Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente"

Transkript

1 Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren

2 Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren Aufgabe 11 Gegeben sei eine MOS-Struktur mit Metall-Gate, SiO 2 (ε ox = 3,9) und homogen p-dotiertem Silicium. Die Dotierungskonzentration des Siliciums betrage N A = 4,12A10 16 cm -3. Das Siliciumdioxid sei frei von Oxidladungen. Die C(U)-Kennlinie der Struktur bei hohen Frequenzen sei in Abbildung 11.1 gegeben. Die Temperatur betrage für alle Teilaufgaben T = 300 K. Es kann jeweils von vollständiger Ionisation der Dotieratome ausgegangen werden. Für Silicium können bei 300 K folgende Materialparameter angenommen werden: - relative Dielektrizitätskonstante ε HL = 11,8, - Elektronenaffinität χ HL = 4,05 V, - intrinsische Ladungsträgerkonzentration n i = 1,08A10 10 cm -3. Abbildung 11.1: Hochfrequnz-C(U)-Kennlinie einer MOS-Struktur 11.1 Bestimmen Sie aus der C(U)-Kennlinie in Abbildung 11.1 über die Oxidkapazität C ox die Oxiddicke d ox. Gehen Sie im folgenden von einer Oxiddicke d ox von 15 nm aus Wie weit dehnt sich die Raumladungszone bei der C(U)-Messung maximal im Silicium aus?

3 Übung zum vhb-kurs Halbleiterbauelemente Seite Welches der angegebenen Elemente müßte für die Metallisierung gewählt werden, damit sich eine Einsatzspannung U Th der MOS-Struktur von 0,331 V ergibt? Begründen Sie Ihr Ergebnis. Element Al Pt Pd W Austrittsarbeit qφ M in ev 4,1 5,6 5,2 4, Wie groß ist die Spannung, die über dem Oxid beim Einsetzen der starken Inversion (U G = U Th ) abfällt? Wie groß ist folglich die elektrische Feldstärke im Oxid in diesem Arbeitspunkt?

4 Übung zum vhb-kurs Halbleiterbauelemente Seite 17 Aufgabe 12 Gegeben sei ein MOS-Transistor mit einer Palladium-Metallisierung (φ M = 5,2 V). An der Oxid- Silicium-Grenzfläche befinde sich die positive Flächenladungsdichte Q IS = qa10 11 cm -2. Das Substrat sei homogen p-dotiert und weise eine Elektronenbeweglichkeit im Kanalgebiet von 1100 cm 2 /Vs auf. Der Kanal habe eine Länge von 20 µm, die Gatefläche betrage 0,004 mm 2. Alle Berechnungen sollen für Raumtemperatur durchgeführt werden (T = 300 K). Weitere Kenngrößen bei dieser Temperatur sind: Relative Dielektrizitätskonstante des Oxids: ε ox = 3,9 Relative Dielektrizitätskonstante des Siliciums: ε Si = 11,8 Bandabstand von Silicium: E g = 1,124 ev Elektronenaffinität im Silicium: χ Si = 4,05 V Intrinsische Ladungsträgerkonzentration in Silicium: n i = 1,08A10 10 cm Die Weite der Raumladungszone bei dem Oberflächenpotential φ S = 0,256 V beträgt 0,646 µm. Bestimmen Sie die maximale Weite der Raumladungszone w RL,max! Rechnen Sie in den folgenden Teilaufgaben mit einer Substratdotierung von cm -3! 12.2 Die Einsatzspannung U Th sei durch die Isolatorladungen an der Oxid-Silicium-Grenzfläche um 0,0974 V gegenüber der Einsatzspannung U Th,o ohne Isolatorladungen verschoben. Berechnen Sie die Einsatzspannung U Th! Rechnen Sie in den folgenden Teilaufgaben mit einer Einsatzspannung von 0,87 V! 12.3 Zeichnen Sie das Bänderdiagramm für die MOS-Struktur entlang des Schnitts SS= (MOS- Kondensator, siehe Abbildung 12.1) für den Fall U G = U FB. Geben Sie dazu alle relevanten Größen an. Wie groß sind insbesondere die Oxiddicke d ox und die Weite der Raumladungszone w RL? 12.4 Der Transistor soll als Widerstand im linearen Bereich eingesetzt werden. Wie groß muß UG gewählt werden, wenn der Widerstand genau 100 Ω betragen soll? Welche Bedingung muß für U D gelten? 12.5 Zeichnen Sie die Übertragungskennlinie des Transistors für U D = 0,5 V. Markieren Sie dabei explizit den linearen Bereich!

5 Übung zum vhb-kurs Halbleiterbauelemente Seite 18 Aufgabe 13 Gegeben ist die in Abb gezeigte MOS-Struktur. Die Metallisierung besteht aus Aluminium (φ M = 4,1 V), die Raumladungsdichte fester Oxidladungen ist q cm -3 und die Flächenladungsdichte an der Oxid-Silicium-Grenzfläche hat den Wert q cm -2. Das Substrat ist p- dotiert. Alle Berechnungen sind für die Temperatur von 300 K durchzuführen. Weitere Kenngrößen: Relative Dielektrizitätskonstante des Oxids: ε ox = 3,9 Relative Dielektrizitätskonstante des Siliciums: ε Si = 11,8 Bandabstand von Silicium: E g = 1,124 ev Elektronenaffinität im Silicium: χ Si = 4,05 V Intrinsische Ladungsträgerkonzentration in Silicium: n i = 1, cm -3 Hinweis: Alle Teilaufgaben sind unabhängig voneinander lösbar! Abbildung 13.5: MOS-Struktur An die MOS-Struktur wird die Einsatzspannung von 0,7 V angelegt, was ein Oberflächenpotential φ S von 0,8 V zur Folge hat Berechnen Sie die Dotierungskonzentration des Substrats und die Weite der Raumladungszone. Verwenden Sie im weiteren für die Dotierungskonzentration den Wert 5, cm -3! 13.2 Berechnen Sie die Oxiddicke und die Gesamtkapazität der MOS-Struktur! Hinweis: Die Oxiddicke ergibt sich als Lösung einer quadratischen Gleichung und ist kleiner als 100 nm!

6 Übung zum vhb-kurs Halbleiterbauelemente Seite 19 Für die folgenden Aufgaben wird die MOS-Struktur durch ein Source- und Draingebiet zu einem MOS-Transistor erweitert (Abb 13.2). Die Elektronenbeweglichkeit μ n im Kanal ist mit 550 cm 2 /Vs gegeben. Verwenden Sie im weiteren eine Oxiddicke von 25 nm! Abbildung 13.2: MOS-Transistor 13.3 Der Transistor hat bei der Gatespannung U G = 2U Th (U B = 0 V) im linearen Bereich einen Kanalwiderstand von 200 Ω. Berechnen Sie die Kanallänge des Transistors, wenn die Kanalweite 190 μm beträgt und geben Sie den möglichen Sättigungsstrom an! 13.4 Die Einsatzspannung wird nun durch Anlegen einer Bulkspannung verändert. Ermitteln Sie aus dem in Abb 13.3 gegebenen Teil der Übertragungskennlinie des Transistors (mit U D = 2 V) die neue Einsatzspannung und bestimmen Sie daraus die angelegte Bulkspannung. Vervollständigen Sie die Kennlinie im Bereich 0 V - 5 V! Abbildung 13.3: Übertragungskennlinie des Transistors für U D =2V

7 Übung zum vhb-kurs Halbleiterbauelemente Seite 20 Aufgabe 14 Gegeben sei der in Abb gezeigte MOS-Transistor, der bei geerdetem Substrat die Einsatzspannung 2 V und die Flachbandspannung -1 V besitzt. Ferner hat der Betrag des Substratsteuerfaktors den Wert 2,488 V 0,5. Beim Anlegen einer Gatespannung von 0,96 V stimmt die Löcherkonzentration im Substrat an der Grenzfläche zum Oxid mit der intrinsischen Ladungsträgerkonzentration überein. Alle Rechnungen sind für eine Temperatur von 300 K durchzuführen. Weitere Größen: Relative Dielektrizitätskonstante des Oxids: ε ox = 3,9 Relative Dielektrizitätskonstante des Siliciums: ε Si = 11,8 Intrinsische Ladungsträgerkonzentration in Silicium: n i = 1, cm -3 Abbildung 14.1: MOS-Transistor 14.1 Ermitteln Sie, ob das Substrat p- oder n-dotiert ist und geben Sie an, für welche Gatespannungen U G sich das Substrat an der Grenzfläche zum Oxid im Zustand der Anreicherung, der Verarmung, der schwachen Inversion und der starken Inversion befindet (U B = 0 V)! 14.2 Berechnen Sie die Dotierungskonzentration des Substrats und die Dicke des Oxids!

8 Übung zum vhb-kurs Halbleiterbauelemente Seite 21 Bei der Gatespannung 5 V und der Drainspannung 2 V fließt ein Drainstrom I D von 9 ma (U B = 0 V) Berechnen Sie den Strom I D, wenn die Gatespannung 3 V, die Drainspannung U D 1 V und die Substratspannung U B -0,5 V beträgt! Der Strom kann durch jeden der drei Parameter Gatespannung, Drainspannung und Substratspannung zu Null gesetzt werden. Geben Sie für jeden der drei Parameter die dazu nötige Spannung oder den Spannungsbereich an, wenn die beiden anderen Parameter die in dieser Aufgabe genannten Werte haben Drain und Gate des Transistors werden nun leitend miteinander verbunden, ebenso wie Source mit dem Substrat, so daß der Transistor jetzt als Zweipol mit den beiden Anschlüssen Source und Drain betrachtet werden kann. Für welche Drainspannungen arbeitet der Transistor im Sättigungs- bzw. im Triodenbereich? Geben Sie einen analytischen Ausdruck für den Leitwert des Transistors in Abhängigkeit von der Drainspannung an und stellen Sie den Leitwert im Bereich U D [0 V; 5 V] graphisch dar!

9 Übung zum vhb-kurs Halbleiterbauelemente Seite 22 Multiple Choice Feldeffekttransistoren richtig falsch Die Flachbandspannung eines MOS-Kondensators ist abhängig von der Substratdotierung. Unter Vernachlässigung von Oxidladungen ist die Flachbandspannung eines MOS-Kondensators gleich der Austrittsarbeitsdifferenz zwischen Metallelektrode und Halbleiter. Bei einem n-kanal-feldeffekttransistor darf die am Substrat gegenüber dem Source-Kontakt angelegte Spannung U B nicht negativ sein. Die Oxidkapazität einer Metall-Oxid-Halbleiter-Struktur ist unabhängig von der Substratdotierung. Die Transkonduktanz eines MOS-Feldeffekttransistors wird von der Gateoxiddicke des Transistors beeinflusst. Die minimale Gesamtkapazität einer Metall-Oxid-Halbleiter-Struktur (MOS- Struktur) ist unabhängig von der Dicke der Isolatorschicht. Ein Metall-Oxid-Halbleiter-Kondensator auf p-substrat befindet sich in Akkumulation, wenn sich an der Oxid-Halbleiter-Grenzfläche mehr Elektronen befinden als im Flachbandfall.

Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten

Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten Übung Integrierte Schaltungen 4. Übung: Kapazitäten, Arbeitspunkt, Kleinsignalverhalten Organisatorisches Termine: 01.11.2013 15.11.2013 29.11.2013 13.12.2013 10.01.2014 http://www.meis.tu-berlin.de/menue/studium_und_lehre/

Mehr

Handout. Der MosFET. Von Dominik Tuszyński. Tutor: Ulrich Pötter

Handout. Der MosFET. Von Dominik Tuszyński. Tutor: Ulrich Pötter Handout Der MosFET Von Dominik Tuszyński Tutor: Ulrich Pötter 1 Inhaltsverzeichnis: 1. Geschichte S.3 2. Aufbau S.3 3. Funktionsweise S.4 4. Kennlinienfeld S.5 5. Verwendung S.6 6. Quellen S.7 2 1. Geschichte

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5 Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 5 Prof. Baitinger / Lammert Besrechung: 15.01.2001 b) Die Diode wird in der Schaltung nach Abb. 1-2 betrieben. Berechnen Sie jeweils die

Mehr

E l e k t r o n i k II

E l e k t r o n i k II Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k II Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Feldeffekttransistoren

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

Ausarbeitung: MOSFET

Ausarbeitung: MOSFET Ausarbeitung: MOSFET Inhaltverzeichnis: 1. Einleitung 2. Definition 3. Aufbau 4. Kennlinien 5. Anwendungen 6. Vor- & Nachteile 7. Quellen 1 1.Einleitung: Die erste begrifflich ähnliche MOSFET- Struktur

Mehr

Nanotubes. Bauelemente für eine neue Nanoelektronik. Moritz Bubek

Nanotubes. Bauelemente für eine neue Nanoelektronik. Moritz Bubek Nanotubes Bauelemente für eine neue Nanoelektronik Moritz Bubek Übersicht Struktur von Nanotubes Defekte an Nanotubes klassischer Schottky-Effekt Elektrische Eigenschaften von SWNTs SWNT-Schottky-Diode

Mehr

U L. Energie kt ist groß gegenüber der Aktivierungs-

U L. Energie kt ist groß gegenüber der Aktivierungs- Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen

Mehr

Aufgabe 1: Passive Bauelemente (20 Punkte)

Aufgabe 1: Passive Bauelemente (20 Punkte) 1 Aufgabe 1: Passive Bauelemente (20 Punkte) Gegeben ist eine Anordnung, bei dem ein Chip mittels eines dünnen Drahtes (Bonddraht) mit einer Leitung auf einer Platine verbunden ist. Der Bonddraht besteht

Mehr

Beispielklausur 5 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 5 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur, sowie die

Mehr

LABORÜBUNG Feldeffekttransistor

LABORÜBUNG Feldeffekttransistor LABORÜBUNG Feldeffekttransistor Letzte Änderung: 14.4 2005 Lothar Kerbl Inhaltsverzeichnis Überblick... 2 Messaufgabe 1: Steuerkennlinie n-kanal j-fet... 2 Steuerkennlinien von MOS-FETs... 4 Theoretische

Mehr

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog Diplomvorprüfung für Maschinenwesen SS 2009 Technische Elektrizitätslehre I Prof. Dr.-Ing. H.-G. Herzog am 07.09.2009 Name:.. Vorname: Matrikelnummer:... 1. Korrektur 2. Korrektur 3. Korrektur Seite 1

Mehr

Josef Biba (Autor) Herstellung und Charakterisierung von high-k Metal-Gate CMOS Transistoren

Josef Biba (Autor) Herstellung und Charakterisierung von high-k Metal-Gate CMOS Transistoren Josef Biba (Autor) Herstellung und Charakterisierung von high-k Metal-Gate CMOS Transistoren https://cuvillier.de/de/shop/publications/6316 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,

Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik, Feldeffekttransistoren 1 JFET Sperrschicht - FET (Junction FET) Sperrschicht breitet sich mit Ansteuerung in den Kanal aus und sperrt diesen Es gibt zwei Arten n-kanal, p-kanal 2 JFET Schaltzeichen 3 Das

Mehr

4. Feldeffekttransistor

4. Feldeffekttransistor 4. Feldeffekttransistor 4.1 Aufbau und Funktion eines Sperrschicht-FETs (J-FET) Eine ganz andere Halbleiterstruktur gegenüber dem Bipolartransistor weist der Feldeffektransistor auf. Hier wird ein dotierter

Mehr

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 9. Vorlesung Dr.-Ing. Wolfgang Heenes 15. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Der Feldeffekt 2. Feldeffekttransistoren

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

Diplomprüfung Elektronik WS 2006/07 Dienstag,

Diplomprüfung Elektronik WS 2006/07 Dienstag, FH München FK 3 Maschinenbau Diplomprüfung Elektronik WS 6/7 Dienstag, 3..7 Prof. Dr. Höcht (Prof. Dr. Kortstock) Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.:

Mehr

Der MosFET. Referent: Dominik Tuszyoski

Der MosFET. Referent: Dominik Tuszyoski Der MosFET Referent: Dominik Tuszyoski 27.05.2010 1. Geschichte 1.1.Erfinder 1.2.Ein paar Fakten 2. Einsatzgebiete 3. Aufbau 3.1. Schaltzeichen 3.2. physikalischer Aufbau 3.3. Funktionsweise 3.4.1. Kennlinienfeld

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben.

Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Für alle Rechnungen aller Aufgabenteile gilt: T = 300 K und n i = 1 10 10 cm 3 sofern nicht anders angegeben. Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters.

Mehr

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2016/17 Elektronik Matr.-Nr.: Name, Vorname: Hörsaal: Unterschrift: Prof. Dr.-Ing. Tilman

Mehr

Beispielklausur 1 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 1 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie das Bändermodell eines p-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur, sowie die

Mehr

Grundlagen-Vertiefung zu PS8. Bau und Funktion von Feldeffekt-Transistoren Version vom 5. März 2013

Grundlagen-Vertiefung zu PS8. Bau und Funktion von Feldeffekt-Transistoren Version vom 5. März 2013 Grundlagen-Vertiefung zu PS8 Bau und Funktion von Feldeffekt-Transistoren Version vom 5. März 2013 Feldeffekt-Transistoren Feldeffekt-Transistoren (FET) sind Halbleiter-Bauelemente, deren elektrischer

Mehr

Vertikaler Tunnel-Feldeffekttransistor auf Silizium

Vertikaler Tunnel-Feldeffekttransistor auf Silizium UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Vertikaler Tunnel-Feldeffekttransistor auf Silizium Stefan Sedlmaier Vorsitzender des Promotionsausschusses: Prof.

Mehr

An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt.

An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt. 1. Aufgabe: Halbleitergrundlagen und Halleffekt An eine n-typ Halbleiterprobe mit (n >> p) wird an zwei Kontakten eine Spannung U Bat angelegt und somit ein Stromfluss I durch die Probe erzeugt. U Bat

Mehr

VLSI-Entwurf. Modelle und Schaltungen von Professor Dr.-Ing. Kurt Hoffmann 3., durchgesehene Auflage

VLSI-Entwurf. Modelle und Schaltungen von Professor Dr.-Ing. Kurt Hoffmann 3., durchgesehene Auflage VLSI-Entwurf Modelle und Schaltungen von Professor Dr.-Ing. Kurt Hoffmann 3., durchgesehene Auflage Mit 307 Bildern, 15 Tabellen, 14 Beispielen und 77 Aufgaben R. Oldenbourg Verlag München Wien 1996 Inhaltsverzeichnis

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Angabe Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

VLSI-Entwurf. Modelle und Schaltungen von Professor Dr.-Ing. Kurt Hoffmann 4., durchgesehene Auflage

VLSI-Entwurf. Modelle und Schaltungen von Professor Dr.-Ing. Kurt Hoffmann 4., durchgesehene Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. VLSI-Entwurf Modelle und Schaltungen von Professor Dr.-Ing. Kurt

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

JFET MESFET: Eine Einführung

JFET MESFET: Eine Einführung JFET MESFET: Eine Einführung Diese Präsentation soll eine Einführung in den am einfachsten aufgebauten Feldeffektransistor, den Sperrschicht-Feldeffekttransistor (SFET, JFET bzw. non-insulated-gate-fet,

Mehr

1 Grundlagen. 1.1 Aufbau eines Bipolartransistors Allgemeiner Aufbau Aufbau eines npn-bipolartransistors

1 Grundlagen. 1.1 Aufbau eines Bipolartransistors Allgemeiner Aufbau Aufbau eines npn-bipolartransistors 1 Grundlagen 1.1 Aufbau eines Bipolartransistors 1.1.1 Allgemeiner Aufbau Der zweite wichtige Transistortyp neben dem Feldeffekttransistor ist der Bipolartransistor. Seine Funktionsweise beruht auf beiden

Mehr

Stromdurchflossene Leiter im Magnetfeld, Halleffekt

Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll zum Versuch Stromdurchflossene Leiter im Magnetfeld, Halleffekt Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Dezember 2007 1 Messung des magnetischen Feldes mit einer Feldplatte

Mehr

2 Elektrischer Stromkreis

2 Elektrischer Stromkreis 2 Elektrischer Stromkreis 2.1 Aufbau des technischen Stromkreises Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Stromkreise in äußere und innere Abschnitte einzuteilen und die Bedeutung

Mehr

Diplomprüfung Elektronik SS 2005 Montag,

Diplomprüfung Elektronik SS 2005 Montag, FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS Montag, 18.7. Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: Unterschrift:

Mehr

Grundlagen der Technischen Informatik. Einführung in CMOS-Technologie. Kapitel 7.2

Grundlagen der Technischen Informatik. Einführung in CMOS-Technologie. Kapitel 7.2 Einführung in CMOS-Technologie Kapitel 7.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Abstraktionsebenen SYSTEM-Ebene + MODUL-/RT-Ebene (Register-Transfer) Logik-/GATTER-Ebene

Mehr

Statische CMOS Schaltungen

Statische CMOS Schaltungen Statische CMOS Schaltungen MOSFET Modelle / MOSFET Modellierung gehalten von Vincent Ebert am: 13.05.2005 Proseminar Statische CMOS Schaltungen Prof. Dr. Zehendner SS 2005 1 Übersicht 1. MOSFET Modellierung

Mehr

Simulation und vergleichende elektrische Bewertung von planaren und 3D-MOS-Strukturen mit high-κ Gate Dielektrika

Simulation und vergleichende elektrische Bewertung von planaren und 3D-MOS-Strukturen mit high-κ Gate Dielektrika Simulation und vergleichende elektrische Bewertung von planaren und 3D-MOS-Strukturen mit high-κ Gate Dielektrika Vom Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt

Mehr

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω Probeklausur Elektronik, W 205/206. Gegeben ist die folgende Schaltung: R U q R 3 R 2 R 4 U L 2 mit Uq= 0 V R= 800 Ω R2=, kω R3= 480 Ω R4= 920 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen Gesetze

Mehr

1 Grundlagen. 1.1 Aufbau eines n-kanal-fet Allgemeiner Aufbau. 1.1 Aufbau eines n-kanal-fet

1 Grundlagen. 1.1 Aufbau eines n-kanal-fet Allgemeiner Aufbau. 1.1 Aufbau eines n-kanal-fet 1 Grundlagen 1.1 Aufbau eines nkanalfet 1.1.1 Allgemeiner Aufbau Ein Transistor ist ein elektronisches Halbleiterbauelement das zum Schalten oder Verstärken von Strom verwendet werden kann. Der Stromfluss

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Prüfung Elektronik 1

Prüfung Elektronik 1 Prof. Dr.-Ing. J. Siegl 01. Februar 2007 Georg Simon Ohm Fachhochschule Nürnberg FB Elektrotechnik-Feinwerktechnik-Informationstechnik; Vorname: Unterschrift Name: Matrikelnummer: Prüfung Elektronik 1

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 04.04.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.:

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Aufgabe 1 Kondensatorformel

Aufgabe 1 Kondensatorformel Physikklausur Elektrische Felder Tarmstedt, 02.10.2009 erhöhtes Niveau (Folker Steinkamp) Ph_eN_2011 Name: Punkte: von Notenp. Zensur Aufgabe 1 Kondensatorformel Versuchsbeschreibung: Lädt man einen Kondensator

Mehr

Aufgaben zur Analogen Schaltungstechnik!

Aufgaben zur Analogen Schaltungstechnik! Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt

Mehr

Grundlagen der VLSI-Technik

Grundlagen der VLSI-Technik Grundlagen der VLSI-Technik VLSI-Systeme I Prof. Dr. Dirk Timmermann Institut für Angewandte Mikroelektronik und Datentechnik Fakultät für Informatik und Elektrotechnik Universität Rostock Vorteile der

Mehr

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 2 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I 1.1) Skizzieren Sie (ausreichend groß) das Bändermodell eines n-halbleiters. Zeichnen Sie das Störstellenniveau, das intrinsische Ferminiveau und das Ferminiveau bei Raumtemperatur,

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Lösung zu Aufgabe 2.1

Lösung zu Aufgabe 2.1 Lösung zu Aufgabe 2.1 Der Abstand zwischen Fermi-Energie und Leitungsbandkante beträgt auf der n-typ- Seite ) NC W C W F = k B T ln ; N D auf der p-typ Seite gilt für den Abstand von Fermi-Energie und

Mehr

Wir wünschen Ihnen bei der Bearbeitung viel Erfolg!

Wir wünschen Ihnen bei der Bearbeitung viel Erfolg! Semesterabschlussklausur Wintersemester 200/2005: WERKSTOFFE UND BAUELEMENTE DER ELEKTROTECHNIK I (Bauelemente) Name: Matrikelnummer: Lesen Sie bitte vor dem Beginn der Bearbeitung die einzelnen Aufgaben

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Feldeffekttransistoren

Feldeffekttransistoren Feldeffekttransistoren ortrag im Rahmen des Seminars Halbleiterbauelemente on Thomas Strauß Gliederung Unterschiede FET zu normalen Transistoren FET Anwendungsgebiete und orteile Die Feldeffekttransistorenfamilie

Mehr

Integrierte Schaltungen

Integrierte Schaltungen Klausur Integrierte Schaltungen 28.03.2014 Hinweise: Beantwortung der Fragen bitte nur auf den Aufgabenbättern! (inkl. Rückseite) Nur vom Assistenten angeheftete und abgezeichnete Zusatzblätter werden

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Gleichungen für MOS-Transistoren

Gleichungen für MOS-Transistoren Seite 1 MICROSWISS-ZENTRUM NORD-OST Ingenieurschule Rapperswil Autor: Daniel Brugger Version: 3.3 Datum: 1. April 1999 File: w_zu_l.doc Gleichungen für MOS-Transistoren Inhalt: 1. Einführung 2. Allgemeine

Mehr

Lösung zu Aufgabe 3.1

Lösung zu Aufgabe 3.1 Lösung zu Aufgabe 3.1 (a) Die an der Anordnung anliegende Spannung ist groß im Vergleich zur Schleusenspannung der Diode. Für eine Abschätzung des Diodenstroms wird zunächst die Näherung V = 0.7 V verwendet,

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 1. Klausur Grundlagen der Elektrotechnik I-B 25. Mai 2004 Name:............................. Vorname:............................. Matr.-Nr.:............................. Bitte den Laborbeteuer ankreuzen

Mehr

7. Unipolare Transistoren, MOSFETs

7. Unipolare Transistoren, MOSFETs 7.1. Funktionsweise Die Bezeichnung MOSFET (Metal Oxide Semiconductor Field Effect Transistor) deutet auf den Aufbau dieses Transistors hin: Das Halbleiterelement ist mit einer sehr dünnen, isolierenden

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung Elektronische Bauelemente WS2012/13 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 23.1.2013 (90 Minuten) Prof. Dr.-Ing. Großmann,

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

MUSTERKLAUSUR Sommersemester 2011

MUSTERKLAUSUR Sommersemester 2011 L E H R S T U H L F Ü R T E C H N I S C H E E L E K T R O N I K T e c h n i s c h e U n i v e r s i t ä t M ü n c h e n A r c i s s t r a ß e 2 1 80333 M ü n c h e n Tel.: 089/289-22929 Fax.: 089/289-22938

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Elektronik-Grundlagen I Elektronische Bauelemente

Elektronik-Grundlagen I Elektronische Bauelemente Elektronik-Grundlagen I Elektronische Bauelemente - Einführung für Studierende der Universität Potsdam - H. T. Vierhaus BTU Cottbus Technische Informatik P-N-Übergang HL-Kristall, Einkristall p-dotiert

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002 Haupttermin: Nach- bzw. Wiederholtermin: 08.0.2002 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

Aufgabe 1 Bipolare Transistoren

Aufgabe 1 Bipolare Transistoren 2 22 Aufgabe Bipolare Transistoren (22 Punkte) Gegeben sei die folgende Transistor-Schaltung bestehend aus einem pnp- und einem npn-transistor. i b2 i c2 i b T2 i c T i 2 R 2 i a =0 u e u a U 0 i R Bild

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 7. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 7 FH München, FB 03 Grundlagen der Elektrotechnik SS 2006 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C) 6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise

Mehr

Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl

Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl Präsentation SSP Immanuel Mayrhuber, Boris Scherwitzl Übersicht Erklärung eines pn Übergangs Halbleiterdioden Photodioden Leuchtdioden Bipolartransistor JFET MOSFET pn Übergang y y y y y y Übergang von

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0)

Fall 1: Diode D1 sperrt (u D1 < 0), Diode D2 leitet (i D2 > 0) Fall 2: Diode D1 leitet (i D1 > 0), Diode D2 sperrt (u D2 < 0) 2 31 Aufgabe 1 Operationsverstärker (31 Punkte) Zuerst soll folgende Schaltung mit einem Operationsverstärker, linearen Widerständen und idealen Dioden untersucht werden. i z =0 u D2 D2 i D2 u e u D1 D1

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Elektromagnetische Feldtheorie 1

Elektromagnetische Feldtheorie 1 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 1 Donnerstag, 17. 09. 2009, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Abb eindimensionales Modell der Metall-Isolator- Halbleiter-(MIS-) Struktur eines p-dotierten Halbleiters

Abb eindimensionales Modell der Metall-Isolator- Halbleiter-(MIS-) Struktur eines p-dotierten Halbleiters 6. Halbleiterbauelemente 183 6.4. Feldeffekttransistoren (FET) Prinzipiell für FET ist die Steuerung der Leitfähigkeit oder des Querschnitts eines elektrischen Kanals parallel zur Oberfläche durch das

Mehr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr

Schaltungstechnik 1. Univ.-Prof. Dr. techn. Josef A. Nossek. Montag, den Uhr Grundlagenorientierungsprüfung für Elektroingenieure Schaltungstechnik 1 Univ.-Prof. Dr. techn. Josef A. Nossek Montag, den 17.02.2003 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal: Platz-Nr.: Dieses

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Schaltungstechnik

Schaltungstechnik KLAUSUR Schaltungstechnik 26.07.2012 Prof. Dr.-Ing. habil. F. Ellinger Dauer: 180 min. Aufgabe 1 2 3 4 5 6 Punkte 15 12 17 13 10 11 78 Modellgleichungen Für die Klausur werden folgende Transistormodelle

Mehr

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005 Lehrstuhl für Elektromagnetische Felder Prof Dr-Ing T Dürbaum Friedrich-Alexander niversität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 9 September 2005 Bearbeitungszeit:

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Sommersemester 2015 Grundlagen der Elektrotechnik I&II Datum: 1. August 2015 Prüfer: Prof. Dr.-Ing. H.-P. Beck Institut für Elektrische Energietechnik und Energiesysteme

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 08.04.2005 9.00 10.30 Uhr Name: Vorname: Matrikel-Nr.:

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 5 AM 02.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Silizium- Planartechnologie

Silizium- Planartechnologie Hans Günther Wagemann, Tim Schönauer Silizium- Planartechnologie Grundprozesse, Physik und Bauelemente Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Vorwort V Übersicht über den Stoff des Buches V Inhaltsverzeichnis

Mehr

5. Tutorium Digitaltechnik und Entwurfsverfahren

5. Tutorium Digitaltechnik und Entwurfsverfahren 5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr