaben 1 Mathematisches Institut II 15.06.2004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: usgewählte Methoden zur ufgabenlösung Vorlesung 2: Kongruenzabbildungen in geometrischen ufgaben

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

Weitere geometrische Abbildungen

Weitere geometrische Abbildungen Weitere geometrische Abbildungen Anna Wegener, Matthias Wegen, Daniel Kretschmer 15.01.2015 1 / 38 Affinitätsabbildungen - Motivation Kongruenzabbildungen Ähnlichkeitsabbildungen Affinitätsabbildungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Einige Ergebnisse der euklidischen Geometrie

Einige Ergebnisse der euklidischen Geometrie 1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen

MB1 LU 20, 21,23,24 Kongruenzabbildungen MB1 LU 20, 21,23,24 Kongruenzabbildungen Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung, die

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

2 Kongruenzabbildungen - Bewegungen

2 Kongruenzabbildungen - Bewegungen 16 2 Kongruenzabbildungen - Bewegungen 2.1 Die Gruppe der Bewegungen Bei der Untersuchung der Geradenspiegelungen hat sich ergeben, daß eine Geradenspiegelung, zweimal ausgeführt, die identische Abbildung

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

Geometrie 0.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 0.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 0.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 0.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Hyperbolische Symmetrien

Hyperbolische Symmetrien Hyperbolische Symmetrien Nina Dietsche Robert Papin 01.07.2010 1 Nina Dietsche, Robert Papin Hyperbolische Symmetrien Hyperbolische Symmetrien 2 Nina Dietsche, Robert Papin Hyperbolische Symmetrien Inhaltsverzeichnis

Mehr

Der Satz von Pythagoras

Der Satz von Pythagoras Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Historisches zur Gruppentheorie

Historisches zur Gruppentheorie Historisches zur Gruppentheorie Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 20 Gruppen: Abstrakte Definition Eine Gruppe

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm.

8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm. 8. Kleinsche Geometrie I: Hyperbolische Geometrie Nach den bisherigen Ergebnissen müssen wir uns nun um die Gruppe PSL 2 C kümmern. Das Studium dieser Gruppe wird uns in dieser Vorlesung zu einem neuen

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Elemente der Geometrie II

Elemente der Geometrie II Elemente der Geometrie II (Lehramt GHR/HR, Gym) Dr. Theo Overhagen Fachbereich 6 Mathematik Universität Siegen 2008 1 1 Die Axiome der Elementargeometrie 1.1 Das axiomatische Vorgehen Die Geometrie ist

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

Zur Deckung bringen präzisiert werden. Ich stelle zunächst Hilberts Version vor, wähle aber anschließend einen anderen, etwas anschaulicheren Weg.

Zur Deckung bringen präzisiert werden. Ich stelle zunächst Hilberts Version vor, wähle aber anschließend einen anderen, etwas anschaulicheren Weg. 30 Jetzt soll der Begriff der Kongruenz bzw. Euklids vage Vorstellung vom Zur Deckung bringen präzisiert werden. Ich stelle zunächst Hilberts Version vor, wähle aber anschließend einen anderen, etwas anschaulicheren

Mehr

Geometrie Satz des Pythagoras

Geometrie Satz des Pythagoras TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

eine O fixierende Bewegung.

eine O fixierende Bewegung. 1. Bewegungen der hyperbolischen Ebene Sei nun H eine hyperbolische Ebene. Dann erhält man dieselben Klassen von Bewegungen wie im Euklidischen Fall und eine weitere Klasse. Wir haben oben nur ein einziges

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Mathematisches Institut Prof. Dr. R. Frank / Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Algebra und Zahlentheorie 12.04.2012

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

Arbeitskreis Anwendungsorientierter Mathematikunterricht. Nicht anwendungsorientierter Mathematikunterricht" - Was ist das?

Arbeitskreis Anwendungsorientierter Mathematikunterricht. Nicht anwendungsorientierter Mathematikunterricht - Was ist das? Gymnasium Neureut Dienstag, 16.11.2010 Arbeitskreis Anwendungsorientierter Mathematikunterricht Vortrag zu Nicht anwendungsorientierter Mathematikunterricht" - Was ist das? 1 2 = 1 2 2 = 0,7071...... ist

Mehr

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen.

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. 4. Symmetrien 25 4. Symmetrien 4.1 Gruppen Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. Eine Verknüpfung auf einer Menge M ist eine Abbildung, die zwei Elementen

Mehr

Geometrie 1.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 1.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 1.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 1.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie der Ebene 2 Kongruenzabbildungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren Das komplette Material finden Sie hier: School-Scout.de S 1 Kongruenzsätze

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr.

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. 16 9 25 4 3 5 144 25 169 12 13 49 625 24 7 25 9 25 3 64 100 8 225 64 289 15 144 225 15 1296 225

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Stichwortliste zur Vorlesung. Elementargeometrie. Gabriela Weitze-Schmithüsen. Übungsleiterin: Anja Randecker. Karlsruhe, Sommersemester 2012

Stichwortliste zur Vorlesung. Elementargeometrie. Gabriela Weitze-Schmithüsen. Übungsleiterin: Anja Randecker. Karlsruhe, Sommersemester 2012 Stichwortliste zur Vorlesung Elementargeometrie Gabriela Weitze-Schmithüsen Übungsleiterin: Anja Randecker Karlsruhe, Sommersemester 2012 Kapitel 0: Eine Motivation Eine kleine Einführung mit fünf Thesen

Mehr

3.3. Drehungen und Spiegelungen

3.3. Drehungen und Spiegelungen 3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Zwillinge von Archimedes (1)

Zwillinge von Archimedes (1) Zwillinge von Archimedes (1) Zwillinge von Archimedes (2) Zwillinge von Archimedes (3) DIDAKTIK DER GEOMETRIE Elementargeometrie 2 Prof. Heinz Klemenz Universität Zürich, Kantonsschule Rychenberg Winterthur

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Skript zur Vorlesung Elementare und analytische Geometrie

Skript zur Vorlesung Elementare und analytische Geometrie Robert Labus Skript zur Vorlesung Elementare und analytische Geometrie Studienkolleg für ausländische Studierende Universität Kassel Wintersemester 2016/2017 Inhaltsverzeichnis 1 Elementargeometrie 1 1.1

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Elemente der Geometrie

Elemente der Geometrie Elemente der Geometrie (Lehramt GHR/HR, Gym) Dr. Theo Overhagen Fachbereich 6 Mathematik Universität Siegen 2006 I Inhaltsverzeichnis Inhalt Literatur I I 1 Die Axiome der Elementargeometrie 1 1.1 Das

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Nichteuklidische Geometrie

Nichteuklidische Geometrie Nichteuklidische Geometrie Teilnehmer: Phuong Anh Le Viet Son Pham Tillman Ritschl Marian Stengl Max Streese Chi Trung Vo Gruppenleiter: Andreas Filler Käthe-Kollwitz-Oberschule, Berlin Heinrich-Hertz-Oberschule,

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

1 Angeordnete Körper und Anordnung

1 Angeordnete Körper und Anordnung 1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

3 Längenmessung, Flächeninhalt, Ähnlichkeit

3 Längenmessung, Flächeninhalt, Ähnlichkeit 28 3 Längenmessung, Flächeninhalt, Ähnlichkeit 3.1 Längenmessung von Strecken Durch das Axiom (D1) haben wir jeder (nicht zu einem Punkt entarteten) Strecke eine positive reelle Zahl zugewiesen, die wir

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr