Die Cantor-Funktion. Stephan Welz

Größe: px
Ab Seite anzeigen:

Download "Die Cantor-Funktion. Stephan Welz"

Transkript

1 Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser Ausarbeitung zur Cantor-Funktion wird, ausgehend von der Cantor-Menge, eine Abbildung vom Intervall [0,] auf das Intervall [0,] konstruiert und sich mit deren Eigenschaften befasst. Um dem Leser den Einstieg zu erleichtern, werden zunächst die elementaren Ideen der Bildung einer Cantor-Menge wiederholt und die in dieser Arbeit gewählten Notationen erläutert. Nachdem wir schlieÿlich im zweiten Abschnitt eine Funktion deniert haben, die wir als Cantor-Funktion bezeichnen wollen, werden wir uns im dritten Teil den besonderen und teilweise überraschenden Eigenschaften der Cantor-Funktion widmen.

2 Inhaltsverzeichnis Die Cantor-Menge 3 2 Denition der Cantor-Funktion auf den weggestrichenen Teilintervallen in den Punkten der Cantor-Menge Eigenschaften der Cantor-Funktion und deren Beweise 7 3. Stetigkeit Monotonie Nicht-Dierenzierbarkeit in C Dierenzierbarkeit in [0,]\C Surjektivität Die Cantorfunktion eingeschränkt auf C Nicht-Lipschitz-Stetigkeit Resümee 8 Abbildungsverzeichnis. Entstehung der Cantor-Menge Bild der Cantor-Funktion bis Denition Die Cantor-Funktion

3 Die Cantor-Menge Im Jahre 883 führte der deutsche Mathematiker Georg Cantor eine Menge ein, die bereits acht Jahre vorher von Henry John Steven Smith, einem irischen Mathematiker, konstruiert wurde. Bei dieser Menge, die heute Cantor-Menge genannt wird, handelt es sich um eine Wischmenge; also um eine Menge, die durch das wegwischen verschiedener Bereiche einer Ursprungsmenge entsteht. Um die Cantor-Menge zu erhalten, wird dieser Wischprozess unendlich oft durchgeführt. Obgleich Georg Cantor die Konstruktionsvorschriften zur Mengenbildung sehr allgemein formuliert hat, so dass es mehrere verschiedene Mengen gibt, die als eine Cantor-Menge bezeichnet werden könnten, so meint man heute zumeist die Cantor-Ternär-Menge auf dem Intertervall [0,], wenn man von der Cantor-Menge spricht. Wir wollen uns nun zunächst noch einmal kurz mit der Konstruktion dieser Menge befassen, bevor wir diese nutzen, um eine Abbildung zu konstruieren. Wie bereits angedeutet durchläuft die Cantor-Menge bei ihrer Entstehung einen inniten Prozess. Um diesen Prozess zu verstehen, werden wir uns zunächst die ersten beiden Schritte im Detail ansehen, bevor wir uns der tatsächlichen Cantor-Menge widmen.. Schritt Wir betrachten das kompakte Intervall I 0 := [0, ]. Indem man das oene Intervall ( 3, 2 3 ) =: J, entfernt, bleiben uns die Intervalle [0, 3 ] =: I, und [ 2 3, ] =: I,2 der Länge ( 3 ) 2. Schritt Betrachte I, und I,2 und entferne ( 9, 2 9 ) =: J 2, und ( 7 9, 8 9 ) =: J 2,2 Man erhält nun die kompakten Intervalle [0, 9 ] =: I 2, [ 2 9, 3 ] =: I 2,2 [ 2 3, 7 9 ] =: I 2,3 und [ 8 9, ] =: I 2,4 der Länge ( 3 )2 Bemerkung. Die Bildung der Cantor-Menge beruht also darauf, dass die oenen Mittdrittel-Intervalle der kompakten Urprungsintervalle entfernt werden. Wir wählen dabei die Bezeichnung der Intervalle wie folgt: Die kompakten Intervalle, die nach dem n-ten Iterationsschritt übrig bleiben, bezeichnen wir mit I n,k, wobei k diese abzählbare Menge an Intervallen nummeriert. Die oenen Intervalle, die im m-ten Schritt aus der Menge entfernt werden, wollen wir mit J m,l bezeichnen. Ganz analog ist hier l ein Nummerierungsindex, der die Reihenfolge der Intervalle beginnend von der unteren Grenze 0 des Ursprungsintervalls [0,] zur oberen Grenze angibt. n-ter Schritt Betrachte alle I n,i und entferne die mittleren oenen Teilintervalle J n,i Man erhält 2 n kompakte Intervalle I n,i der Länge ( 3 )n 3

4 Abbildung.: Entstehung der Cantor-Menge (www.achim-und-kai.de) Notation: C n = [0, ] \ n 2 n l= C := C = [0, ] \ n N m= J l,m 2 n m= J n,m 2 Denition der Cantor-Funktion Nun möchten wir eine Funktion denieren, die das Intervall [0,] auf das Intervall [0,] abbildet. Bei dieser Abbildung möchten wir jedoch unterscheiden, ob das Urbild in der Cantor-Menge C liegt oder in einem Bereich auÿerhalb, und entsprechend verschiedene Abbildungsvorschriften gelten lassen. Die Funktion, die wir im Folgenden konstruieren, nennen wir Cantor-Funktion und kürzen sie mit dem griechischem Buchstaben Φ (Phi) ab auf den weggestrichenen Teilintervallen Betrachten wir zunächst die Punkte auf den Teilintervallen, die während unserer Cantor- Mengen-Bildung weggestrichen wurden. Wir ordnen diesen Punkten die folgenden Funktionswerte zu: Denition 2. Sei x J n,k, dann gilt: Φ(x) := 2k 2 n Betrachten wir nun die obige Denition, so ergeben sich für die ersten Teilintervalle folgende Funktionswerte: 4

5 für < x < 2 (J 2 3 3, ) für < x < 2 (J , ) Φ(x) = 3 7 für < x < 8 (J ,2 ) für < x < 2 (J , ). für in den Punkten der Cantor-Menge In diesem Abschnitt möchten wir uns mit der Funktionsvorschrift der Cantor-Funktion beschäftigen, die die Punkte in der Cantor-Menge in unseren Bildbereich, das Intervall [0,], abbildet. Dabei betrachten wir zunächst die Punkte x = 0 und x = gesondert: Denition 2.2 Am Anfangs- und Endpunkt unseres Urbild-Intervalls denieren wir: Φ(0) := 0 und Φ() := Abbildung 2.: Bild der Cantor-Funktion bis Denition 2.2 (www.gimmler.org) Nun betrachten wir diejenigen Punkte in C, die Randpunkt eines kompakten Intervalls I n,k sind. Wenn wir uns noch einmal ins Gedächtniss rufen, wie diese Intervalle bei der Entstehung der Cantor-Menge gebildet wurden, wird schnell klar, dass jeder dieser Randpunkte in genau einem Abschluss eines oenen weggestrichenen Teilintervalls J m,l liegt. Natürlich gilt für die tatsächliche Cantormenge n = ; jedoch dient es der Anschaulichkeit, wenn man zunächst versucht, diese Tatsache mit einem endlichen, kleinen n nachzuvollziehen. Nachdem dies geschehen ist, denieren wir wie folgt: Denition 2.3 Φ(x) := 2k 2 n für x (J n,k \ J n,k ) 5

6 Es gilt also für die Punkte des Abschlusses der J n,k dieselbe Funktionsvorschrift, wie für die Punkte, die in eben diesen Intervallen enthalten sind (vgl. Deniton 2.). Obwohl wir nun schon sehr viele Punkte und Intervalle unseres Urbildes mit einer Funktionsvorschrift versehen haben, bleiben dennoch Punkte, die wir bisher noch nicht abgebildet haben. Im Folgenden werden wir betrachten, wie wir diese Punkte sinnvoll abbilden können. Dabei ist es wieder ratsam, sich zunächst etwas von der tatsächlichen Cantor-Menge zu lösen, indem man sich vorstellt, man würde ihre Bildung nach k Iterationsschritten abbrechen. Sei x also nun so gewählt, dass Φ(x) noch nicht deniert ist. Wir wissen daher, dass 0 x gilt und x nicht in einem weggestrichenen Teilintervall oder deren Abschluss liegt. Es ist also klar, dass x in einem übriggeblibenen Teilintervall (α k, β k ) der Länge ( 3 )k liegen muss. Daraus ergibt sich, dass β k = α k + ( 3 )k. Für die Randpunkte dieses Intervalls haben wir bereits Funktionvorschriften deniert, die hier zur Anwendung kommen: Φ(β k ) = Φ(α k ) + ( 2 )k. Wir betrachten nun den k + -Iterationsschritt unserer Mengenbildung. Oensichtlich macht es nur Sinn, wenn unser x nun immer noch in einem nicht-weggestrichenen Intervall liegt, da wir sonst auf die Denition aus Abschnitt 2. zurückgreifen könnten. Es sei also x (α k+, β k+ ), wobei es unerheblich ist, ob es sich hierbei um das links oder rechts übrig gebliebene Intervall handelt. Es gilt im Allgemeinen: Φ(α k ) Φ(α k+ ) < Φ(β k+ ) Φ(β k ) und wir denieren: Denition 2.4 Φ(x) := lim k Φ(α k ) = lim k Φ(β k ) Damit ist Φ auf ganz [0,] deniert und wir können uns nun den Eigenschaften der Cantor-Funktion zuwenden. Abbildung 2.2: Die Cantor-Funktion (www.math.harvard.edu) 6

7 3 Eigenschaften der Cantor-Funktion und deren Beweise Theorem 3. Die Cantor-Funktion Φ:[0,] [0,] mit Φ(0) = 0 und Φ() = hat die folgenden Eigenschaften. Φ ist stetig 2. Φ ist monoton steigend 3. Φ ist für kein x dierenzierbar 4. Φ ist für alle x [0, ] dierenzierbar und Φ (x) = 0 5. Φ ist surjektiv 6. Φ C : C [0, ] ist surjektiv 7. Φ ist nicht lipschitzstetig 3. Stetigkeit n N x, y [0, ] gilt: Falls: x y < ( 3 Φ(x) Φ(y) < ( ) n 2 ε > 0 δ > 0 : x y < δ Φ(x) Φ(y) < ε Φ ist gleichmäÿig stetig 3.2 Monotonie Der Beweis der Monotonie folgt direkt aus unserer Denition der Cantor-Funktion. 3.3 Nicht-Dierenzierbarkeit in C Wir betrachten zunächst wieder die vereinfachte Cantor-Funktion, bei der nach k Iterationsschritten die Bildung der Cantor-Menge abgebrochen wird. Wenn wir dann im zweiten Schritt k gegen Unendlich gehen lassen, so erhalten wir den Beweis, dass Φ in C nicht dierenzierbar ist. Sei also x C x ist in einem abgeschlossen Intervall, das im k-ten Schritt entstanden ist, und welches wir hier [α, β] nennen wollen. { Φ(β) Φ(α) = ( 2 )k β α = ( 3 )k [Φ(β) Φ(α)] = ( 3 2 )k [β α] ) n [Φ(β) Φ(x)] + [Φ(x) Φ(α)] = ( 3 2 )k [(β x) + (x α)] { } α Es gilt im Allgemeinen folgende Beziehung max, γ β δ die wir nun anwenden wollen: α+γ β+δ für α, γ 0, β, δ > 0, 7

8 max{ Φ(β) Φ(x), Φ(x) Φ(α) } ( 3 (β x) (x α) 2 )k Lassen wir nun k gehen, so sehen wir leicht, dass entweder die links- oder die rechtsseitige Ableitung Φ (x) = sein müsste. Φ ist nicht dierentierbar in C 3.4 Dierenzierbarkeit in [0,]\C Die Menge [0,]\C besteht nur aus oenen Intervallen, die jeweils auf einen konstanten Funktionswert abgebildet werden. Daher ist diese Aussage klar. 3.5 Surjektivität Aus der Eigenschaft, dass Φ(0) := 0 und Φ() := und der in Abschnitt 3. bewiesenen Stetigkeit, folgt mittels Zwischenwertsatz für stetige Funktionen: y [0, ] x [0, ] : Φ(x) = y Φ ist surjektiv 3.6 Die Cantorfunktion eingeschränkt auf C Wir haben in Abschnitt 3.5 gezeigt, dass es zu jedem Punkt in [0,] ein Urbild in [0,] gibt. Da es keinen Punkt im Bild gibt, der genau ein Urbild hat, welches aus einem oenen Intervall stammt, ist es klar, dass die auf C eingeschränkte Cantorfunktion surjektiv auf den gesamten Bildbereich [0,] abgebildet wird. (Zur Erinnerung: Die Randpunkte der oenen Intervalle sind in der Cantor-Menge enthalten und werden auf den selben Funktionswert abgebildet, wie die Punkte im oenen Intervall J n,k ) 3.7 Nicht-Lipschitz-Stetigkeit Zuletzt untersuchen wir die Cantor-Funktion noch auf Lipschitz-Stetigkeit. Wäre Φ lipschitzstetig, so müsste es eine Konstante K geben, so dass x, y [0, ] : Φ(x) Φ(y) < K x y Wir betrachten nun die Randpunkte zweier benachbarter Intervalle im k-ten Iterationsschritt Φ(x) Φ(y) = ( 3 2 )k x y Damit ist klar, dass für k kein K R existiert, so dass die Lipschitz-Bedingung erfüllt ist. 4 Resümee Wir haben uns mit der Cantor-Funktion und ihren Eigenschaften befasst. Für mich persönlich, war es ein sehr spannendes Thema, da es mir anfangs unvorstellbar war, dass man eine stetige, monotone Funktion konstruieren kann, so dass für ihre Ableitung an den meisten Stellen Φ (x) = 0 gilt. Die Aufgabe, ausgehend von der ohnehin schon faszinierenden Cantor-Menge, eine Funktion zu konstruieren, für die diese Eigenschaften gelten, hat bei mir groÿes Interesse geweckt. Auch im Nachhinein ist es immer 8

9 noch unglaublich, dass eine solche Funktion existiert. Man stelle sich mal die einzelnen Iterationsschritte vor: Nach dem zweiten Schritt haben wir bereits die Hälfte aller Urbild-Punkte abgebildet, aber nur drei Punkte im Bildbereich getroen. Es ist wirklich bewundernswert, dass man trotz dieser oensichtlichen Ungleichverteilung eine stetige Funktion denieren kann. Betrachtet man sich die Punkte der Cantor-Menge C, deren Anzahl zwar unendlich ist, die aber auf dem Intervall [0,] nahezu vernachlässigbar erscheinen, ist es doch sehr bewundernswert, was diese Punkte bewirken. Für alle diejenigen, die sich zu diesem Thema weiter informieren möchten empfehle ich zunächst das englischsprachige Wikipedia. Wer jedoch total in die Welt der Cantor-Funktion, komplexerer Cantor-Mengen und weiterer mathematischer Phänomene einsteigen möchte, ist sicherlich mit dem Buch Experimental Mathematics in Action von David H. Bailey (u.a.) gut beraten. Literatur [] Rajwade, A.R.: Surprises and Counterexamples in Real Function Theory, Hindustan Book Agency, Delhi 2007 [2] Bailey, David H. (u.a.): Experimental Mathematics in Action, A. K. Peters Ltd., [3] Wise, Gary L.: Counterexamples in probability and real analysis, Oxford University Press, New York, 933 [4] Cantor-set, Cantor-function 9

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Sprechen wir über Zahlen (Karl-Heinz Wolff)

Sprechen wir über Zahlen (Karl-Heinz Wolff) Sprechen wir über Zahlen (Karl-Heinz Wolff) Die Überschrift ist insoweit irreführend, als der Autor ja schreibt und nicht mit dem Leser spricht. Was Mathematik im allgemeinen und Zahlen im besonderen betrifft,

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung:

Die Eulersche Zahl. Halbjährliche Verzinsung: (50%=0,5)... n- malige Verzinsung: 1 Die Eulersche Zahl Euler war als Mathematiker ein großer Experimentator. Er spielte mit Formeln so, wie ein Kind mit seinem Spielzeug und führte alle möglichen Substitutionen durch, bis er etwas Interessantes

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Algorithmen

Mehr

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen -

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen - Die Duration von Standard-Anleihen - Berechnungsverfahren und Einflussgrößen - Gliederung Einleitendes Herleitung einer Berechnungsvorschrift Berechnungsvorschriften für Standardfälle Einflussgrößen und

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte

Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Die Finanzmathematik ist momentan eine der wichtigsten Anwendungender. Hier soll ein grundlegendes Modell erörtert werden, das auf der Entwicklung

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Die Zeit und Veränderung nach Aristoteles

Die Zeit und Veränderung nach Aristoteles Lieferung 4 Hilfsgerüst zum Thema: Die Zeit und Veränderung nach Aristoteles 1. Anfang der Untersuchung: Anzweiflung Aristoteles: Es reiht sich an das bisher Versprochene, über die Zeit zu handeln. Zuerst

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Wie viele Nullstellen hat ein Polynom?

Wie viele Nullstellen hat ein Polynom? Wie viele Nullstellen hat ein Polynom? Verena Pölzl 0812265 Sabine Prettner 8930280 Juni 2013 1 Inhaltsverzeichnis 1 Warum will man wissen, wie viele Nullstellen ein Polynom hat? 3 2 Oligonome 4 3 Die

Mehr

(PRO-)SEMINAR ZUR ALGEBRA

(PRO-)SEMINAR ZUR ALGEBRA (PRO-)SEMINAR ZUR ALGEBRA U. GÖRTZ, C. KAPPEN, WS 200/ Einführung Kettenbrüche sind Ausdrücke der Form a 0 + a + a 2+... (beziehungsweise gewisse Varianten davon). Kettenbrüche sind ein klassisches und

Mehr

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg

Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis und Markov-Modelle. Christian Weiß Institut für Angewandte Mathematik und Statistitik Universität Würzburg Sequential Pattern Analysis Historische Aspekte Data Mining als Teildisziplin

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Compilerbau I Sommersemester 2008

Compilerbau I Sommersemester 2008 Fachbereich 12 Informatik und Elektrotechnik Programmiersprachen Kurt Sieber Benedikt Meurer Compilerbau I Sommersemester 2008 Übungsblatt 1 Aufgabe 1 Der erweiterte reguläre Ausdruck α{m, n erkennt zwischen

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Einkommensteuertarif. Herleitung der Zahlenwerte

Einkommensteuertarif. Herleitung der Zahlenwerte Anhang D: Steuertarife in Deutschland Einommensteuertarif Herleitung der Zahlenwerte Prof Dr Andreas Pfeifer, Hochschule Darmstadt Februar 015 In diesem Beitrag wird erlärt, wie die Berechnungsformeln

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes

Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes Die Kalkulation von PKV-Tarifen unter Einbeziehung des Übertragungswertes Anna Wallner und Hans-Joachim Zwiesler Preprint Series: 2009-25 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Fakultät für Mathematik. Content Management System

Fakultät für Mathematik. Content Management System Fakultät für Mathematik Content Management System Erfassung von Lehrveranstaltungen Autor: PD Dr. Tilo Arens Stand 2.10.2013 Das Werkzeug zur Erfassung von zukünftigen Lehrveranstaltungen dient zwei Zwecken:

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem 20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem Autor Susanne Albers, Universität Freiburg Swen Schmelzer, Universität Freiburg In diesem Jahr möchte

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Friedrich Nietzsche Über die Zukunft unserer Bildungsanstalten (Universitätsvorträge)

Friedrich Nietzsche Über die Zukunft unserer Bildungsanstalten (Universitätsvorträge) Friedrich Nietzsche Über die Zukunft unserer Bildungsanstalten (Universitätsvorträge) Ruprecht-Karls-Universität Heidelberg Institut für Bildungswissenschaft Seminar: Bildung des Bürgers Dozent: Dr. Gerstner

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie

Kurzbeschreibung. Eingaben zur Berechnung. Das Optionspreismodell. Mit dem Eurex-OptionMaster können Sie Kurzbeschreibung Mit dem Eurex-OptionMaster können Sie - theoretische Optionspreise - Optionskennzahlen ( Griechen ) und - implizite Volatilitäten von Optionen berechnen und die errechneten Preise bei

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Einführung in die Stochastik

Einführung in die Stochastik Einführung in die Stochastik Josef G. Steinebach Köln, WS 2009/10 I Wahrscheinlichkeitsrechnung 1 Wahrscheinlichkeitsräume, Urnenmodelle Stochastik : Lehre von den Gesetzmäßigkeiten des Zufalls, Analyse

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! Aufgaben und Lösungen. Runde 04 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KARL FEGERT» BUNDESWETTBEWERB MATHEMATIK Kortrijker Straße, 577 Bonn Postfach 0 0 0, 5 Bonn

Mehr

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine 24 ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine gerade Linie. Die (:~). Kurve (verg I. Fig. 5) ist ein Parabel. Wenn nun d gröszer als a wird. wird die Kurve wieder steigen. Die

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Der Angriff auf Merkle-Hellman Kryptosystem

Der Angriff auf Merkle-Hellman Kryptosystem Institut für Formale Methoden der Informatik Universität Stuttgart Universitätsstraße 38 70569 Stuttgart Germany Diplomarbeit Nr. 3520 Der Angriff auf Merkle-Hellman Kryptosystem Sheng Gao Studiengang:

Mehr

Die Übereckperspektive mit zwei Fluchtpunkten

Die Übereckperspektive mit zwei Fluchtpunkten Perspektive Perspektive mit zwei Fluchtpunkten (S. 1 von 8) / www.kunstbrowser.de Die Übereckperspektive mit zwei Fluchtpunkten Bei dieser Perspektivart wird der rechtwinklige Körper so auf die Grundebene

Mehr