Technische Informatik I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik I"

Transkript

1 Rechnerstrukturen Dario Linsky Wintersemester 200 / 20

2 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise Normalisierung von logischen Ausdrücken Vereinfachung von Schaltfunktionen

3 Logikgatter Logische Schaltfunktionen Operationen der Booleschen Algebra Realisierbar in elektronischen Schaltungen Logische 0 entspricht offenem Schalter Logische entspricht geschlossenem Schalter Funktionen durch Verkettung von Schaltern

4 Logikgatter Logikgatter Schaltsymbole äquivalent zu Logikoperationen Darstellung nach IEC-Standard & (a) AND (b) OR (c) NOT = = & (d) XOR (e) XNOR (f) NAND (g) NOR

5 Logikgatter De Morgan mit Logikgattern Durch gleichzeitige Negation von Gattereingängen und -ausgang Wechsel zwischen Konjunktion und Disjunktion Analog zu den Regeln der Booleschen Algebra & (a) NAND & (b) NOR

6 Bipolartransistoren Transistoren als Schalter Anschlüsse: Basis (B), Emitter (E), Kollektor (C) Potential an Basis schaltet Emitter-Kollektor-Strecke Hohe Schaltfrequenz Kleiner Teilstrom über Basis-Emitter-Strecke NPN- und PNP-Transistoren Kenngrößen: Verlustleistung, Schaltgeschwindigkeit,... B C E

7 Bipolartransistoren Logische Funktionen mit Transistoren Elektronische Schalter in»emitterschaltung«durch Verdrahten realisiert Vollständige Logik möglich Konjunktion: Reihenschaltung Disjunktion: Parallelschaltung Äußere Beschaltung durch passive Bauelemente x High Low x

8 CMOS-Technologie pmos- und nmos-transistoren Schaltverhalten vergleichbar mit Bipolartransistoren Geringere Leistungsaufnahme Schnellere Schaltgeschwindigkeiten Gate, Source, Drain statt Basis, Kollektor, Emitter Komplementär zueinander pmos schaltet bei Low-Pegel am Gate, nmos bei High-Pegel S G D (a) pmos D G S (b) nmos

9 CMOS-Technologie Komplementäre MOS-Schaltungen x 0 x n High Pull-Up-Teil (pmos) High f (x 0,..., x n ) x x x 0 x n Pull-Down-Teil (nmos) Low Low

10 CMOS-Technologie Implementierung Zwei aus dem darzustellenden Term abgeleitete Funktionen Pull-Up-Teil: Literale invertiert f (x 0,..., x n ) f ( x 0,..., x n ) Pull-Down-Teil: Funktion invertiert f (x 0,..., x n ) f (x 0,..., x n ) Realisierung oft als NAND- und NOR-Gatter

11 Integrierte Schaltkreise Integrierte Schaltkreise Ziel: Universell einsetzbare Komponenten Mehrere Logikgatter in einem Bauteil Komplexere Funktionen als Einheit Vorteil: Hoher Integrationsgrad, Standardisierung Nachteil: Ausnutzung teilweise nicht optimal Verschiedene Bauformen (DIP, SMD, usw.)

12 Normalisierung Kanonische Normalformen Alle Literale kommen in jedem Monom vor Nur noch Minterme bzw. Maxterme Kanonische Disjunktive Normalform (KDNF): f (x, y, z) = (x y z) (x y z) Kanonische Konjunktive Normalform (KKNF): g(x, y, z) = (x y z) (x y z)

13 Normalisierung Überlappung von benachbarten Worten Zwei Worte x, y mit (x, y) = erzeugen vergleichbare Ergebnisse Konstante Ergebnisse Komplementäre Ergebnisse (abhängig von einer Variable) Elimination von einzelnen Literalen x y z f (x, y, z) z 0 0 z z 0 z 0

14 Grafische Minimierung Karnaugh-Veitch-Diagramme Geometrisches Verfahren Nutzt die Überlagerung von Variablen aus Vollständige Darstellung der Schaltfunktion, ablesbar aus der Wahrheitstabelle Verwandt mit der Graphendarstellung der Hamming-Distanz Bis vier Literale sinnvoll, danach unübersichtlich (n-dimensionales Modell, Hyperwürfel) Überlappung durch Bildung von Blöcken eliminieren

15 Grafische Minimierung Karnaugh-Veitch-Diagramme x 0 x x 2 f (x 0, x, x 2 ) f (x 0, x, x 2 ): 0 x x x

16 Grafische Minimierung Karnaugh-Veitch-Diagramme x 2 x x

17 Algorithmische Minimierung Verfahren von Quine und McCluskey Algorithmischer Ansatz zur Minimierung Sinnvoll bei Schaltfunktionen mit mehreren Variablen Vorbereitung: Schaltfunktion liegt in disjunktiver Normalform (KDNF) vor Elimination durch Verschmelzung von Konjunktionstermen Bestimmen von Primimplikanten durch Überdeckung

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 finkbeiner@cs.uni-saarland.de Prof. Bernd Finkbeiner, Ph.D. finkbeiner@cs.uni-saarland.de 1 Schaltfunktionen! Schaltfunktion:

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen

Bisher. minimale DNF. logischen Formeln Booleschen Funktionen Schaltungen Bisher Klassische Aussagenlogik (Syntax, Semantik) semantische Äquivalenz von Formeln äquivalentes Umformen von Formeln (syntaktisch) Normalformen: NNF, DNF, CNF, kanonische DNF und CNF Ablesen kanonischer

Mehr

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016

Logische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016 Einführung in die Zentralavionik-Hardware Logische Grundschaltungen Frank Flederer Informatik VIII: Informationstechnik für Luft- und Raumfahrt Wintersemester 2015/2016 1 / 46 Logik in Elektronik 2 Zustände:

Mehr

5. Vorlesung: Normalformen

5. Vorlesung: Normalformen 5. Vorlesung: Normalformen Wiederholung Vollständige Systeme Minterme Maxterme Disjunktive Normalform (DNF) Konjunktive Normalform (KNF) 1 XOR (Antivalenz) X X X X X X ( X X ) ( X X ) 1 2 1 2 1 2 1 2 1

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung

2.3 Logikoptimierung. Überblick digitale Synthese. Logikoptimierung 2.3 Logikoptimierung Logikoptimierung Überblick digitale Synthese Logikoptimierung Begriffe Mehrstufige Logik Zweistufige Logik:..Exakte Verfahen..Heuristische Verfahren..Expansion/ Reduktion..Streichen

Mehr

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen

kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3)

C.34 C Normalformen (4) 5.7 Hauptsatz der Schaltalgebra. 5.7 Hauptsatz der Schaltalgebra (2) 5.7 Hauptsatz der Schaltalgebra (3) 5.6 Normalformen (4) Noch mehr aber besonders wichtige Begriffe kanonische disjunktive Normalform (KDNF, DKF) Disjunktion einer Menge von Mintermen mit gleichen Variablen Beispiel: KDNF zur Funktion f(,,,

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Minimierung von logischen Schaltungen

Minimierung von logischen Schaltungen Minimierung von logischen Schaltungen WAS SIND LOGISCHE SCHALTUNGEN Logische Verknüpfungszeichen: & = Logisches Und-Verknüpfung (Konjunktion). V = Logische Oder-Verknüpfung (Disjunktion). - = Nicht (Negation).

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 5 AM 02.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik klassische Aussagenlogik: Syntax, Semantik Äquivalenz zwischen Formeln ϕ ψ gdw. Mod(ϕ) = Mod(ψ) wichtige Äquivalenzen, z.b. Doppelnegation-Eliminierung, DeMorgan-Gesetze,

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Kombinatorische

Mehr

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik

Physikalisches Praktikum für Vorgerückte. an der ETH Zürich. vorgelegt von. Mattia Rigotti Digitale Elektronik Physikalisches Praktikum für Vorgerückte an der ETH Zürich vorgelegt von Mattia Rigotti mrigotti@student.ethz.ch 14.02.2003 Digitale Elektronik Versuchsprotokoll 1 Inhaltverzeichnis 1. Zusammenfassung...

Mehr

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel:

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: Seite 1 Aufgabe 1 Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: f 1 = a b c d + a b c d + a b c d + a b c d + a

Mehr

Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10,

Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10, Integrierte Digitalschaltungen Vom Transistor zu Integrierten Systemen Vorlesung 10, 16.06.2016 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d

C Beispiel: Siebensegmentanzeige. Typische Anzeige für Ziffern a. f g. e d. Gesucht: Schaltfunktion für die Ansteuerung des Segmentes d 6.3 Beispiel: Siebensegmentanzeige Typische Anzeige für Ziffern a f g b 0 1 2 3 4 5 6 7 8 9 e d c Schaltfunktionen zur Ansteuerung der Segmente Parameter: binär codierte Zahl bzw. Ziffer Gesucht: Schaltfunktion

Mehr

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery. WOCHE 4 AM

DuE-Tutorien 4 und 6. Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery.  WOCHE 4 AM DuE-Tutorien 4 und 6 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery WOCHE 4 AM 13.11.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

6. Vorlesung: Minimalformen

6. Vorlesung: Minimalformen 6. Vorlesung: Minimalformen Wiederholung Minterme Maxterme Disjunktive Normalform (DN) Konjunktive Normalform (KN) Minimalformen KV-Diagramme 24..26 fällt aus wegen Dozentenfachexkursion 2 Normalformen

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 10. Vorlesung Dr.-Ing. Wolfgang Heenes 22. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Vorbesprechung drittes Labor

Mehr

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik 1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von

Mehr

Digitale Elektronik. Vom Transistor zum Speicher

Digitale Elektronik. Vom Transistor zum Speicher Digitale Elektronik Vom Transistor zum Speicher Begleitheft Universität Stuttgart Schülerlabor 1 Inhaltsverzeichnis 1. Einleitung... 3 2. Versuchshintergrund... 4 2.1. Bildungsstandards... 4 2.1.1 Leitgedanken

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

Verwendung eines KV-Diagramms

Verwendung eines KV-Diagramms Verwendung eines KV-Diagramms Ermittlung einer disjunktiven Normalform einer Schaltfunktion Eine Disjunktion von Konjunktionen derart, dass jeder Konjunktion ein Block in dem KV-Diagramm entspricht, der

Mehr

Digitaltechnik. TI-Tutorium. 29. November 2011

Digitaltechnik. TI-Tutorium. 29. November 2011 Digitaltechnik TI-Tutorium 29. November 2011 Themen Schaltsymbole Transistoren CMOS nächstes Übungsblatt 2 Aufgaben Schaltsymbole Widerstand npn-transistor Widerstand pnp-transistor Glühlampe pmos Transistor

Mehr

Logikausgang Grundschaltungen in CMOS-Technik

Logikausgang Grundschaltungen in CMOS-Technik Logikausgang Grundschaltungen in CMOS-Technik X Liers - PEG-Vorlesung WS00/0 - Institut für Informatik - FU Berlin 49 Logikausgang Grundschaltungen CS INV in CMOS-Technik (Tristate) Transistor leitet X

Mehr

Teil III. Schaltnetze und ihre Optimierung

Teil III. Schaltnetze und ihre Optimierung Teil III Schaltnetze und ihre Optimierung 1 Teil III.1 Schaltnetze 2 Beispiel 1 Schaltnetz für xor mit {+,, } x y x y 0 0 0 0 1 1 1 0 1 1 1 0 DNF: x y = xy + xy 3 Beispiel 2 xor mittels nand-verknüpfung;

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 12. Vorlesung Dr.-Ing. Wolfgang Heenes 6. Juli 2010 TechnischeUniversität Darmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Logikfamilien 2. Die Ausgangsstufen

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Einführung in die Boolesche Algebra

Einführung in die Boolesche Algebra Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2013/14 22. Januar 2014 Kurzwiederholung / Klausurvorbereitung II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Boolesche Funktionen - Grundlagen

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs: Technologische Grundlagen programmierbare logische Bausteine 1 Halbleiterdiode Bauelement, durch

Mehr

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen

Technische Informatik I 4. Vorlesung. 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen Technische Informatik I 4. Vorlesung 2. Funktion digitaler Schaltungen... wertverlaufsgleiche Umformungen...... H.-D. Wuttke 09 Karnaugh-Veith Veith-Diagramme, 3. Struktur digitaler Schaltungen: Strukturdefinition,

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Stichwortverzeichnis. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN:

Stichwortverzeichnis. Gerd Wöstenkühler. Grundlagen der Digitaltechnik. Elementare Komponenten, Funktionen und Steuerungen ISBN: Stichwortverzeichnis Gerd Wöstenkühler Grundlagen der Digitaltechnik Elementare Komponenten, Funktionen und Steuerungen ISBN: 978-3-446-42737-2 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42737-2

Mehr

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen

1 Analogtechnik und Digitaltechnik. C Schaltalgebra und kombinatorische Logik. 2 Digitale elektrische Schaltungen Analogtechnik und Digitaltechnik C Schaltalgebra und kombinatorische Logik bei analoger Technik kontinuierliche Signale. Analog- und Digitaltechnik 2. Digitale elektrische Schaltungen 3. Logische Schaltungen

Mehr

Page 1 of 13 Fenster schließen Digitaltechnik 1. Einige Grundlagen 1.1 Signalpegel 1.2 Logische Schaltglieder 1.2.1 UND / AND - Gatter 1.2.2 ODER / OR - Gatter 1.2.3 NICHT / NOT - Gatter 1.2.4 NICHT-UND

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 5. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Feldeffekttransistoren (FET) Logikschaltungen in CMOS-Technologie

Mehr

Von-Neumann-Rechner / Rechenwerk

Von-Neumann-Rechner / Rechenwerk Von-Neumann-Rechner / Rechenwerk Aufgaben: Durchführung arithmetischer und logischer Verknüpfungen (daher auch der Name Arithmetic Logical Unit) Steuerwerk und Rechenwerk werden usammen auch als CPU usammengefasst.

Mehr

Inhaltsverzeichnis. 1 Einleitung 1

Inhaltsverzeichnis. 1 Einleitung 1 vn 1 Einleitung 1 2 Codierung und Zahlensysteme... 3 2.1 Codes... 3 2.2 Dualcode....4 2.3 Festkonnna-Arithmetik im Dualsystem... 5 2.3.1 Ganzzahlige Addition im Dualsystem... 5 2.3.2 Addition von Festkommazahlen...

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

2. Schaltfunktionen und ihre Darstellung

2. Schaltfunktionen und ihre Darstellung 2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 58 Schaltalgebra Wir untersuchen

Mehr

2. Schaltfunktionen und ihre Darstellung

2. Schaltfunktionen und ihre Darstellung 2. Schaltfunktionen und ihre Darstellung x y z Schaltalgebra Schaltkreise und -terme Schaltfunktionen Dualitätsprinzip Boolesche Algebra Darstellung von Schaltfunktionen 60 Schaltalgebra Wir untersuchen

Mehr

Übungsklausur - Beispiellösung

Übungsklausur - Beispiellösung Digitale Systeme Übungsklausur - Beispiellösung Aufgabe 1 (a) Benutzt man n Bit für die Darstellung im 2-Komplement, so deckt man den Wertebereich von 2 n 1 bis 2 n 1 1 ab. Also ergibt sich der abgedeckte

Mehr

a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus und der Dualzahl aus Aufgabenteil a) (3P)

a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus und der Dualzahl aus Aufgabenteil a) (3P) Aufgabe 1: Zahlensysteme (5P) a) Wandeln sie die Dezimalzahl 77 in eine Dualzahl um (2P) b) Bilden Sie die Differenz aus 01100001 und der Dualzahl aus Aufgabenteil a) (3P) Aufgabe 2: Boolesche Algebra

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 4. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Wechselspannung Einfache Logische Verknüpfungen Logikschaltungen

Mehr

2. Funktionen und Entwurf digitaler Grundschaltungen

2. Funktionen und Entwurf digitaler Grundschaltungen 2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung

Mehr

Lehrbuch Digitaltechnik

Lehrbuch Digitaltechnik Lehrbuch Digitaltechnik Eine Einführung mit VHDL von Prof. Dr.Jürgen Reichardt 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort zur 3. Auflage V 1 Einleitung

Mehr

V0~~ärts-RUckw~-Dezim~lef74190undCBit-Binllnatiler

V0~~ärts-RUckw~-Dezim~lef74190undCBit-Binllnatiler Inhalt Boolesche Algebra... 13 Mengenalgebra... 14 Festlegung und Darstellung von Mengen...15 Relationen zwischen Mengen...16 Gleichmächtige oder äquivalente Mengen... 17 Verknüpfungen von Mengen...19

Mehr

Boolesche Funktionen und Schaltkreise

Boolesche Funktionen und Schaltkreise Boolesche Funktionen und Schaltkreise Die Oder-Funktion (Disjunktion) und die Und-Funktion (Konjunktion), x y 0 0 0 0 1 1 1 0 1 1 1 1 x y 0 0 0 0 1 0 1 0 0 1 1 1 1 (Implikationsfunktion), ( umgekehrte

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6

Inhaltsverzeichnis. 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1. 2 Operationssystem der Schaltalgebra 4. 3 Boolesche Funktionen 6 Inhaltsverzeichnis 1 Boolesche Algebra, Schaltalgebra - Begriffsbestimmung 1 2 Operationssystem der Schaltalgebra 4 3 Boolesche Funktionen 6 4 Boolesche Funktionen kombinatorischer Schaltungen 8 4.1 Begriffsbestimmung

Mehr

Tutorium: Einführung in die technische Informatik

Tutorium: Einführung in die technische Informatik Tutorium: Einführung in die technische Informatik Logische Schaltungen (2. 2.3) Sylvia Swoboda e225646@student.tuwien.ac.at Überblick Grundbegriffen von logischen Schaltung Realisierung von Funktionen

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

Einführung in die Digitaltechnik

Einführung in die Digitaltechnik Einführung in die Digitaltechnik Von Professor Dr.-Ing. Heinz-Georg Fehn Fachhochschule Münster Mit 212 Bildern und 71 Tabellen J. Schlembach Fachverlag ULBDwmstadt Inhaltsverzeichnis 1 Einführung 1 1.1

Mehr

8. Tutorium Digitaltechnik und Entwurfsverfahren

8. Tutorium Digitaltechnik und Entwurfsverfahren 8. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

4 DIGITALE SCHALTUNGSTECHNIK

4 DIGITALE SCHALTUNGSTECHNIK Digitale Schaltungstechnik 59 4 DIGITALE SCHALTUNGSTECHNIK Um Daten zu verarbeiten, verwenden Computer als grundlegende Größen logische Variablen, die genau zwei Zustände annehmen können, nämlich den Wert

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Dirk W. Hoffmann Grundlagen der Technischen Informatik 3., neu bearbeitete Auflage Mit 356 Bildern, 57 Tabellen und 95 Aufgaben HANSER Inhaltsverzeichnis 1 Einführung 11 1.1 Was ist technische Informatik?

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 6 am 0.2.200 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Passive Bauelemente, Grundgrößen

Passive Bauelemente, Grundgrößen Passive Bauelemente, Grundgrößen 1. Wie lauten die beiden wichtigsten Parameter eines ohmschen Widerstandes? 2. Wie lauten die beiden wichtigsten Parameter eines Kondensators? 3. Wie lauten die beiden

Mehr

5. Tutorium Digitaltechnik und Entwurfsverfahren

5. Tutorium Digitaltechnik und Entwurfsverfahren 5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Vorlesung gehalten von Prof. Dr. rer. nat. E. Bertsch Skript verfasst von Sebastian Ritz 7. Dezember 2005 1 Inhaltsverzeichnis 1 Was versteht man unter Informatik 3 2 Aufbau

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze 82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 16. 7. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 FH Dortmund FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 16. 7. 2015 Aufgaben und

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addierschaltungen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 1 / 19 Addierer für UInt 2 (l)

Mehr

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6 Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 6 Prof. aitinger / Lammert esprechung: 29.01.2001 S I ufgabe 1 MOS-Widerstände bb_dummy: 1.0 a) Zeichnen Sie einen Querschnitt durch einen

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 2010 / 2011 Zeit und Ort Mittwochs, 16 bis 18 Uhr Hörsaal V, Mehrzweckgebäude Lahnberge Zwischenklausur am 15.12.2010 Abschlussklausur am 16.02.2011 Zulassungskriterien

Mehr

5. Tutorium Digitaltechnik und Entwurfsverfahren

5. Tutorium Digitaltechnik und Entwurfsverfahren 5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 7

Elektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 7 lektrotechnische Grundlagen, WS 00/01 Musterlösung Übungsblatt 7 b) n die Schaltung werden nacheinander die in der Tabelle eingetragenen ingangssignale angelegt. Tragen Sie die sich einstellenden Pegel

Mehr

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation

3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): doppelte Negation 3.6 Bemerkungen zur Umformung boolescher Formeln (NAND): Häufig verwendeten Umformungen sind: Idempotenz doppelte Negation De Morgan a = a a a = a a + b = a b ADS-EI 3.6 Bemerkungen zur Umformung boolescher

Mehr

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Kombinatorische Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Kombinatorische Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Überblick Analog- und Digitaltechnik Boolesche Algebra Schaltfunktionen Gatter Normalformen

Mehr

2.5. Umwandlung von Schaltfunktionen in die NOR und NAND Technik

2.5. Umwandlung von Schaltfunktionen in die NOR und NAND Technik .. Umwandlung on Schaltfunktionen in die NOR und NAND Technik... Smbole 0 0 0 0 0 NAND Elemente 0 0 0 0 0 0 0 NOR Elemente Beachte : Jedes NOR bzw. NAND Element hat mindestens Eingänge!... Umwandlungsorschriften

Mehr

Störungen in Digitalsystemen

Störungen in Digitalsystemen Störungen in Digitalsystemen Eine Lernaufgabe von Jost Allmeling Betreuer: Markus Thaler Inhalt und Lernziel: Die Studenten erkennen, dass man durch Einfügen von zusätzlichen Gattern Hazards vermeiden

Mehr

Technische Informatik 2

Technische Informatik 2 TiEl-F Sommersemester 24 Technische Informtik 2 (Vorlesungsnummer 2625) 23--- TiEl-F Prof. Dr.-Ing. Jürgen Doneit Zimmer E29 Tel.:73 54 455 doneit@fh-heilronn.de 23--- TiEl-F35 Digitltechnik 23--3- . Digitlschltungen,

Mehr

RS-Flipflops. Parameterabhängige Nullstellenprobleme mit Umkehr- und Verzweigungspunkten. Proseminar Numerik, WiSe 02/03

RS-Flipflops. Parameterabhängige Nullstellenprobleme mit Umkehr- und Verzweigungspunkten. Proseminar Numerik, WiSe 02/03 RS-Flipflops Parameterabhängige Nullstellenprobleme mit Umkehr- und Verzweigungspunkten Proseminar Numerik, WiSe /3 1 Grundbegriffe der Digitaltechnik Die digitale Schaltungstechnik beschäftigt sich mit

Mehr