Die Cantor-Funktion. Stephan Welz

Größe: px
Ab Seite anzeigen:

Download "Die Cantor-Funktion. Stephan Welz"

Transkript

1 Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser Ausarbeitung zur Cantor-Funktion wird, ausgehend von der Cantor-Menge, eine Abbildung vom Intervall [0,] auf das Intervall [0,] konstruiert und sich mit deren Eigenschaften befasst. Um dem Leser den Einstieg zu erleichtern, werden zunächst die elementaren Ideen der Bildung einer Cantor-Menge wiederholt und die in dieser Arbeit gewählten Notationen erläutert. Nachdem wir schlieÿlich im zweiten Abschnitt eine Funktion deniert haben, die wir als Cantor-Funktion bezeichnen wollen, werden wir uns im dritten Teil den besonderen und teilweise überraschenden Eigenschaften der Cantor-Funktion widmen.

2 Inhaltsverzeichnis Die Cantor-Menge 3 2 Denition der Cantor-Funktion auf den weggestrichenen Teilintervallen in den Punkten der Cantor-Menge Eigenschaften der Cantor-Funktion und deren Beweise 7 3. Stetigkeit Monotonie Nicht-Dierenzierbarkeit in C Dierenzierbarkeit in [0,]\C Surjektivität Die Cantorfunktion eingeschränkt auf C Nicht-Lipschitz-Stetigkeit Resümee 8 Abbildungsverzeichnis. Entstehung der Cantor-Menge Bild der Cantor-Funktion bis Denition Die Cantor-Funktion

3 Die Cantor-Menge Im Jahre 883 führte der deutsche Mathematiker Georg Cantor eine Menge ein, die bereits acht Jahre vorher von Henry John Steven Smith, einem irischen Mathematiker, konstruiert wurde. Bei dieser Menge, die heute Cantor-Menge genannt wird, handelt es sich um eine Wischmenge; also um eine Menge, die durch das wegwischen verschiedener Bereiche einer Ursprungsmenge entsteht. Um die Cantor-Menge zu erhalten, wird dieser Wischprozess unendlich oft durchgeführt. Obgleich Georg Cantor die Konstruktionsvorschriften zur Mengenbildung sehr allgemein formuliert hat, so dass es mehrere verschiedene Mengen gibt, die als eine Cantor-Menge bezeichnet werden könnten, so meint man heute zumeist die Cantor-Ternär-Menge auf dem Intertervall [0,], wenn man von der Cantor-Menge spricht. Wir wollen uns nun zunächst noch einmal kurz mit der Konstruktion dieser Menge befassen, bevor wir diese nutzen, um eine Abbildung zu konstruieren. Wie bereits angedeutet durchläuft die Cantor-Menge bei ihrer Entstehung einen inniten Prozess. Um diesen Prozess zu verstehen, werden wir uns zunächst die ersten beiden Schritte im Detail ansehen, bevor wir uns der tatsächlichen Cantor-Menge widmen.. Schritt Wir betrachten das kompakte Intervall I 0 := [0, ]. Indem man das oene Intervall ( 3, 2 3 ) =: J, entfernt, bleiben uns die Intervalle [0, 3 ] =: I, und [ 2 3, ] =: I,2 der Länge ( 3 ) 2. Schritt Betrachte I, und I,2 und entferne ( 9, 2 9 ) =: J 2, und ( 7 9, 8 9 ) =: J 2,2 Man erhält nun die kompakten Intervalle [0, 9 ] =: I 2, [ 2 9, 3 ] =: I 2,2 [ 2 3, 7 9 ] =: I 2,3 und [ 8 9, ] =: I 2,4 der Länge ( 3 )2 Bemerkung. Die Bildung der Cantor-Menge beruht also darauf, dass die oenen Mittdrittel-Intervalle der kompakten Urprungsintervalle entfernt werden. Wir wählen dabei die Bezeichnung der Intervalle wie folgt: Die kompakten Intervalle, die nach dem n-ten Iterationsschritt übrig bleiben, bezeichnen wir mit I n,k, wobei k diese abzählbare Menge an Intervallen nummeriert. Die oenen Intervalle, die im m-ten Schritt aus der Menge entfernt werden, wollen wir mit J m,l bezeichnen. Ganz analog ist hier l ein Nummerierungsindex, der die Reihenfolge der Intervalle beginnend von der unteren Grenze 0 des Ursprungsintervalls [0,] zur oberen Grenze angibt. n-ter Schritt Betrachte alle I n,i und entferne die mittleren oenen Teilintervalle J n,i Man erhält 2 n kompakte Intervalle I n,i der Länge ( 3 )n 3

4 Abbildung.: Entstehung der Cantor-Menge (www.achim-und-kai.de) Notation: C n = [0, ] \ n 2 n l= C := C = [0, ] \ n N m= J l,m 2 n m= J n,m 2 Denition der Cantor-Funktion Nun möchten wir eine Funktion denieren, die das Intervall [0,] auf das Intervall [0,] abbildet. Bei dieser Abbildung möchten wir jedoch unterscheiden, ob das Urbild in der Cantor-Menge C liegt oder in einem Bereich auÿerhalb, und entsprechend verschiedene Abbildungsvorschriften gelten lassen. Die Funktion, die wir im Folgenden konstruieren, nennen wir Cantor-Funktion und kürzen sie mit dem griechischem Buchstaben Φ (Phi) ab auf den weggestrichenen Teilintervallen Betrachten wir zunächst die Punkte auf den Teilintervallen, die während unserer Cantor- Mengen-Bildung weggestrichen wurden. Wir ordnen diesen Punkten die folgenden Funktionswerte zu: Denition 2. Sei x J n,k, dann gilt: Φ(x) := 2k 2 n Betrachten wir nun die obige Denition, so ergeben sich für die ersten Teilintervalle folgende Funktionswerte: 4

5 für < x < 2 (J 2 3 3, ) für < x < 2 (J , ) Φ(x) = 3 7 für < x < 8 (J ,2 ) für < x < 2 (J , ). für in den Punkten der Cantor-Menge In diesem Abschnitt möchten wir uns mit der Funktionsvorschrift der Cantor-Funktion beschäftigen, die die Punkte in der Cantor-Menge in unseren Bildbereich, das Intervall [0,], abbildet. Dabei betrachten wir zunächst die Punkte x = 0 und x = gesondert: Denition 2.2 Am Anfangs- und Endpunkt unseres Urbild-Intervalls denieren wir: Φ(0) := 0 und Φ() := Abbildung 2.: Bild der Cantor-Funktion bis Denition 2.2 (www.gimmler.org) Nun betrachten wir diejenigen Punkte in C, die Randpunkt eines kompakten Intervalls I n,k sind. Wenn wir uns noch einmal ins Gedächtniss rufen, wie diese Intervalle bei der Entstehung der Cantor-Menge gebildet wurden, wird schnell klar, dass jeder dieser Randpunkte in genau einem Abschluss eines oenen weggestrichenen Teilintervalls J m,l liegt. Natürlich gilt für die tatsächliche Cantormenge n = ; jedoch dient es der Anschaulichkeit, wenn man zunächst versucht, diese Tatsache mit einem endlichen, kleinen n nachzuvollziehen. Nachdem dies geschehen ist, denieren wir wie folgt: Denition 2.3 Φ(x) := 2k 2 n für x (J n,k \ J n,k ) 5

6 Es gilt also für die Punkte des Abschlusses der J n,k dieselbe Funktionsvorschrift, wie für die Punkte, die in eben diesen Intervallen enthalten sind (vgl. Deniton 2.). Obwohl wir nun schon sehr viele Punkte und Intervalle unseres Urbildes mit einer Funktionsvorschrift versehen haben, bleiben dennoch Punkte, die wir bisher noch nicht abgebildet haben. Im Folgenden werden wir betrachten, wie wir diese Punkte sinnvoll abbilden können. Dabei ist es wieder ratsam, sich zunächst etwas von der tatsächlichen Cantor-Menge zu lösen, indem man sich vorstellt, man würde ihre Bildung nach k Iterationsschritten abbrechen. Sei x also nun so gewählt, dass Φ(x) noch nicht deniert ist. Wir wissen daher, dass 0 x gilt und x nicht in einem weggestrichenen Teilintervall oder deren Abschluss liegt. Es ist also klar, dass x in einem übriggeblibenen Teilintervall (α k, β k ) der Länge ( 3 )k liegen muss. Daraus ergibt sich, dass β k = α k + ( 3 )k. Für die Randpunkte dieses Intervalls haben wir bereits Funktionvorschriften deniert, die hier zur Anwendung kommen: Φ(β k ) = Φ(α k ) + ( 2 )k. Wir betrachten nun den k + -Iterationsschritt unserer Mengenbildung. Oensichtlich macht es nur Sinn, wenn unser x nun immer noch in einem nicht-weggestrichenen Intervall liegt, da wir sonst auf die Denition aus Abschnitt 2. zurückgreifen könnten. Es sei also x (α k+, β k+ ), wobei es unerheblich ist, ob es sich hierbei um das links oder rechts übrig gebliebene Intervall handelt. Es gilt im Allgemeinen: Φ(α k ) Φ(α k+ ) < Φ(β k+ ) Φ(β k ) und wir denieren: Denition 2.4 Φ(x) := lim k Φ(α k ) = lim k Φ(β k ) Damit ist Φ auf ganz [0,] deniert und wir können uns nun den Eigenschaften der Cantor-Funktion zuwenden. Abbildung 2.2: Die Cantor-Funktion (www.math.harvard.edu) 6

7 3 Eigenschaften der Cantor-Funktion und deren Beweise Theorem 3. Die Cantor-Funktion Φ:[0,] [0,] mit Φ(0) = 0 und Φ() = hat die folgenden Eigenschaften. Φ ist stetig 2. Φ ist monoton steigend 3. Φ ist für kein x dierenzierbar 4. Φ ist für alle x [0, ] dierenzierbar und Φ (x) = 0 5. Φ ist surjektiv 6. Φ C : C [0, ] ist surjektiv 7. Φ ist nicht lipschitzstetig 3. Stetigkeit n N x, y [0, ] gilt: Falls: x y < ( 3 Φ(x) Φ(y) < ( ) n 2 ε > 0 δ > 0 : x y < δ Φ(x) Φ(y) < ε Φ ist gleichmäÿig stetig 3.2 Monotonie Der Beweis der Monotonie folgt direkt aus unserer Denition der Cantor-Funktion. 3.3 Nicht-Dierenzierbarkeit in C Wir betrachten zunächst wieder die vereinfachte Cantor-Funktion, bei der nach k Iterationsschritten die Bildung der Cantor-Menge abgebrochen wird. Wenn wir dann im zweiten Schritt k gegen Unendlich gehen lassen, so erhalten wir den Beweis, dass Φ in C nicht dierenzierbar ist. Sei also x C x ist in einem abgeschlossen Intervall, das im k-ten Schritt entstanden ist, und welches wir hier [α, β] nennen wollen. { Φ(β) Φ(α) = ( 2 )k β α = ( 3 )k [Φ(β) Φ(α)] = ( 3 2 )k [β α] ) n [Φ(β) Φ(x)] + [Φ(x) Φ(α)] = ( 3 2 )k [(β x) + (x α)] { } α Es gilt im Allgemeinen folgende Beziehung max, γ β δ die wir nun anwenden wollen: α+γ β+δ für α, γ 0, β, δ > 0, 7

8 max{ Φ(β) Φ(x), Φ(x) Φ(α) } ( 3 (β x) (x α) 2 )k Lassen wir nun k gehen, so sehen wir leicht, dass entweder die links- oder die rechtsseitige Ableitung Φ (x) = sein müsste. Φ ist nicht dierentierbar in C 3.4 Dierenzierbarkeit in [0,]\C Die Menge [0,]\C besteht nur aus oenen Intervallen, die jeweils auf einen konstanten Funktionswert abgebildet werden. Daher ist diese Aussage klar. 3.5 Surjektivität Aus der Eigenschaft, dass Φ(0) := 0 und Φ() := und der in Abschnitt 3. bewiesenen Stetigkeit, folgt mittels Zwischenwertsatz für stetige Funktionen: y [0, ] x [0, ] : Φ(x) = y Φ ist surjektiv 3.6 Die Cantorfunktion eingeschränkt auf C Wir haben in Abschnitt 3.5 gezeigt, dass es zu jedem Punkt in [0,] ein Urbild in [0,] gibt. Da es keinen Punkt im Bild gibt, der genau ein Urbild hat, welches aus einem oenen Intervall stammt, ist es klar, dass die auf C eingeschränkte Cantorfunktion surjektiv auf den gesamten Bildbereich [0,] abgebildet wird. (Zur Erinnerung: Die Randpunkte der oenen Intervalle sind in der Cantor-Menge enthalten und werden auf den selben Funktionswert abgebildet, wie die Punkte im oenen Intervall J n,k ) 3.7 Nicht-Lipschitz-Stetigkeit Zuletzt untersuchen wir die Cantor-Funktion noch auf Lipschitz-Stetigkeit. Wäre Φ lipschitzstetig, so müsste es eine Konstante K geben, so dass x, y [0, ] : Φ(x) Φ(y) < K x y Wir betrachten nun die Randpunkte zweier benachbarter Intervalle im k-ten Iterationsschritt Φ(x) Φ(y) = ( 3 2 )k x y Damit ist klar, dass für k kein K R existiert, so dass die Lipschitz-Bedingung erfüllt ist. 4 Resümee Wir haben uns mit der Cantor-Funktion und ihren Eigenschaften befasst. Für mich persönlich, war es ein sehr spannendes Thema, da es mir anfangs unvorstellbar war, dass man eine stetige, monotone Funktion konstruieren kann, so dass für ihre Ableitung an den meisten Stellen Φ (x) = 0 gilt. Die Aufgabe, ausgehend von der ohnehin schon faszinierenden Cantor-Menge, eine Funktion zu konstruieren, für die diese Eigenschaften gelten, hat bei mir groÿes Interesse geweckt. Auch im Nachhinein ist es immer 8

9 noch unglaublich, dass eine solche Funktion existiert. Man stelle sich mal die einzelnen Iterationsschritte vor: Nach dem zweiten Schritt haben wir bereits die Hälfte aller Urbild-Punkte abgebildet, aber nur drei Punkte im Bildbereich getroen. Es ist wirklich bewundernswert, dass man trotz dieser oensichtlichen Ungleichverteilung eine stetige Funktion denieren kann. Betrachtet man sich die Punkte der Cantor-Menge C, deren Anzahl zwar unendlich ist, die aber auf dem Intervall [0,] nahezu vernachlässigbar erscheinen, ist es doch sehr bewundernswert, was diese Punkte bewirken. Für alle diejenigen, die sich zu diesem Thema weiter informieren möchten empfehle ich zunächst das englischsprachige Wikipedia. Wer jedoch total in die Welt der Cantor-Funktion, komplexerer Cantor-Mengen und weiterer mathematischer Phänomene einsteigen möchte, ist sicherlich mit dem Buch Experimental Mathematics in Action von David H. Bailey (u.a.) gut beraten. Literatur [] Rajwade, A.R.: Surprises and Counterexamples in Real Function Theory, Hindustan Book Agency, Delhi 2007 [2] Bailey, David H. (u.a.): Experimental Mathematics in Action, A. K. Peters Ltd., [3] Wise, Gary L.: Counterexamples in probability and real analysis, Oxford University Press, New York, 933 [4] Cantor-set, Cantor-function 9

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

Jenseits der Endlichkeit. Eine Einführung in die cantorsche Unendlichkeitslehre. Diplom-Informatiker Peter Weigel

Jenseits der Endlichkeit. Eine Einführung in die cantorsche Unendlichkeitslehre. Diplom-Informatiker Peter Weigel Jenseits der Endlichkeit. Eine Einführung in die cantorsche Unendlichkeitslehre. Diplom-Informatiker Peter Weigel Januar 2010 Peter Weigel. Jenseits der Endlichkeit. Eine Einführung in die cantorsche Unendlichkeitslehre.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014

Analysis II. Prof. Dr. H. Brenner Osnabrück SS 2014 Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 51 Für eine stetig differenzierbare Funktion ϕ: R R mit ϕ (P) > 0 in einem Punkt P R gibt es ein offenes Intervall P I =]P δ,p +δ, auf dem ϕ

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

7.2.1 Zweite partielle Ableitungen

7.2.1 Zweite partielle Ableitungen 72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN

STETIGKEITS- UND KONVERGENZMODI FÜR FUNKTIONEN UND FUNKTIONENFOLGEN STETIGKEITS- UN KONVERGENZMOI FÜR FUNKTIONEN UN FUNKTIONENFOLGEN. Vorbemerungen Im folgenden seien stets: (M, d), (K, ρ) metrische Räume, (V, V ) ein Banach-Raum (nicht notwendigerweise endlichdimensional!),

Mehr

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung: 1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr.

Interpolation. Nadine Losert. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Interpolation Nadine Losert Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Nachdem wir in den vorherigen Vorträgen verschiedene

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Seminar Komplexität und Kryptologie

Seminar Komplexität und Kryptologie Graphalgorithmen Johannes Köbler Sommersemester 2014 und Übersicht für heute 1 2 und 3 und Übersicht für heute 1 2 und 3 und Thema auswählen Referat vorbereiten Referat halten Ausarbeitung schreiben und

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward

Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Seminar: Lösen Spezieller Gleichungen Wintersemester 2009/2010 Prof. Dr. Annette Huber-Klawitter Betreuer: Stephen Enright-Ward Ort und Zeit: Dienstag, 14-16 Uhr, SR 127 Inhalt: Wir wollen uns in diesem

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

AquaZIS. Zeitreihenkorrektur

AquaZIS. Zeitreihenkorrektur AquaZIS Zeitreihenkorrektur Aachen, Juli 2013 aqua_plan Ingenieurgesellschaft für Problemlösungen in Hydrologie und Umweltschutz mbh Amyastr. 126, 52066 Aachen Tel.: 0241 40070-0, Fax: 0241 40070-99 Geschäftsführer:

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr