Problem des Zufalls wird durch mathematische Modelle widergespiegelt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Problem des Zufalls wird durch mathematische Modelle widergespiegelt."

Transkript

1 Mahemak für VIW - Prof. Dr. M. Ludwg.2 Zufällge Eregsse Problem des Zufalls wrd durch mahemasche Modelle wdergespegel. Zufällger Versuch: Versuch m fesgelege belebg wederholbare Bedguge ud ugewssem Ergebs (Ausgag) Def..7 Ergebs (Ausgag) ees zufällge Versuchs wrd als zufällges Eregs bezeche, das aufree ka oder ch. Bezechuge: Zufällge Eregsse : A,B,C, Scheres Eregs : Ω (Mege aller möglche Eregsse) Umöglches Eregs:. Relao zwsche zufällge Eregsse ABC,, see Eregsse A B : M A r auch B e oder A zeh B ach sch. A= B : A zeh B ach sch ud B zeh A ach sch. C = A B : C r geau da e, we mdeses ees der bede Eregsse A oder B er; C ka auch als Summe vo A ud B berache werde. C = A = C bzw. D ree geau da e, we mdeses ees der edlch vele : D= B A( =, 2,, ) bzw. der abzählbar vele B( =, 2, ) er. = C = A B : C r geau da e, we A als auch B eree; er; C ka auch als Produk vo A ud B berache werde. C D= = A = = B : C bzw. D ree geau da e, we alle der edlch vele ( = ) ( = ) A, 2,, bzw. der abzählbar vele B, 2, eree. A B= : A ud B sd glechzeg umöglch, A ud B sd uverebar. C = A\ B : C r geau da e, we A er aber ch glechzeg B er. A=Ω\ A : zu A komplemeäres Eregs. Es gl: = A ( =,, ) blde e vollsädges Sysem vo Eregsse. ( A =Ω, A A =, j =,,), we m Ergebs ees Versuchs geau ees vo j he eree muss. Bemerkug Es gele de Recheregel zur Verküpfug m Mege, de Morga'sche Formel, Assozav-, Dsrbuv- ud Kommuavgeseze. 5

2 Mahemak für VIW - Prof. Dr. M. Ludwg Eregsfeld Def..8 Ehäl e Sysem vo Eregsse ees zufällge Versuchs alle Verbdug m desem Versuch eresserede Eregsse ud führ de Awedug der o.g. Relaoe mmer weder auf e Eregs deses Sysems, da wrd deses Sysem Eregsfeld gea ud m E bezeche. Egeschafe vo E. Ω E, E 2. A E, B E A B E, A B E 3. A E A E A E =, 2, A E, A E 4. = = Bezechuge Aomares Eregs: A E, we ke B E m B ud B A exser, so dass B A ach sch zeh. Zusammegesezes Eregs: A E, sez sch als Summe vo Eregsse des berachee Eregsfeldes zusamme. ( Operao " " ).3 Häufgke Def..9 Tr be uabhägge Wederholuge ees zufällge Versuchs e Eregs A ees Eregsfeldes E - mal e, da heß h A absolue Häufgke vo A ud h ( A ) ( A) h H ( A) = relave Häufgke vo A Versuche. Bespel: Absolue ud relave Häufgke des Aufrees eer 6 be Würfe m eem Würfel h H,3,25,2,3,25,67,875 Für große Zahl schwak H A um ee Grezwer, de ma auch emprsche Wahrschelchke e. Im obge Bespel beräg der Grezwer 6. Egeschafe der relave Häufgke H. H A ; H A =,we A=, H A =,we A=Ω 2. H ( Ω ) = 6

3 Mahemak für VIW - Prof. Dr. M. Ludwg 3. AB, E, A B= 2 2 H( A) = k ; H( B) = k H( A B) = k + k H( A B) = H( A) + H ( B) Folgeruge H A = H A. 2. H ( A B) m A, B E: H ( A B) = H ( A) + H ( B) H( A B) Bemerkug: Zufällge Versuche, de sch gegeseg ch beeflusse, werde uabhägg gea..4 Wahrschelchke Def.. Laplace Eregsfeld Falls für e Eregsfeld E zusäzlch gl. E s edlch (edlche Azahl aomarer Eregsse A ( =, 2,, ) 2. das Aufree vo A ( =, 2,, ) s glechmöglch, da wrd es als Laplace'sches Eregsfeld bezeche. Def.. Wahrschelchke A E, E se Laplace-Eregsfeld, da gl für de Wahrschelchke PA oder Azahl der aomare Eregsse A E, für de A A P( A) : = Azahl der aomare Eregsse A E Azahl der für A güsge Eregsse P( A ): = Azahl der möglche Eregsse Bespele:. P A =? A= Augezahl vo 3 Würfel =3 { } = = = C W 6 3 ( 3) P A 2. PA =,64 Im Ezelversuch s kee Aussage möglch. 3. PA<< A s praksch umöglch (r sele e). 4. PA< < A s praksch scher (r fas mmer e). Axomascher Aufbau der Wahrschelchkesrechug PA P( A). Zu jedem A E wrd e Wer zugeorde m PA wrd als Wahrschelchke des Eregsses A bezeche, charakerser durch folgede Axome: 7

4 Mahemak für VIW - Prof. Dr. M. Ludwg. A E gl P A 2. P Ω = ( = ) ( ) 3. A E ud B E see uverebar, d.h. A B= P A B = P A + P B 4. Sd A,, 2, paarwese uverebare Eregsse, so gl P A = P A = = Folgeruge: ABA,,. P( ) = E 2. PA = PA 3. PA ( B) = PA + PB PA ( B) 4. A E ( ) =,2,, blde e vollsädges Sysem vo Eregsse = P A = 5. A B P( A) P( B) 6. PB = PA ( B) + PA ( B).5 Bedge Wahrschelchkee ud uabhägge Eregsse Def..2 Bedge Wahrschelchke AB, E, P A. Da heß ( / ) P B A P A = ( B) P( A) bedge Wahrschelchke vo B uer der Bedgug A. Es gl:. P( A B) = P( B/ A) P( A) ; (Produkasaz gemäß Def..2) P( A B) 2. A B P( B A) = = P( A) Spezell: P( A/ A) ; P( / A) 3. P( B/ A) P( A) = P( A/ B) P( B) / = = Bespel: Uremodell I eer Ure befde sch 2 roe ud 25 weße Kugel. Zwe Kugel werde (wllkürlch) gezoge - ohe Zurücklege. We groß s de Wahrschelchke, dass bede Kugel ro sd.? A = erse Kugel s ro B = { } { zwee Kugel s ro} 8

5 Mahemak für VIW - Prof. Dr. M. Ludwg ( ) = ( / ), P( A), P( B/ A) P A B P B A P A ( ) P A B = = Toale (vollsädge) Wahrschelchke Aus [.4] ud m Def..2 : P( B) P( A B) P( A B) P( B) P( A) P( B/ A) P( A) P( B/ A) = = = = = + = + - Formel für oale Wahrschelchke )* Allgeme gl: Es se A ( =,, ) E e vollsädges Sysem ud = ( / ) P B P B A P A = A A A A, A ud P A P B/ A P A P B/ A ) )*: Falls = = { 2 } = ( = 2 P A > Bespel 3 Masche ferge e besmmes Erzeugs m eer esprechede Ausschussquoe. Masch.-Nr. Ael % Ausschuss % Frageselluge. Wahrschelchke dafür, dass e Produk aus dem Lager s 2. Wahrschelchke dafür, dass Ausschusssück z.b. vo erser Masche produzer wurde A = Produk der 'e Masche zu. { } B = { Ausschußproduk aus Gesamproduko} zu 2. P( A B) P( A ) P( A ) P( B/ A ) P( A) P( B/ A),2,5, 2,3,4,2 3,5,2, P( B) P B/ A,5 / = =,2 =,3,32 3,32 = P A P B/ A = P B = Erseze m Ergebs 2: A durch A ud seze P B P B/ A P de Bayes'sche Formel (Bayes ) P( B/ A) P( A) P( A/ B) = ( =,2,, ). P B/ A P A k = k k = k = A =,, E, B E blde e vollsädges Sysem. k A k, da erhäl ma 9

6 Mahemak für VIW - Prof. Dr. M. Ludwg Def..3 : Uabhägge Eregsse Zwe Eregsse AB, Eheße uabhägg, geau da we = ( P A B P A P B). Zusammehag zu bedger Wahrschelchke: Se PA ABuabhägg P B/ A = P B. > :, Bespel: Zwemalges Werfe ees deale Würfels A = erser Wurf: 6 B = C = { } { zweer Wurf: 6} { Summe beder Würfe mdeses } PB PA= = 6 P( A) P( B) = (Wahrschelchke für Aufree ees belebge Paares) 36 6 C = {( 4,6 ),( 5,5 ),( 6, 4 ),( 5,6 ),( 6,5 ),( 6,6) } P( C ) = = 36 6 Wahrschelchke, dass erser Wurf ee 6 ud zweer Wurf ee 6 s: A B= {( 6,6 )}; P( A B) = = ; A, B sd uabhägg Def..4 De Eregsse oder A, A,, 2 A werde uabhägg gea g.d.w. ( ) = P A A A P A P A P A 2 2 = = P A P A = Saz.7 AB, uabhägg AB, uabhägg AB, uabhägg. Bewes P( A B) = P( B\ A B) = P( B) P( A B) = P( B) P( A) = P B P A P A P B Aweduge: Folge vo uabhägge Versuche, A se Eregs m -e Ezelversuch (Müzwurf, Blugruppe eer Perso, Qualä vo Geräe).6 Zufallsgröße ud Wahrschelchkesvereluge Be vele Versuche sd de möglche Ergebsse durch reelle Zahle gekezeche. Def..5 Zufallsgröße Ee Zufallsgröße s ee Fuko, de jedem ω Ω ee reelle Zahl : Ω. ω zuorde :

7 Mahemak für VIW - Prof. Dr. M. Ludwg Bespele: a. Geschlech ees Neugeboree ω - mälch ω = ; ω 2 - weblch ( ω 2 ) = A = { Juge gebore} = { ω } = { = } A = B = {Mädche gebore} = { ω2} = { = } b. Schadsoffgehal der Luf % o edlch vele Were (Azahl der Telche pro cm 3 ) abzählbar vele Were (CO 2 - Kozerao) sege Zufallsgröße (Ausbreug eer Wolke m saurem Rege) c. Krakeverscherug ω - osverscher 9 ω 2 - wesverscher ( ω 2 ) = ω = ; Im allgemee eressere weger de Argumee ud Defosmege deser Fukoe, als velmehr de Wahrschelchke, m dee de Zufallsgröße besmme Were oder Were eem Iervall amm. (Wahrschelchkes-) Vereluge vo Zufallsgröße Verelug aller Wahrschelchkee auf eer Zahlegerade Def..6 Se ee Zufallsgröße. De auf defere Fuko F : = P <, () heß Verelugsfuko vo. Besmmug der Wahrschelchke P( < ) : belebg fes; A E; mm geau da ee Wer aus (, ) Nach Axom [.4] besz A de Wahrschelchke P( A ), woraus folg P( < ) = P( A). : a, we A er. Bespel: 3-malges Werfe eer Müze : W - Wappe, Z - Zahl; ( ω ) - Azahl der aufeaderfolgede W (Varao m Wederholug) ω WWW WWZ WZW WZZ ZWZ ZWW ZZW ZZZ (ω) Wahrschelchkee, dass de Were,, 2, 3 amm: k 2 3 P(=k)

8 Mahemak für VIW - Prof. Dr. M. Ludwg Verelugsfuko 7/8 F () 5/8 /8 2 3 Berechug aller eressereder Wahrschelchkee Pa x b F b F a ( < ) = Bespel: s.o. P( x 3) F ( 3) F 7 3 < = = = P( x < ) = F F ( ) = = 8 Egeschafe der Verelugsfuko F. s F 2. s mooo wachsed, d.h. F > F ( ) > F ( ) s lksseg seg, d.h. lm F = F F () 4. lm F = ud ( ) lm F = 5. P( = c) = lm F ( ) F ( c) = F ( c+ ) F ( c) Som c+ F( a+ ) ( rechseger Grezwer P a< < b = F b F a+ ( ( ) = ( + ) ( P a< b = F b+ F a+ P a b F b F a ) ) Def..7 Dskree Zufallsgröße Ee Zufallsgröße heß dskre g.d.w. se edlch oder abzählbar vele Were W = x, x, aehme ka. { } Def..8 Ezelwahrschelchke Is ee dskree Zufallsgröße m W = { x,x, }, so bezeche ma p = P( = x ), x W als Ezelwahrschelchke vo. k k k ) 2

9 Mahemak für VIW - Prof. Dr. M. Ludwg Folgerug. P( Ω ) = P( W) = p = 2. (), F = P < = p k (scheres Eregs) xk W xk < Def..9 Sege Zufallsgröße Ee Zufallsgröße heß seg, we es ee egrerbare Fuko derar gb, dass sch de Verelugsfuko () F = f x dx darselle läss. k Ee Fuko f ( x ) m der Egeschaf f ( x) dx= Spezalfälle ( ) = = P f x dx F! = Ω = < < = P P f x dx Bemerkug F = P < = P ; P = = Es gl: () F () P( ) P( ) = = > d f x F d = () ; f x < x< F = P < der Form e ma Dchefuko vo. 2 ( ) = ( ) ( ) = = P P P f x dx f x dx F F Kewere vo Vereluge.7. Erwarugswer Es werde Messuge, wobe s verschedee Messwere (, 2,, ) Häufgke h aufree, durchgeführ. Als arhmesches Mel erhäl ma h x = ( xh + + xh s s) = xh + + xh s s; H = = p x = s m der absolue 3

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

Ergebnis- und Ereignisräume

Ergebnis- und Ereignisräume I Ergebs- ud Eregsräume Zufallsexpermete Defto: E Expermet, welches belebg oft uter gleche Bedguge wederholbar st ud desse Ergebs cht mt Bestmmthet vorhergesagt werde ka (d.h. es gbt md. 2 Mgk.), heßt

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes

Quellencodierung I: Redundanzreduktion, redundanzsparende Codes Quellecoderug I: Redudazredukto, redudazsparede Codes. Redudaz. Eführug. Defto der Redudaz. allgemee Redudazredukto. redudazsparede Codes. Coderug ach Shao. Coderug ach Fao. Coderug ach Huffma.4 Coderug

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich

Analytische Statistik. Statistische Schätzungen ( Fortsetzung) Population N = unendlich. Stichprobe n = endlich Aalyche Sak Zur Ererug Sache Schäzuge ( Forezug) Populao N = uedlch Theoreche Verelug Erwarugwer Theoreche Sreuug Schprobe = edlch Häufgkeverelug Durchch Sadardabwechug Aufgabe der Schäzheore Zur Ererug

Mehr

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz. Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombator Problemstellug Ausgagsput be ombatorsche Fragestelluge st mmer ee edlche Mege M, aus dere Elemete ma edlche Zusammestelluge vo Elemete aus M bldet Formal gesproche bedeutet das: Ist M a,, a ee

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

Induktive Statistik. Statistik-Kurs

Induktive Statistik. Statistik-Kurs Idukve Sask Deskrve Sask Sask-Kurs Idukve Sask Im Allgemee dee Idexzahle dazu Aussage über Grue verschedeer aber ählcher Merkmale zu mache. I de Wrschafswsseschafe werde m Idexzahle Verhälsse zwsche eem

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen, Bedingte Wkt, Unabhängigkeit, Satz von Bayes Lösuge zu Übugs-latt 7 Klasssche Wahrschelchet Glücsspele, edgte Wt, Uabhägget, Satz vo ayes Master M Höhere ud gewadte Mathemat rof. Dr.. Grabows De folgede ufgabe löse wr uter Verwedug der bede ombatorsche

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel :

Bogenlängen. Beispiele: Die Länge eines Grafen (Bogenlänge) einer Funktion f über [ a ; b ] läßt sich berechnen mit der Formel : Bogeläge De Läge ees Gre Bogeläge eer Fuko üer [ ; ] läß sch ereche m der Formel : l ' d Des ühr de mese Fälle u komplzere Iegrde, de sch häug ur äherugswese ereche lsse. Bespele: De Keele m h, e e - h

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Satz vo Bayes ud totale

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Prinzip "Proportional Reduction of Error" (PRE)

Prinzip Proportional Reduction of Error (PRE) Dr. Reate Prust: Eführug quattatve Forschugsmethode Bvarate Maße: Przp "Proportoal Reducto of Error" (PRE) E 1 - E Fehler be Regel 1 - Fehler be Regel = E 1 Fehler be Regel 1 Regel 1: Vorhersageregel ur

Mehr

Änderungen in der Formelsammlung

Änderungen in der Formelsammlung Äderuge der Formelsammlug Äderugsdaum :. 0. 004 See 4 ur Schöheskorrekure See 6 Formel für de G-Koeffzee ergäz See 8 Idexäderug der Formel für de Forführug des ale Idex See /3 klee Äderuge bem Klumeeffek

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Erzeugen und Testen von Zufallszahlen

Erzeugen und Testen von Zufallszahlen Erzeuge ud Teste vo Zufallszahle Jürge Zumdck Eletug Ee Lergruppe wrd aufgefordert 00 Zufallszahle (0 oder ) ach folgede Methode zu erzeuge: De Hälfte der Gruppe beutzt a) ee Müze oder b) de Zufallszahlefukto

Mehr

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert

Physikalische Messungen sind immer fehlerbehaftet! Der wahre Wert ist nicht ermittelbar. Der wahre Wert x ist nicht identisch mit dem Mittelwert Physkalsche Messuge sd mmer fehlerbehaftet! Der wahre Wert st cht ermttelbar. Der wahre Wert st cht detsch mt dem Mttelwert Der Wert legt mt eer gewsse Wahrschelchket (Kofdezahl bzw. Vertrauesveau %) m

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren?

3 BE b) Wie kann man als Spieler eine Standardabweichung von annähernd null realisieren? Lk Mahemak /. Klauur. 0. 00 Bla (v ). Krakehauke 6 BE De Verwalug eer Spezalklk leg für de ufehaldauer X ee aee Tage flgede Wahrchelchkeverelug zugrude: x 5 (X x) 60 % 0 % 0 % Jeder ae zahl für de ufahme

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Formelsammlung zur Zuverlässigkeitsberechnung

Formelsammlung zur Zuverlässigkeitsberechnung Formelsmmlug zur Zuverlässgetsberechug zusmmegestellt vo Tt Lge Fchhochschule Merseburg Fchberech Eletrotech Ihlt:. Zuverlässget vo Betrchtugsehete.... Zuverlässget elemetrer, chtreprerbrer ysteme... 3.

Mehr

3. Das Messergebnis. Was ist ein Messergebnis?

3. Das Messergebnis. Was ist ein Messergebnis? . Das Messergebs Was st e Messergebs? Wederholug der Messug Wahrer Wert? Mehrere Eflussgröße Fehlerbetrachtug Messergebs Vorgeheswese für Messergebs. Bestmmug des bekate systematsche Fehlers 2. Aufahme

Mehr

Praktikumsbericht AUSFALLRATEN

Praktikumsbericht AUSFALLRATEN Praumsberch AUSALLATEN.7. Clauda Hallau Tel.: 5-95- E-Mal: verehrssysemech@dlr.de> Copyrgh ach DIN beache. Weergabe sowe Vervelfälgug deses Doumes, Verwerug ud Melug sees Ihales sd verboe, sowe ch ausdrüclch

Mehr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr

v. Weter st + r X + = ( X + ) = ( X + ) ( X + ) = P Deshalb fr 6 6 = + X = K, d. h. I desem Berech ( 6 6 ) glt also ( Idukto ach ) ( ) ( mod ), was fr 5. De Stze vo Sylow Im gaze Abschtt st G ee edlche Grue, 4 #( G). 5.. Problem: Gbt es zu jedem Teler t vo ( tj ) ee Utergrue H mt #( H) = t? We ja, wevele? Gegebesel: 9 Utergrue H vo G = A 5 mt #( H) =

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge zumdest gedalch belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Klausur zu Stochastische Risikomodellierung und statistische Methoden (Mai 2008)

Klausur zu Stochastische Risikomodellierung und statistische Methoden (Mai 2008) Klausur zu Sochassche Rskomodellerug ud sassche Mehode (Ma 8) Aufgabe (3 Puke): E Lebesverscherugsuerehme ewckel ee Tarf für ee gemsche Verscherug (d. h. de Verscherugssumme wrd glecher Höhe m Todesud

Mehr

Lösungen der Übungsaufgaben zu Kapitel 7

Lösungen der Übungsaufgaben zu Kapitel 7 Kapel 7: Prmzahlen Lösungen der Übungsaufgaben zu Kapel 7 Ü: Se p IP belebg gewähl. IA: n = : Zu zegen s p a a p a p a, des s aber genau de Aussage von Saz 7. und dam beres bewesen. IS: Se IN m belebg

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge (zumdest gedalch) belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen

Grundbegriffe. Verknüpfungen. Verknüpfungen. Rechenregeln für Mengenverknüpfungen Grudbegrffe Verüpfuge Zufallsexpermet Grudraum/ Eregsraum Ω Elemetareregs ω Eregs uter gleche Bedguge (zumdest gedalch) belebg oft wederholbarer Vorgag Mege der möglche Versuchsausgäge st beat oreter Ausgag

Mehr

Konzentrationsanalyse

Konzentrationsanalyse Kaptel V Kozetratosaalyse B. 5.. Im Allgemee wrd aus statstscher Scht zwsche - absoluter ud - relatver Kozetrato uterschede Der absolute ud relatve Aspekt wrd och emal utertelt - statscher ud - dyamscher

Mehr

2 Integrierte Sicherheitstechnik

2 Integrierte Sicherheitstechnik Iegrere Scherhesechk Scherhesechsche Archekur o MOISAFE UCS..B 2 2 Iegrere Scherhesechk De acholged beschrebee Scherhesechk des MOISAFE UCS..B erüll olgede Scherhesaorderuge: Kaegore 4 ud erorace Leel

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theore ud Numerk vo Dfferealglechuge m MATLAB ud SIMULINK K. Tauber Uversä Hamburg SS8 Usege Dfferealglechuge 6 OPTIMALE STEUERUNGSPROBLEME UND NUMERIK FÜR UNSTETIGE DIFFERENTIALGLEICHUNGEN Be Regelugsprobleme

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 005 Ihalt II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: )

Prof. Dr. B.Grabowski. Die Behauptung I folgt aus der Multiplikationsformel: ) Höhere Mathemat KI Master rof. Dr..Grabows E-ost: grabows@htw-saarlad.de Satz vo ayes ud totale Wahrschelchet Zu ufgabe anachwes der Formel I ud II: eh.: I. Formel der totale Wahrschelchet: ewes: Es glt:...

Mehr

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung

Lösungen Mehrstufige Zufallsversuche I. Ausführliche Lösung Lösuge Mehrstufige Zufallsversuche I e: A1 Aufgabe Eie Müze wird zweimal geworfe. Zeiche Sie das Baumdiagramm ud bestimme Sie die Wahrscheilichkeit für folgede Ereigisse: a) A: Geau eimal Wappe. b) B:

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung

Höhere Mathematik 4 Kapitel 17 Wahrscheinlichkeitsrechnung Höhere Mathemat 4 Katel 7 Wahrschelchetsrechug Prof. Dr.-Ig. Deter Kraus Höhere Mathemat 4 Katel 7 Ihaltsverzechs 7 Wahrschelchetsrechug...7-7. Deftoe, Besele...7-7. Bedgte Wahrschelchete, uabhägge regsse...7-7.

Mehr

erster Ansatz: Kurve durch Polygon approximieren

erster Ansatz: Kurve durch Polygon approximieren 6. Modelle für Kurve erser Asaz: Kurve durch Polygo approxmere Polygoe sd sückwese leare Approxmaoe für Kurve bzw. Fläche Nachele: hohe Zahl vo Eckpuke für geaue Repräseao erforderlch erakve Mapulao schwerg

Mehr

Finanzmathematik II: Barwert- und Endwertrechnung

Finanzmathematik II: Barwert- und Endwertrechnung D. habl. Bukhad Uech Beufsakademe Thüge Saalche Sudeakademe Sudeabelug Eseach Sudebeech Wschaf Wschafsmahemak Wesemese 004/0 Fazmahemak II: Bawe- ud Edweechug. Bawee ud Edwee vo Zahlugsehe. Effekve Jaheszssaz

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap.5: Kombinatorik. Referenzen zum Nacharbeiten: FH Wedel Prof. Dr. Sebasta Iwaows D5 Fole Dsrete athemat Sebasta Iwaows FH Wedel ap.5: ombator Refereze zum Nacharbete: Lag 5. 5. 7. (Bsp. 4) Beutelspacher 4 (außer Fxpute vo Permutatoe) eel 8 Hacheberger

Mehr

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007

FH D WS 2007/08 Prof. Dr. Horst Peters Dezember 2007 FH D WS 007/08 Prof. Dr. Horst Peters Dezember 007 Formelsammlug Wahrschelchetsrechug ud dutve Statst m Bachelor-Studegag Busess Admstrato (Modul BWL B) Sete / 6 Formelsammlug Wahrschelchetsrechug ud Idutve

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brikma http://brikma-du.de Seite 1.0.014 Lösuge zur Biomialverteilug I Ergebisse: E1 E E E4 E E E7 Ergebis Ei Beroulli-Experimet ist ei Zufallsexperimet, das ur zwei Ergebisse hat. Die Ergebisse werde

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung

Finanzmathematische Grundlagen zur Zins- und Rentenrechnung Fazmahemasche Grudlage zur Zs- ud Reerechug Fazmahemasche Grudlage zur Zs- ud Reerechug (Fassug - November 008) /3 Markus Scheche Emal: mal@markus-scheche.de Homepage: www.markus-scheche.de Fazmahemasche

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Aufgaben mit Lösungen zur Ökonometrie I. 1. Ökonometrie und empirische Wirtschaftsforschung

Aufgaben mit Lösungen zur Ökonometrie I. 1. Ökonometrie und empirische Wirtschaftsforschung Aufgaben m Lösungen zur Ökonomere I 1. Ökonomere und emprsche Wrschafsforschung 1.1 Erläuern Se de konsuonellen Elemene der Ökonomere! De Ökonomere s ene Schnmenge aus ökonomscher Theore, der Mahemak und

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Einführende Übersicht zu den erzeugenden Funktionen

Einführende Übersicht zu den erzeugenden Funktionen Pof. D. Pee vo de Lppe vesä Dusbug-Esse, Campus Esse Efühede Übesch zu de ezeugede Fuoe (pobably, mome ec. geeag fucos. Fuoe vo ufallsvaable Is ee V, da s auch ee Fuo g (, ( - μ, e ode ee V ud ha dam ee

Mehr

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz

Diskrete Zufallsvariablen. Wahrscheinlichkeitsräume Zufallsvariablen Erwartungswert Varianz. Quiz Dskrete Zufallsvarable Wahrschelchketsräume Zufallsvarable rwartugswert Varaz Quz Im Fall eer Glechvertelug sd glech große Telmege vo Ω glech wahrschelch. Z.B. glt für Ω{0,,}: {0}{}{} 3 {0,}{0,}{,} 3 Aalog

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Optimale Steuerung von Rüst- und Produktionsprozessen

Optimale Steuerung von Rüst- und Produktionsprozessen JOHANNES KEPLER UNIVERSITÄT LINZ Nezwerk für Forschug, Lehre ud Praxs Opale Seuerug vo Rüs- ud Produkosprozesse DISSERTATION zur Erlagug des akadesche Grades DOKTOR DER NATURWISSENSCHAFTEN Ageferg a Isu

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer

1.4 Wellenlängenbestimmung mit dem Prismenspektrometer F Lorbeer ud Ardt Quer 5.0.006 Physkalsches Praktkum für Afäger Tel Gruppe Optk.4 Wellelägebestmmug mt dem Prsmespektrometer I. Vorbemerkug E Prsmespektrometer st e optsches Spektrometer, welches das efallede

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Der Approximationssatz von Weierstraß

Der Approximationssatz von Weierstraß Der Approxmatossatz vo Weerstraß Ja Köster 22. Oktober 2007 1 Eführug Aus der Aalyss wsse wr, dass sch aalytsche Fuktoe durch Potezrehe der Form f(x = a 0 + a 1 x + a 2 x 2 +... darstelle lasse. Dabe kovergert

Mehr

Histogramm / Säulendiagramm

Histogramm / Säulendiagramm Hstogramm / Säuledagramm Häugkete 10 9 8 7 6 5 4 3 2 1 0 3,45 3,75 4,05 4,35 4,65 Flüge lläge [mm] Be Hstogramme st soort deutlch, daß es sch um Häugketsauszähluge hadelt. De Postoe der Klasse sowe hre

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Der Suchalgorithmus von Grover

Der Suchalgorithmus von Grover Der Suchalgorhmus vo Grover Semar: Quaerecher Dozee: Prof. Johaes Köbler ud Olaf Beyersdorff Refere: Gregor Pcker Das Problem...3 Der Algorhmus als Quaeschalkres...4 Verwedee Operaore...4 De Walsh-Hadamard-Trasformao...5

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt.

Einen Spieler interessiert nicht, wie er gewinnt, sondern ob und wie viel er gewinnt. III Zufallsgröße Bespel ud Defto Bespel: Dremal Müzwurf Spel: Esatz, we cht zwe gleche htereader 3 Auszahlug. Ω = {(x x x3) x,x,x3 {Z,K}} Retert sch deses Spel? Dabe geht es ur um de Gew! Also: Defto Gew:

Mehr

Schätzverfahren bei der linearen Einfachregression

Schätzverfahren bei der linearen Einfachregression chäzverfahre e der leare fachregreo Kofdezervalle der Regreokoeffzee Kofdezervalle der Progoewere Prof. Kück / Dr. Rcaal Delgado Lehruhl ak Regreo IV lografe: Prof. Dr. Kück Uverä Roock ak, Vorleugkrp.

Mehr

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008

KOMBINATORIK. Doina Logofătu Hochschule München, FK und 15 April 2008 KOMINORIK Doa Logofătu Hochschule Müche, FK 7 4 ud prl 8 Was st Kombator? espele für Frage ud ufgabe aus der Kombator. Was mache wr heute? (Dsusso). Przp der Iluso ud Eluso. Schubfachprzp. Permutatoe 4.

Mehr

Grundlagen der Entscheidungstheorie

Grundlagen der Entscheidungstheorie Kaptel 0 Grudlage der Etschedugstheore B. 0 (Gegestad) De Etschedugstheore befasst sch mt dem Etschedugsverhalte vo Idvdue ud Gruppe. Se besteht aus we Telgebete. Deskrptve Etschedugstheore De deskrptve

Mehr

Finanzmathematik Folien zur Vorlesung

Finanzmathematik Folien zur Vorlesung Fazmahemak Fole zu Volesug FINANZMAHEMAI. Zsechug.. Gudbegffe de Zsechug.. De ve Fageselluge de Zsechug.3. Beechug des Edkapals.4. Beechug vo Afagskapal, Zssaz ud Laufze.5. Uejähge Vezsug.6. Sege Vezsug.

Mehr

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes

STOCHASTIK. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski. Hochschule für Technik und Wirtschaft des Saarlandes STOCHASTIK Wahrschelchketstheore ud mathematsche Statstk Prof. Dr. Barbara Grabowsk Hochschule für Techk ud Wrtschaft des Saarlades Lehrehet zur Kursehet Mathematk für Iformatker m Ferstudegag Allgemee

Mehr

II. Wahrscheinlichkeitsrechnung

II. Wahrscheinlichkeitsrechnung II. Wahrschelchketsrechug Vorlesugsmtschrft - Kurzfassug Prof. Dr. rer. at. B. Grabowsk HTW des Saarlades 00 II. Wahrschelchketsrechug INHALTSVERZEICHNIS GRUNDLAGEN / DEFINITION DER WAHRSCHEINLICHKEIT...3.

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 3. Entwicklungssatz der Schaltalgebra Grudlage der Iormatk Grudlage der Dgtaltechk 3. Etwcklugssatz der Schaltalgebra Pro. Dr.-Ig. Jürge Tech Dr.-Ig. Chrsta Haubelt Lehrstuhl ür Hardware-Sotware Sotware-Co-Desg Grudlage der Dgtaltechk Etwcklugssatz

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Progrmmerug ud Agewdte Mthemtk C++ /Sclb Progrmmerug ud Eführug ds Kozept der objektoreterte Aweduge zu wsseschftlche Reches SS Ihlt Folge Rehe Verfhre zur Kovergez Bestmmug Progrmmerug ud Agewdte Mthemtk

Mehr

Definitionen und Aussagen zu Potenzreihen

Definitionen und Aussagen zu Potenzreihen Deftoe ud Aussage zu Potezrehe User bsherges Repertore a stetge Abblduge basert auf ratoale Fuktoe, also Ausdrücke, dee Addto, Subtrakto, Multplkato ud Dvso vorkomme. Auf dese Wese sd aber Epoetalfukto,

Mehr

5.5 MSC - Erweiterungen

5.5 MSC - Erweiterungen 5.5 MSC - Erweteruge MSC - Erweteruge Her ohe foral deferte Seat. Seat t Prozessalgebra öglch (sehe Dssertato vo Reers). Textuelle Sytax leße sch auch erweter. 1 5.5 MSC - Erweteruge Prozesserzeugug ud

Mehr

2.2 Rangkorrelation nach Spearman

2.2 Rangkorrelation nach Spearman . Ragkorrelato ach Spearma Wr wolle desem Kaptel de Ragkorrelatoskoeffzete ach Spearma bereche. De erste Daterehe besteht aus Realseruge x, x,..., x der uabhägg ud detsch stetg vertelte Zufallsvarable

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statstk für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Merkmal wurde 3 Gruppe beobachtet ud Form der folgede Häufgketstabelle berchtet: Klasse m Gruppe

Mehr

Mehrdimensionale Häufigkeitsverteilungen (1)

Mehrdimensionale Häufigkeitsverteilungen (1) Mehrdmesoale Häufgketsverteluge () - De Begrffe uvarat ud bvarat - Vo uvarate (edmesoale) statstsche Aalyse sprcht ma, we pro Perso ur e Merkmal tabellarsche oder grafsche Häufgketsverteluge oder be der

Mehr

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011)

Formelsammlung gültig ab Einstellungstermin 1. April 2011 (Stand: 1. April 2011) Formelsammlug gülg ab Esellugserm. Aprl (Sad:. Aprl ) FACHHOCHSCHULE DER DEUTSCHEN BUNDESBANK - UNIVERSITY OF APPLIED SCIENCES - Schloss Hacheburg Fachsude für de gehobee Bades m Bachelorsudegag Fachhochschule

Mehr

av, Stand % w w w.alvico.ch

av, Stand % w w w.alvico.ch T o c euh ouv eau e eu U g V D V B U V L U UV UD Ä B be -T VU D UV av, Sad 06.2017 alv L U Verka uf- é V L D V U LV Z V al U U B UV be eu U UV V L V D U ue q Téch e m â du B de Vee T 20% euh e LV V l G

Mehr