2.1. Das Wasserstoffatom Atommodelle (vor 1900)

Größe: px
Ab Seite anzeigen:

Download "2.1. Das Wasserstoffatom Atommodelle (vor 1900)"

Transkript

1 2.1. Das Wasserstoffatom Atommodelle (vor 1900) 105

2 Eigenzustände des Wasserstoffatoms Ein einfaches Beispiel: Wasserstoff in Wechselwirkung mit einem klassischen Feld. Eigenenergien wasserstoffähnlicher Atome: Klassisches Feld (monochromatische Lichtwelle): Annahme: Die Frequenz des Lichtes ist in der Nähe der Übergangsfrequenz vom Übergang: d.h.: Für die Beschreibung des Systems müssen i.w. nur zwei Zustände berücksichtigt werden. 106

3 Die Eigenzustände des Wasserstoffatoms werden aus der stationären Schrödingergleichung berechnet. Allgemeines Problem (Zentralkraft): reduzierte Masse In Polarkoordinaten löst man die Gleichung durch einen Separationsansatz, d.h.: Theorielehrbücher Es ergeben sich 3 zu lösende Differentialgleichungen: 1) Azimutalgleichung (für Φ) 107

4 2) Polargleichung (für Θ) 3) Radialgleichung (für R) Diese Separation gilt ganz allgemein für alle Zentralpotentiale V(r)! Für physikalisch sinnvolle Lösungen (Verschwinden von ψ im Unendlichen; Eindeutigkeit der Lösung; Quadratintegrierbarkeit) folgen gewisse Bedingungen für die Separationskonstanten m und l: m magnetische Quantenzahl l Drehimpulsquantenzahl 108

5 Gleichzeitig gilt: oder Die normierten Funktionen die die Winkelverteilung der Eigenfunktionen im Zentralpotential angeben, heissen Kugelflächenfunktionen. Spezielle Eigenschaften der Kugelflächenfunktionen: a) Orthonormalität b) Parität 109

6 Die Radialgleichung lässt sich zur besseren physikalischen Interpretation noch umformen: mit: folgt: Man kann ein effektives Potential definieren: Es besteht eine Analogie zur Rotationsenergie E rot eines klassischen Teilchens der Masse m r um ein Zentrum im Abstand r: mit dem Bahndrehimpuls 110

7 Aus der formalen Energie ergibt sich die Mutmassung : oder Quantenmechanischer Drehimpuls Das Zentrifugalpotential verschiebt das Minimum der radialen Wellenfunktion zu größeren Abständen. Das rechte Bild zeigt die Kombination vom Zentrifugalpotential und von einem Coulombpotential zu einem effektiven Potential 1 r V eff 2 radiale Aufenthalts- Wahrscheinlichkeit 1 r r 111

8 Das Potentialminimum des effektiven Potentials V eff liegt bei: mit Man bezeichnet r l als den Bahnradius. Spezialfall für das Wasserstoffatom Radialgleichung: Es folgt Theorielehrbücher Hauptquantenzahl Drehimpulsquantenzahl Magnetische Quantenzahl 112

9 Bemerkungen: Jeder Energieeigenwert ist n 2 -fach entartet. Die Unabhängigkeit der Energie von m folgt für alle Zentralpotentiale. Die Unabhängigkeit der Energie von l ist ein Spezialfall für das Coulombpotential! Spektroskopische Notation: l Zustand m Zustand 0 s 1 p 2 d 3 f 4 g 0 σ 1 π 2 δ 3 ϕ 4 γ Beispiel: n = 4, l = 3, m = 2 4 f δ - Zustand 113

10 Einfaches Termschema des Wasserstoffs: E 0 n = 3 s ( l = 0) 3s p ( l = 1) 3p d ( l = 2) 3d n = 2 2s 2p 3-fach entartet 5-fach entartet Ry * n = 1 1s 114

11 Der Drehimpuls Hypothese: In Anlehnung an die klassische Physik lässt sich ein quantenmechanischer Drehimpulsoperator für den Bahndrehimpuls aufschreiben: Schreibweise als Determinante: Somit in Analogie: Drehimpulsoperator 115

12 Zusammenfassung der Eigenschaften des Bahndrehimpulsoperators 1) Der Bahndrehimpuls wird beschrieben durch den Operator 2) Die Eigenwerte von sind oder formal: mit 3) vertauscht mit vertauscht nicht mit und nicht mit vertauscht nicht mit und nicht mit vertauscht nicht mit und nicht mit 4) Die Eigenwerte der z-komponente des Drehimpulsoperators sind mit 5) Die Drehimpulsquantenzahl l ist die Maximalkomponente des Drehimpulsoperators gemessen in. 116

13 Darstellung des quantenmechanischen Drehimpulses im Kreiselmodell: Beispiel: l = 3 Kugelradius = l( l + 1)h m = 1 m = 0 m = 1 m = 3 m = 2 m = 2 z y h x Ist eine Quantisierungsachse festgelegt (hier z- Richtung) und präpariert man das quantenmechanische System mit genau bestimmter Projektion auf diese Achse, so sind die Komponenten in der x- und y- Richtung vollständig unbestimmt, d.h. sie liegen auf einem Kreiskegel. m = 3 Bem: Auch für maximale z-projektion (hier m=3) ist der Drehimpuls nicht parallel zur Z-Achse. 117

14 Diskussion der Wasserstoffwellenfunktion Winkelverteilung Die Winkelverteilung ist durch die Kugelflächenfunktionen bestimmt. Die nachfolgende Abbildung zeigt eine Polardarstellung von für die Hauptquantenzahl n=4. Allgemeine Bemerkungen: Nur Zustände mit l=0 sind kugelsymmetrisch Die Winkelverteilung der quantenmechanischen (Wellen-)Lösung kann als Projektion kreisförmiger Bewegungen eines klassischen Teilchens interpretiert werden. 118

15 l=0 m=0 l=1 m=0 l=2 m=0 l=3 m=0 z y x l=1 m=1 l=2 m=1 l=3 m=1 Bsp.: l=1, m=0 Im klassischen System zeige der Drehimpuls z.b. in die x-richtung. Dies entspricht einer klassischen Bewegung in der z-y-ebene. Eine Projektion dieser Bewegung auf die z-x- Ebene liefert maximale Aufenthaltswahrscheinlichkeit an den Polen. l=2 m=2 l=3 m=2 l=3 m=3 119

16 Radiale Verteilung Zusammenstellung verschiedener Funktionen: Radiale Wellenfunktion Radiale Aufenthaltswahrscheinlichkeitsamplitude Definition der radialen Aufenthaltswahrscheinlichkeitsdichte : gibt die Wahrscheinlichkeit an, das Elektron in einer Kugelschale (Dicke dr) mit Radius r zu finden. 120

17 Allgemeine Bemerkungen zur radialen Wellenfunktion : Kugelsymmetrische Zustände mit l=0 haben stets bei r=0 das Maximum der radialen Wellenfunktion. Bei gösseren Drehimpulsquantenzahlen verschiebt das Zentrifugalpotential das Maximum der radialen Wellenfunktionen zu grösseren Abständen. Die radiale Wellenfunktion kann auch durch die Anzahl der Knoten charakterisiert werden. Es ist: Mittelwert von r Bem.: Beim Bohrschen Radius ist die Aufenthaltswahrscheinlichkeit maximal. Im Mittel befindet sich das Elektron aber im Abstand 1,5 a 0 zum Kern. 121

18 Radiale Aufenthaltswahrscheinlichkeiten der ersten drei Energieniveaus im Wasserstoffatom: n = 1, l = 0 n r = 0 n = 3, l = 0 n r = 2 n = 3, l = 1 n r = 1 n = 2, l = 0 n r = 1 n = 3, l = 2 n r = 0 n = 2, l = 1 n r = 0 122

19 Gesamte räumliche Verteilung Das Gesamtbild der räumlichen Verteilung ergibt sich durch Multiplikation der Winkelverteilung mit der radialen Verteilung, d.h. von mit Allgemeine Bemerkungen: Die Summe über alle magnetischen Quantenzahlen m für alle Stehwellen (zu einer Drehimpulsquantenzahl l und einer Hauptquantenzahl n) ergibt stets eine kugelsymmetrische Verteilung, d.h. die Wahl der Quanisierungsachse (meist z-achse genannt) ist irrelevant. 123

20 für die ersten beiden Zustände des Wasserstoffatoms 100 1s 200 2s 210 2p 211 2p 124

21 300 3s 310 3p 320 3d 311 3p 321 3d für den Zustand n=3 des Wasserstoffatoms 322 3d 125

22 Zusammenfassung: Wellenfunktionen des H-Atoms Die Winkelwellenfunktion Normierungsfaktor 126

23 Die Radialwellenfunktion assoziiertes Laguerre-Polynom mit: und: = Angstroem 127

24 Experimente mit einzelnen Atomen Atomfallen Einzelne Ladungen können nicht allein durch statische elektrische Felder stabil im Raum gehalten werden (Earnshaw-Theorem). Elektrische Wechselfelder (Paul-Falle) Elektrische und magnetische Felder (Penning-Falle) Eine Paul-Falle (Nobelpreis 1989) besteht aus zwei parabolischen Elektroden und einer Ringelektrode: 128

25 Wird eine Gleichspannung U dc und eine Wechselspannung V ac mit der Frequenz Ω angelegt, so hat das Potential nahe des Fallenzentrum die Form: Wobei r 0 und z 0 den Abstand vom Fallenzentrum zu den Elektroden angibt. Das Potential ist harmonisch und stellt für einen bestimmten Zeitpunkt eine rücktreibende Kraft in einer Dimension dar: 129

26 Die Trägheit des gefangenen Teilchens verhindert, dass das Teilchen in der anderen Richtung aus der Falle getrieben wird, bevor cos(ωt) das Vorzeichen wechselt! Für bestimmte Ω rücktreibende Kraft in allen drei Raumrichtungen Bewegungsgleichungen in der Paul-Falle: Mit der Transformation: 130

27 folgt: Mathieu sche Differentialgleichung Falls (gilt üblicherweise) ist die Lösung: mit Die Lösung besteht aus einer schnellen Bewegung der Frequenz ω (Mikrobewegung) und einer langsamen Bewegung (Makrobewegung) in einem harmonischen Potential. Im Fallenzentrum verschwindet die Mikrobewegung! 131

28 Experimentelle Realisierungen (Beispiel: Iontraps in Innsbruck, AG Blatt) Linear Ion Traps Courtesy: Rainer Blatt, University Innsbruck Paul mass filter Innsbruck Ann Arbor München Boulder, Mainz, Aarhus Innsbruck, Oxford 132

29 Innsbruck linear ion trap (2000) 1.0 mm 6 mm ω z MHz ω x, y MHz 133

30 String of Ca + ions in in a linear Paul trap row of qubits in a linear Paul trap forms a quantum register 70 µm 134

31 Level scheme of of Ca + qubit on narrow S - D quadrupole transition P 3/2 854 nm P 1/2 393 nm 397 nm 866 nm D 5/2 D 3/2 729 nm S 1/2 135

32 Spectroscopy with withquantized fluorescence (quantum jumps) P monitor Fluorescence intensity S time (s) D spectroscopy S D Anzahl # of measurements der Messungen absorption and emission cause fluorescence steps (digital quantum jump signal) detection efficiency: 99.85% D-Zustand D state occupied besetzt S S-Zustand state occupied besetzt counts Zählrate per pro 9 ms 136

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web:

Vorlesung 11: Lösung der SG für das H-Atom. Folien auf dem Web: Vorlesung 11: Roter Faden: Lösung der SG für das H-Atom Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: Demtröder, Experimentalphysik 3, Springerverlag Mai 19, 2005 Atomphysik

Mehr

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome

Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM. Emissions- und Absorptionsspektren der Atome Vorlesung 24: Roter Faden: Wiederholung Quantisierung der Energien in QM Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Lösung der Schrödingergleichung

Mehr

Φ muss eineindeutig sein

Φ muss eineindeutig sein phys4.018 Page 1 10.6.2 Lösungen für Φ Differentialgleichung: Lösung: Φ muss eineindeutig sein dies gilt nur für m l = 0, ±1, ±2, ±3,, ±l m l ist die magnetische Quantenzahl phys4.018 Page 2 10.6.3 Lösungen

Mehr

Quantenmechanische Probleme in drei Raumdimensionen

Quantenmechanische Probleme in drei Raumdimensionen KAPITEL VI Quantenmechanische Probleme in drei Raumdimensionen VI. Dreidimensionaler Kastenpotential Der Vollständigkeit halber... VI. Teilchen in einem Zentralpotential In diesem Abschnitt werden die

Mehr

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

9. Das Wasserstoff-Atom. 9.1 Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: 09. Wasserstoff-Atom Page 1 9. Das Wasserstoff-Atom 9.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).

Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik). phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 9 VL8. VL9. Das Wasserstoffatom in der Klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren des

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

Atome im elektrischen Feld

Atome im elektrischen Feld Kapitel 3 Atome im elektrischen Feld 3.1 Beobachtung und experimenteller Befund Unter dem Einfluss elektrischer Felder kommt es zur Frequenzverschiebung und Aufspaltung in optischen Spektren. Dieser Effekt

Mehr

8.3 Die Quantenmechanik des Wasserstoffatoms

8.3 Die Quantenmechanik des Wasserstoffatoms Dieter Suter - 409 - Physik B3 8.3 Die Quantenmechanik des Wasserstoffatoms 8.3.1 Grundlagen, Hamiltonoperator Das Wasserstoffatom besteht aus einem Proton (Ladung +e) und einem Elektron (Ladung e). Der

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann.

3. Geben Sie ein Bespiel, wie man Bra und Ket Notation nützen kann. Fragen zur Vorlesung Einführung in die Physik 3 1. Was ist ein quantenmechanischer Zustand? 2. Wenn die Messung eines quantenmechanischen Systems N unterscheidbare Ereignisse liefern kann, wie viele Parameter

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

10. Der Spin des Elektrons

10. Der Spin des Elektrons 10. Elektronspin Page 1 10. Der Spin des Elektrons Beobachtung: Aufspaltung von Spektrallinien in nahe beieinander liegende Doppellinien z.b. die erste Linie der Balmer-Serie (n=3 -> n=2) des Wasserstoff-Atoms

Mehr

Die Schrödingergleichung im Zentralfeld

Die Schrödingergleichung im Zentralfeld Kapitel 7 Die Schrödingergleichung im Zentralfeld 7.1 Radial- und Drehimpulsanteil Die zeitunabhängige Schrödingergleichung für ein quantenmechanisches Teilchen in einem kugelsymmetrischen Potential (Zentralfeld

Mehr

10 Quantenmechanik in 3 Dimensionen

10 Quantenmechanik in 3 Dimensionen Skript zur 2. Vorlesung Quantenmechanik, Freitag den 27. Mai, 20. 0 Quantenmechanik in 3 Dimensionen 0. Freies Teilchen Die Operatoren H = ˆp 2 /2m, p x, p y, p z sind alle unter einander vertauschbar:

Mehr

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen:

j +L z k i, j, k :Einheitsvektoren in x,y,z-richtung Die einzelnen Komponenten lassen sich gemäß folgender Determinante berechnen: 68 10 Starrer Rotator 10.6 Drehimpuls L Der Drehimpuls spielt sowohl beim Starren Rotator als auch beim Wasserstoffatom eine zentrale Rolle. Seine Eigenschaften sollen daher gesondert betrachtet werden.

Mehr

Erratum: Potentialbarriere

Erratum: Potentialbarriere Erratum: Potentialbarriere E

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Zusammenfassung Wasserstoffatom

Zusammenfassung Wasserstoffatom Ach ja... ter Teil der Vorlesung Prof. Dr. Tobias Hertel Lehrstuhl II für Physikalische Chemie Institut für Physikalische und Theoretische Chemie Raum 13 Tel.: 0931 318 6300 e-mail: tobias.hertel@uni-wuerzburg.de

Mehr

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi Quantenmechanik des Wasserstoff-Atoms [Kap. 8-10 Haken-Wolf Atom- und Quantenphysik ] - Der Aufbau der Atome Quantenmechanik ==> Atomphysik Niels Bohr, 1913: kritische Entwicklung, die schließlich Plancks

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Aufgabe 49 (E): Bohrsches Atommodell (8 Punkte)

Aufgabe 49 (E): Bohrsches Atommodell (8 Punkte) UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Georg Maret (Experimentalphysik) Raum P 1009, Tel. (07531)88-4151 E-mail: Georg.Maret@uni-konstanz.de Prof. Dr. Matthias Fuchs (Theoretische Physik) Raum

Mehr

Frühjahr 2009 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik

Frühjahr 2009 Einzelprüfungsnummer: Seite: 1. Themenschwerpunkt A. Mechanik Frühjahr 2009 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Newton sche Kosmologie Die von Hubble zuerst beobachtete Expansion des Universums wird empirisch durch das Gesetz

Mehr

Das Wasserstoffatom. Kapitel 11

Das Wasserstoffatom. Kapitel 11 04 Kapitel Das Wasserstoffatom Das Verständnis des einfachsten Atoms, d.h. des Wasserstoffatoms, ist eine der Grundlagen des Verständnisses aller Atome. Die theoretische Behandlung des Wasserstoffatoms

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Festkörperelektronik 2008 Übungsblatt 4

Festkörperelektronik 2008 Übungsblatt 4 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 4. Übungsblatt 12. Juni 2008 Die

Mehr

8 Das Wasserstoffatom

8 Das Wasserstoffatom 8DAS WASSERSTOFFATOM 41 Nomenklatur von Rotations-Vibrations-Übergängen. Bei den Spektroskopikern hat sich folgender Code eingebürgert: J := J J = 1 0 1 Code O P Q R S Hinter diese Buchstaben schreibt

Mehr

10.7 Moderne Atommodelle

10.7 Moderne Atommodelle 10.7 Moderne Atommodelle Zu Beginn des 20. Jahrhunderts entwickelte Niels Bohr sein berühmtes Bohrsches Atommodell. Mit diesem Modell konnten die Atomhüllen von einfachen Atomen wie dem Wasserstoffatom

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 2 Streutheorie, Bohrsches Atommodell, Schrödingergleichung des Wasserstoffatoms Felix Bischoff, Christoph Kastl, Max v. Vopelius 25.08.2009 Die Struktur der Atome

Mehr

Feynman Vorlesungen über Physik

Feynman Vorlesungen über Physik Feynman Vorlesungen über Physik Band llhouantenmechanik. Definitive Edition von Richard R Feynman, Robert B. Leighton und Matthew Sands 5., verbesserte Auflage Mit 192 Bildern und 22Tabellen Oldenbourg

Mehr

Theoretische Physik 4 - Blatt 1

Theoretische Physik 4 - Blatt 1 Theoretische Physik 4 - Blatt 1 Christopher Bronner, Frank Essenberger FU Berlin 21.Oktober.2006 Inhaltsverzeichnis 1 Compton-Effekt 1 2 Bohrsches Atommodell 2 2.1 Effektives Potential..........................

Mehr

Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM. Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome

Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM. Franck-Hertz Versuch. Emissions- und Absorptionsspektren der Atome Vorlesung 9: Roter Faden: Wiederholung Quantisierung der Energien in QM Franck-Hertz Versuch Emissions- und Absorptionsspektren der Atome Spektren des Wasserstoffatoms Bohrsche Atommodell Folien auf dem

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik II.4.4 b Kernspin und Parität angeregter Zustände Im Grundzustand besetzen die Nukleonen die niedrigsten Energieniveaus im Potentialtopf. Oberhalb liegen weitere Niveaus, auf welche die Nukleonen durch

Mehr

9 Translationen und Rotationen

9 Translationen und Rotationen 9 Translationen und Rotationen Übungen, die nach Richtigkeit korrigiert werden: Aufgabe 91: Drehungen Der quantenmechanische Rotationsoperator ˆR η,e dreht einen Zustand ψ um den Winkel η um die Achse

Mehr

7.3 Der quantenmechanische Formalismus

7.3 Der quantenmechanische Formalismus Dieter Suter - 389 - Physik B3 7.3 Der quantenmechanische Formalismus 7.3.1 Historische Vorbemerkungen Die oben dargestellten experimentellen Hinweise wurden im Laufe der ersten Jahrzehnte des 20. Jahrhunderts

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Drehimpuls Allgemeine Behandlung

Drehimpuls Allgemeine Behandlung Drehimpuls Allgemeine Behandlung Klassisch: = r p = r mv β m p Kreuprodukt weier Vektoren: = r p = r p sinβ 1 i Drehimpuls Allgemeine Behandlung 1 k j 1 Einheitsvektoren Vektordarstellung: = xi + yj+ k

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 13. Vorlesung 11.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Schalenmodell Kern- und Teilchenphysik Schalenmodell Das Tröpfchenmodell ist ein phänemonologisches Modell mit beschränktem Anwendungsbereich. Es wird an die Experimente angepasst (z.b. die Konstanten

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers Notizen zur Kern-Teilchenphysik II (SS 4):. Erhaltungsgrößen Prof. Dr. R. Santo Dr. K. Reygers http://www.uni-muenster.de/physik/kp/lehre/kt-ss4/ Kern- Teilchenphysik II - SS 4 1 Parität (1) Paritätsoperator:

Mehr

Darstellungstheorie I

Darstellungstheorie I Darstellungstheorie I Vortrag im Rahmen des Proseminars: Gruppentheorie und Quantenmechanik von Prof. Dr. Jan Louis und Dr. Robert Richter Universität Hamburg Jan Oliver Rieger 8. November 2012 1 1 Grundlegende

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Atome und ihre Eigenschaften

Atome und ihre Eigenschaften Atome und ihre Eigenschaften Vom Atomkern zum Atom - von der Kernphysik zur Chemie Die Chemie beginnt dort, wo die Temperaturen soweit gefallen sind, daß die positiv geladenen Atomkerne freie Elektronen

Mehr

Moderne Physik. von Paul A. Tipler und Ralph A. LIewellyn. Oldenbourg Verlag München Wien

Moderne Physik. von Paul A. Tipler und Ralph A. LIewellyn. Oldenbourg Verlag München Wien Moderne Physik von Paul A. Tipler und Ralph A. LIewellyn Oldenbourg Verlag München Wien Inhaltsverzeichnis I Relativitätstheorie und Quantenmechanik: Die Grundlagen der modernen Physik 1 1 Relativitätstheorie

Mehr

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin

Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Quantenmechanik Ferienkurs: Drehimpuls, Schrödingergleichung in Kugelkoordinaten und Spin Lukas Neumeier August 3, 010 Inhaltsverzeichnis 1 Drehimpulsoperator 1 1.1 Drehimpulsalgebra...............................

Mehr

Klausur: Quantentheorie I, WS 07/08

Klausur: Quantentheorie I, WS 07/08 Klausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich 1 Aufgabe 1: Stern-Gerlach Experiment Betrachten Sie ein neutrales Teilchen mit Spin 1/ (z. B. ein Neuton) in einem inhomogenen Magnetfeld B = b(

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik Ferienkurs Quantenmechanik Drehimpulse und Schördingergleichung in 3D 4.0.0 Mathias Kammerlocher Inhaltsverzeichnis Wichtige Kommutatoren Drehimpuls. Drehungen..................................... Drehimpulsalgebra...............................

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

2.3. Atome in äusseren Feldern

2.3. Atome in äusseren Feldern .3. Atome in äusseren Feldern.3.1. Der Zeeman-Effekt Nobelpreis für Physik 19 (...researches into the influence of magnetism upon radiation phenomena ) H. A. Lorentz P. Zeeman Die Wechselwirkung eines

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 13. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 13. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Variationsrechnung LCAO-Verfahren am Beispiel

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Kernphysik I. Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle

Kernphysik I. Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle Kernphysik I Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle Wiederholung: Erfolge des Schalenmodells Mit dem Schalenmodell können die "magischen" Zahlen erklärt werden. Kernspin

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls

n r 2.2. Der Spin Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls 2.2. Der Spin 2.2.1. Magnetische Momente In einem klassischen Atommodell umkreist das Elektron den Kern Drehimpuls Dies entspricht einem Kreisstrom. n r r I e Es existiert ein entsprechendes magnetisches

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr

Methoden der Quantenmechanik mit Mathematica

Methoden der Quantenmechanik mit Mathematica James M. Feagin Methoden der Quantenmechanik mit Mathematica Übersetzt von Felix Pahl Mit einem Geleitwort von S. Brandt und H.D. Dahmen Mit 80 Abbildungen, zahlreichen Übungen und einer 3V 2 "-Diskette

Mehr

4.3 Das Wasserstoffatom

4.3 Das Wasserstoffatom 1.3 Das Wasserstoffatom Das Wasserstoffatom besteht aus einem Atomkern, der für den normalen Wasserstoff einfach durch ein Proton gegeben ist, mit der Masse m p, und einem Elektron mit der Masse m e. Vernachlässigen

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Harmonie in der Atomhülle?

Harmonie in der Atomhülle? Harmonie in der Atomhülle? Willibald Limbrunner, Vortrag auf dem Harmonik-Symposion Nürnberg 2011 Hinführung: Die Atomhülle Die Atomhülle besteht aus einem positiv geladenen Kern und einer negativ geladenen

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

Teil II: Quantenmechanik

Teil II: Quantenmechanik Teil II: Quantenmechanik Historisches [Weinberg 1] Den ersten Hinweis auf die Unmöglichkeit der klassischen Physik fand man in der Thermodynamik des elektromagnetischen Feldes: Das klassische Strahulungsfeld

Mehr

Versuch 40: UV-Photoelektronenspektroskopie

Versuch 40: UV-Photoelektronenspektroskopie Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 6. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Streuzustände Potentialschwelle Potentialbarriere/Tunneleffekt

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr